УДК 523.9

# КОРРЕЛЯЦИЯ ВРЕМЕННЫ́Х РЯДОВ ЧИСЕЛ ВОЛЬФА И ИХ ПРОИЗВОДНЫХ

© 2022 г. С. В. Старченко<sup>1, \*</sup>, С. В. Яковлева<sup>1, \*\*</sup>

<sup>1</sup>Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН (ИЗМИРАН), г. Москва, г. Троицк, Россия \*e-mail: sstarchenko@mail.ru \*\*e-mail: svyakov@inbox.ru Поступила в редакцию 28.02.2022 г. После доработки 11.04.2022 г.

Принята к публикации 25.05.2022 г.

Приведены результаты исследования корреляции среднегодовых чисел Вольфа W и их временны́х производных W при сдвигах во времени фрагментов рядов W и W относительно друг друга. Наиболее значимые (до 0.88 и -0.85) коэффициенты корреляции и антикорреляции получаются при сдвигах на два-три года для фрагментов, охватывающих два 11-летних цикла. Для более длительных фрагментов коэффициенты остаются значимыми (на уровнях около  $\pm 0.8$ ) при тех же сдвигах. Поэтому сдвиг по фазе между W и W составляет примерно четверть солнечного цикла, что физически соответствует преимущественной связи пятен с магнитной энергией. При этом также значим сдвиг на 8-9 лет, которому соответствуют коэффициенты корреляции на уровнях около  $\pm 0.75$ . Обсуждаются прогностические потенциалы полученных корреляционных зависимостей.

DOI: 10.31857/S0016794022050169

### 1. ВВЕДЕНИЕ

Изучение корреляционных свойств чисел Вольфа Шпреследует преимущественно прогностические цели, например, [Витинский, 1973; Ишков и Шибаев, 2006; Abdel-Rahman and Marzouk, 2018; Petrovay, 2020; McIntosh et al., 2020]. Поэтому корреляции, а фактически – автокорреляции, прежде всего, ищут между оригинальными или преобразованными фрагментами рядов W, разделенными временными интервалами. Таким образом исследуется и форма солнечного цикла, которая изучалась ранее, например, Ivanov [2020]. Применяемое нами простейшее преобразование ряда *W* в соответствующий ряд производных W = dW/dt также vже исследовалось, см., например, [Наговицын и Кулешова, 2012]. Однако в предлагаемой работе мы исследуем производные и исходный ряд с помощью нашей оригинальной методики вычисления корреляции сдвинутых во времени рядов. Вместе с тем, можно частично увязать проявления подобных производных с известным эффектом Вальдмайера (антикорреляция между временами нарастания цикла солнечных пятен и их амплитуд) и его модификациями, например, [Petrovay, 2020; Takalo and Mursula, 2018; Dmitrieva et al., 2000].

Первоочередная задача этой работы — выявление базовых корреляционных зависимостей между сдвигаемыми по времени относительно друг друга рядами чисел Вольфа и их производными (*W* и *W*). Работа в первую очередь нацелена на прояснение физической и статистической сути, а частично и прогностического потенциала временны́х и фазовых сдвигов, получаемых при наиболее значимых корреляциях.

# 2. ДИНАМИКА 1700-2021 гг.

Мы используем среднегодовые числа Вольфа W с 1700 по 2021 гг. в версии v2 из (http://sidc.oma.be/ silso/datafiles). Временные производные  $dW/dt \equiv W$ получены на ту же середину года, что и W, посредством взятия среднего от производной слева и справа. Это простейшее усреднение производной, вероятно, несколько сглаживает изначальные ошибки, проистекающие из наблюдательного и договорного определения W.

На рисунке 1 представлена эволюция чисел Вольфа и их производных с вычетом соответствующих средних значений за рассматриваемый интервал 1700—2021 гг. Числа Вольфа за вычетом среднего (далее средние всякий раз определяются именно по рассматриваемым интервалам) обозначаем строчной буквой w, а их производную за вычетом средней же производной соответственно w'. Эти, фактически, отклонения от среднего мы по-прежнему будем называть числами Вольфа и



**Рис. 1.** Эволюция модифицированных (посредством вычета среднего) чисел Вольфа *w* и их временны́х производных *w*' за 1700–2020 гг. Правая вертикальная ось в 1/год для *w*', левая безразмерная – для *w*.

их производными для краткости. Такие отклонения используется нами для более четкого проявления вариативности, ведущей к более значимым корреляциям. Почти повсеместно на рис. 1 максимум в производной проявляется примерно за два-три года до максимума в числах Вольфа *w*, а минимум в производных *w*' – за примерно два-три года до

| Ζ   | K (I = 22) | K (I = 44) | K $(I = 88)$ | K ( <i>I</i> = 176) | K (I = 322) |
|-----|------------|------------|--------------|---------------------|-------------|
| 10  | -0.709     | -0.271     | -0.237       | -0.330              | -0.209      |
| 9   | -0.834     | -0.620     | -0.621       | -0.637              | -0.509      |
| 8   | -0.738     | -0.727     | -0.746       | -0.699              | -0.623      |
| 7   | -0.433     | -0.598     | -0.611       | -0.548              | -0.518      |
| 6   | -0.021     | -0.287     | -0.289       | -0.244              | -0.244      |
| 5   | 0.395      | 0.135      | 0.131        | 0.143               | 0.115       |
| 4   | 0.750      | 0.546      | 0.528        | 0.515               | 0.463       |
| 3   | 0.877      | 0.799      | 0.792        | 0.769               | 0.714       |
| 2   | 0.745      | 0.796      | 0.812        | 0.793               | 0.761       |
| 1   | 0.440      | 0.540      | 0.548        | 0.542               | 0.531       |
| 0   | 0.030      | 0.013      | 0.002        | 0.006               | 0.000       |
| -1  | -0.420     | -0.519     | -0.544       | -0.534              | -0.530      |
| -2  | -0.730     | -0.784     | -0.807       | -0.789              | -0.760      |
| -3  | -0.852     | -0.789     | -0.787       | -0.766              | -0.713      |
| -4  | -0.704     | -0.535     | -0.517       | -0.511              | -0.462      |
| -5  | -0.342     | -0.109     | -0.106       | -0.135              | -0.112      |
| -6  | 0.064      | 0.321      | 0.318        | 0.257               | 0.246       |
| —7  | 0.444      | 0.634      | 0.632        | 0.560               | 0.514       |
| -8  | 0.724      | 0.772      | 0.761        | 0.710               | 0.616       |
| -9  | 0.490      | 0.664      | 0.625        | 0.645               | 0.502       |
| -10 | 0.227      | 0.320      | 0.222        | 0.337               | 0.201       |

Таблица 1. Коэффициенты корреляции между рядами w и w' различной протяженности I

*Примечание*: К – результирующий коэффициент корреляции, *I* – протяженность фрагментов временны́х рядов в годах, *Z* – шаг (в годах), на который происходит сдвиг временны́х фрагментов (знак минус означает смещение назад во времени).

минимума в числах. При этом относительные значения w близки к сдвинутым на те же два—три года вперед относительным значениям w'. Эти обстоятельства очевидным образом предвосхищают наиболее значимые корреляции.

## 3. КОРРЕЛЯЦИИ СДВИНУТЫХ РЯДОВ

Для нашего (насколько нам известно — оригинального) "сдвигового" корреляционного анализа мы используем как базовый ряд — ряд чисел Вольфа w(t), относительно которого сдвигаем ряд производных w'(t) по времени на Zлет. При положительном Z w' сдвигается вперед в будущее, а при отрицательном — назад в прошлое. Таким образом, мы сопоставляем w(t) с w'(t - Z). При положительных значениях Z предшествующее w' соотносится с последующим (через Zлет) w, и появляется возможность (при значимой корреляции) грубо предсказывать будущие w по предшествующим w'. Когда Z < 0, наоборот, по прошлым w потенциально представляется возможность предсказать динамику будущих w'.

При непосредственных расчетах мы выделяли ведущий фрагмент ряда (w' при Z > 0 и w при Z < 0), начиная от его современного значения до момен-

та, который отстоит на I + |Z| лет в прошлое. Затем мы сдвигали соответствующий дополняющий (*w* при Z > 0 и *w*' при Z < 0) ряд длиной I на |Z| назад и вычисляли коэффициент корреляции K(Z) по самоочевидной формуле:

$$\mathbf{K} = \sum_{i=1}^{I} w_i w'_i / \sqrt{\sum_{i=1}^{I} (w_i)^2 \sum_{i=1}^{I} (w'_i)^2}.$$
 (1)

Здесь *i* отсчитывается (из прошлого к настоящему) от *I*-го значения в прошлое для дополняющего ряда и от (I + |Z|)-го – для ведущего ряда.

Результирующие коэффициенты корреляции К представлены в табл. 1 для фрагментов рядов длиной I = 22, 44, 88, 176 (лет) и всего доступного ряда с I = 322 (года). Наиболее значимые корреляции/антикорреляции выделены жирным шрифтом. Очевидна наивысшая значимость сдвигов производных w' как в будущее, так и в прошлое на 2–3 года. Следующие по значимости – сдвиги на 8–9 лет в будущее, а в прошлое значимы сдвиги только на 8 лет.

Абсолютные величины значимых коэффициентов не совсем монотонно и довольно незначительно, но регулярно уменьшаются с увеличением длины выбранных фрагментов рядов. Это, возможно, — следствие несколько уменьшающейся связанности недалеких от современных значений с все более и более отдаленными прошлыми значениями и/или просто — с увеличивающейся недостоверностью исходных данных по мере погружения в прошлое.

Проиллюстрируем графически наиболее значимые коэффициенты К из табл. 1.

В качестве примера на рисунках 2*a*, 2*б* представлены графики смещения *w* относительно *w'* для разных *Z* на основе расчетов по XVI–XXIV солнечным циклам (I = 88). Значения *w'* не смещены и соответствуют рис. 1*в*. При этом ряд значений *w* смещен относительно ряда *w* влево (что эквивалентно смещению ряда *w'* вправо) по оси абсцисс на величину Z = 2, Z = 3 и Z = 8 соответственно. Из рисунка 2*a* видно, что корреляция максимумов и минимумов *w и w'* не одинаково идеальна для разных циклов, но, в целом, достаточно очевидна. То же самое можно сказать и об антикорреляции на рис. 2*б*.

Аналогичное выявление корреляции и антикорреляции было проведено на основе расчетов по всему достоверному ряду относительных чисел солнечных пятен [Ишков, 2013] на временной шкале в 176 лет. При этом не привлекались к исследованию восстановленные ряды (1755-1848 гг.), так как "достоверный и восстановленный ряды чисел Вольфа имеют совершенно разные спектральные характеристики и значимо отличаются по статистическим параметрам" [Ишков и Шибаев, 2006]. На рисунках 2в, 2г представлены графики смещения w относительно w' для разных Z на интервале 1845-1920 гг. (X-XV солнечные циклы) как часть этого полного ряда (I = 176). Очевидно, что корреляция и антикорреляция максимумов и минимумов w и w' на этом интервале также имеют место, хотя и менее ярко выражены, чем для последних циклов, изображенных на рис. 2a, 2b, что подтверждается также меньшим значением коэффициента корреляции в таблице. Принимая во внимание перспективу дальнейшего развития исследования в направлении прогнозирования времени наступления максимума солнечной активности, наибольшее значение приобретают последние два цикла с I = 22.

На рисунке 3a,  $3\delta$  представлены графики смещения w' относительно w для разных Z на основе расчетов по последним примерно четырем магнитным солнечным циклам или I = 88 (лет). В этом случае, наоборот, ряд w остается закрепленным относительно оси абсцисс, а ряд w' смещен относительно него влево на 2, 3 и 8 лет, что соответствует Z = -2, Z = -3 и Z = -8. На рис. 3e, 3e представлены аналогичные графики для более ранних циклов X–XV.

# 4. ФИЗИЧЕСКИЕ ОСНОВЫ ЗНАЧИМЫХ СДВИГОВ

Самая простая и вместе с тем достаточно реалистическая физическая модель изменения магнитного поля (в относительных единицах, связанных со средней величиной амплитуды) во время солнечного цикла – это синусоида:  $\sin(\pi t/T_c)$ , где  $T_c$  – период цикла солнечной активности (~11 лет). Если предположить, что динамика исходных чисел Вольфа W связана с магнитной энергией, то тогда  $W = [\sin(\pi t/T_c)]^2$ , а рассматриваемые здесь числа Вольфа за вычетом среднего

$$w = \left[\sin(\pi t/T_c)\right]^2 - 1/2 = -\cos(2\pi t/T_c)/2.$$
 (2)

При этом временны́е производные *W*' и *w*' совпадают:

$$W' = w' = (\pi/T_c)\sin(2\pi t/T_c).$$
 (3)

Введя фазовую переменную  $x = \pi t/T_c$ , умножим (2) и (3) на соответствующие коэффициенты, позволяющие эффективно сравнивать (аналогичная процедура необходима и для прогнозных оценок) эти выражения (2) и (3). В результате сравниваем нормированные функции  $w_n = -\cos(2x)$ и  $w'_n = \sin(2x)$ . Очевидно, что фазовые сдвиги (для достижения полного совпадения) соответствуют 1/4 и 3/4 величины периода  $T_c$ , что очень хорошо согласуется со всеми изложенными выше исследованиями.

Разумеется, профиль реального цикла магнитной активности отличается от синусоиды, но его неизбежной чертой является наличие отрицательной и положительной составляющей магнитного поля, которые проявляются на полном периоде 2T<sub>c</sub>. Соответствующую активность пятен простейшим образом можно увязать с квадратом величины магнитного поля, который в свою очередь согласуется с магнитной энергией. При этом естественным образом, происходит удвоение частоты и уменьшение в два раза (с  $\pi/2$  для магнитного цикла до π/4 для цикла пятен) фазового сдвига между производной и исходной величиной, которые и проявляются в максимальных корреляциях и антикорреляциях при соответствующих сдвигах.

Альтернативно можно рассматривать модуль магнитного поля, но он неизбежно приведет к таким разрывам производных (в минимумах), которые представляются нам неприемлемыми. При этом, возможно, некоторую роль в проявлениях солнечной активности играют четвертая, шестая и более высокие четные степени модуля магнитного поля. Выявление относительных ролей всех этих степеней требует проведения отдельных работ, а пока мы гипотетически примем, что доминирует вторая степень или квадратичная зависимость.



**Рис. 2.** Графики смещения *w* относительно *w*' для Z = 2, 3 и 8 (лет) на основе расчетов по XVI–XXIV магнитным солнечным циклам (*a*,  $\delta$ ) и XX–XV (*в*, *г*).

# 5. ОБСУЖДЕНИЕ И РЕЗУЛЬТАТЫ

Наша работа, безусловно, во многих аспектах может быть продолжена и намного улучшена, поскольку в рамках предлагаемых нами концепций можно провести множество других исследований, весьма существенно дополняющих, уточняющих и даже, возможно, несколько пересматривающих полученные нами результаты. Основная предлагаемая нами концепция заключается в выделении корреляций между сдвинутыми по вре-

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 62 № 6 2022



мени относительно друг друга фрагментами рядов чисел Вольфа и их производных. Мы не исключаем, что что-то подобное уже было сделано, но нам это представляется маловероятным, поскольку аналогичные исследования должны были бы породить немало работ, которые не смогли бы ускользнуть от нашего и уважаемых рецензентов поиска. Мы надеемся, что эта краткая работа будет далее существенно развита как нами, так и многими другими исследователями не только и не столько в плане доминирующих ныне прогностических оценок, но и в плане проявления веро-



**Рис. 3.** Графики смещения *w*' относительно *w* для Z = -2, -3 и -8 (лет) на основе расчетов по XVI–XXIV магнитным солнечным циклам (*a*,  $\delta$ ) и XX–XV (*в*, *г*).

ятностных, физических и статистических основ различных периодических линейных и нелинейных процессов. Для потенциальных прогностических оценок просим обратить Ваше внимание на рис. 2 и 3, на которых есть сдвинутые назад в прошлое графи-

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 62 № 6 2022





ки. Для соответствующих величин можно сделать прогноз по "опережающим" их графикам. Также можно привлечь для прогнозов и другие значимые "сдвиговые" корреляции. Это потребует отдельных работ, множество которых нами еще очерчено не вполне, и мы будем рады, если наши коллеги помогут нам.

В любом случае мы, прежде всего, выделяем именно нашу, как нам представляется, простую идею о "сдвиговой" корреляции, которая, есте-

700

ственным образом, может быть весьма существенно дополнена и использована на больших и детальных массивах данных (вплоть до Big Data). Ее полезность для прогностических оценок (к которым мы, признаться, относимся с некоторой осторожностью из-за наличия большой и бесспорной случайной составляющей в солнечной активности) мы не ставим во главу угла, а надеемся, что она в большей степени будет полезна для выявления вероятностной, статистической и физической сути рассматриваемой магнитной активности Солнца.

Сформулируем основные результаты представленной работы.

1. Исследованы корреляции среднегодовых чисел Вольфа W и их производных по времени W при временны́х сдвигах фрагментов рядов W и W относительно друг друга. При этом для достижения значимых корреляций актуально исследуются отклонения от средних значений для этих рядов.

2. Наиболее значимые (до 0.88 и -0.85) коэффициенты корреляции и антикорреляции получаются при сдвигах на два-три года для фрагментов, охватывающих полный магнитный цикл (22 года).

3. Исследованы фрагменты длиной 44, 88, 176 и 322 (весь ряд) года. При этом коэффициенты остаются значимыми (на уровнях около  $\pm 0.8$ ) для таких же сдвигов на 2–3 года.

4. Получен главный сдвиг по фазе  $\pi/4$  между числами Вольфа и их производными, который составляет примерно четверть солнечного цикла, что статистически и физически хорошо соответствует преимущественной связи пятен с магнитной энергией.

5. При этом также значимы сдвиги на 8–9 лет, которым соответствуют коэффициенты корреляции на уровнях около ±0.75 и фазовый сдвиг на  $3\pi/4$  или на 3/4 длины цикла солнечной активности. Такой сдвиг также естественным образом увязывается с простейшей вариативностью магнитной энергии.

#### ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена за счет бюджета Института земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН в рамках государственного финансирования.

### 7. БЛАГОДАРНОСТИ

Мы признательны анонимному рецензенту за предоставление полезных ссылок о форме цикла активности, сравнительных исследований производных от чисел Вольфа и за весьма конструктивные предложения по оформлению работы.

Другому рецензенту, Виталию Никитичу Ишкову, мы признательны как за совет расширить графические иллюстрации корреляций на весь набор достоверных рядов чисел Вольфа, так и за соображения о возможной природе связи фазового сдвига между числами и производными.

### СПИСОК ЛИТЕРАТУРЫ

- Витинский Ю.И. Цикличность и прогнозы солнечной активности. Л.: Наука, 258 с. 1973.

— Ишков В.Н., Шибаев И.Г. Циклы солнечной активности: общие характеристики и современные границы прогнозирования // Изв. РАН. Сер. физич. Т. 70. № 10. C. 1439-1442. 2006.

- Ишков В.Н. Периоды "пониженной" и "повышенной" солнечной активности: наблюдательные особенности и ключевые факты /Солнечная и солнечноземная физика – 2013. Ред. Ю.А. Наговицын. Санкт-Петербург: изд-во ВВМ. С. 111-114. 2013.

http://www.gao.spb.ru/russian/publ-s/conf 2013/conf 2013.pdf

- Наговицын Ю.А., Кулешова А.И. Соотношение Вальдмайера и ранняя диагностика величины максимума текущего цикла солнечной активности // Астрон. журн. Т. 89. № 10. С. 883-887. 2012.

- Abdel-Rahman H.I., Marzouk B.A. Statistical method to predict the sunspots number // NRIAG J. Astron. Geophys. V. 7. P. 175-179. 2018.

- Dmitrieva I.V., Kuzanyan K.M., Obridko V.N. Amplitude and period of the dynamo wave and prediction of the solar cycle // Solar Phys. V. 195. P. 209-218. 2000. https://doi.org/10.1023/A:1005207828577

- Ivanov V.G. Anomalies of shape of 11-year solar cycle in sunspot number series // Geomagn. Aeronomy. V. 60. № 7. P. 860-864. 2020.

- McIntosh S.W., Chapman S., Leamon R.J., Egeland R., Watkins N.W. Overlapping magnetic activity cycles and the sunspot number: Forecasting sunspot cycle 25 amplitude // Solar Phys. V. 295. № 163. 59 p. 2020. https://doi.org/10.1007/s11207-020-01723-y

- Petrovay K. Solar cycle prediction // Living Rev. Sol. Phys. V. 17. № 2. 93 p. 2020. https://doi.org/10.1007/s41116-020-0022-z. arXiv:1907.02107

- Takalo J., Mursula R. Principal component analysis of sunspot cycle shape //Astron. Astrophys. V. 620. A100. 10 p. 2018

https://doi.org/10.1051/0004-6361/201833924