УДК 550.388:343

ВЛИЯНИЕ СЕЙСМИЧЕСКОЙ АКТИВНОСТИ НА НЕОДНОРОДНОСТИ ТУРБУЛЕНТНОГО ПРОИСХОЖДЕНИЯ В СПОРАДИЧЕСКОМ СЛОЕ *Es*

© 2022 г. О. А. Алимов^{1,} *, Т. М. Калашникова¹

¹Институт астрофизики Национальной Академии наук Таджикистана, г. Душанбе, Республика Таджикистан *e-mail: alimov38@mail.ru Поступила в редакцию 18.10.2021 г. После доработки 17.02.2022 г.

Принята к публикации 25.05.2022 г.

Рассмотрена не исследованная ранее особенность зависимости между предельной частотой и частотой экранирования спорадического слоя *Es* в сейсмоактивный и сейсмоспокойный периоды. Был вычислен показатель трехмерного спектра атмосферной турбулентности *P* из логарифмических зависимостей lg*foEs* $\approx \alpha$ lg*fbEs*, где $\alpha = 4/P$. Параметры α и *P* определены по данным вертикального зондирования ионосферной станции Душанбе в период подготовки 12 землетрясений. Показано, что величина показателя трехмерного спектра атмосферной турбулентности в сейсмоактивный период в 1.5–2 раза больше по сравнению со сейсмоспокойным периодом. Увеличение значения показателя трехмерного спектра атмосферной турбулентности в сейсмоактивный период свидетельствует о существенном вкладе турбулентности в интенсивность возникновения мелкомасштабных неоднородностей слоя *Es* ионосферы.

DOI: 10.31857/S0016794022050029

1. ВВЕДЕНИЕ

Хорошо известно, что спорадический слой Ез ионосферы, состоящий из долгоживущих металлических ионов метеорного происхождения Fe⁺, Mg⁺, Si⁺ и отдельных облаков повышенной электронной плотности, обладает значительной изменчивостью. Определение физических процессов в период подготовки землетрясений на разных высотах могло бы дать важную информацию для решения вопроса о механизмах литосферноионосферной связи. В работах [Pulinets, 1988; Липеровский и др., 1992; Алимов и др., 1989; Алимов и Гулямов, 2018] показано, что в среднем сейсмоионосферные предвестники появляются за 5 сут до сейсмического толчка. При зондировании ионосферы рассеивающие неоднородности электронной концентрации должны иметь размеры от десятков до сотен метров. Исходя из этого Ерухимов и Савина [1980] сделали предположение о турбулентном происхождении этих неоднородностей на средних широтах. В работе [Ерухимов и Савина, 1980; Корсунова и Бакалдина, 1986] получено, что для полупрозрачного слоя $Es \Delta f Es =$ = foEs – fbEs должна выполняться зависимость $foEs \sim f_b^{\alpha}Es$, где a = 4/P и P – показатель трехмер-

ного спектра атмосферной турбулентности.

Представляет интерес изучить вышеприведенную зависимость на основе экспериментальных соотношений между предельной частотой отражений от *Es foEs* и частотой экранирования *fbEs* в сейсмоактивный и сейсмоспокойный периоды в ночном спорадическом слое *Es* ионосферы.

В работе [Алимов и Калашникова, 2016] показано, что в период подготовки землетрясения увеличивается диапазон полупрозрачности Es спорадического слоя. Для объяснения больших диапазонов полупрозрачности среднеширотного спорадического слоя Es метеорного происхождения необходимо изучить вклад влияния сейсмической активности на модификации спорадического слоя *Es*. Всеобщее признание в настоящее время получила точка зрения, согласно которой образование слоя Es на средних широтах обусловлено перераспределением заряженных частиц в присутствии ветровых систем со сдвигами скорости по высоте [Гершман, 1974; Гершман и др., 1976]. В то же время в недостаточной степени принималось во внимание то обстоятельство, что во многих случаях зона формирования слоя *Es* может находиться в турбулентном состоянии.

Цель настоящей работы — изучить не исследованную ранее особенность зависимости между предельной частотой и частотой экранирования спорадического слоя E_s в сейсмоактивный и сейсмоспокойный периоды. Упомянутый выше параметр P был определен для средних значений всех наблюдаемых частот E_s из логарифмических

Рис. 1. Значения логарифмов предельной частоты отражения спорадического слоя *Es foEs* в зависимости от частоты экранирования *fbEs* на высоте 100-110 км в сейсмоактивный (*I*) и сейсмоспокойный (*2*) периоды 1986 и 1991 гг.

зависимостей lg*foEs* ≈ α.lg*fbEs* как для сейсмоспокойных, так и для сейсмоактивных периодов.

2. МЕТОДЫ И АНАЛИЗ

Для объяснения больших диапазонов полупрозрачности спорадического слоя Es и вариаций полупрозрачности необходимо учитывать вклад влияния сейсмической активности на формирование радиоотражения от спорадического слоя Es при воздействии электромагнитного нагрева сейсмического происхождения. На рисунке 1 показаны значения логарифмов предельной частоты отражения спорадического слоя *Es foEs* в зависимости от частоты экранирования *fbEs* на высоте 100-110 км в сейсмоактивный (1) и сейсмоспокойный (2) периоды 1986 и 1991 гг. Для интервалов 0.1-0.2; 0.2-0.3; 0.3-0.4... значений lgfbEs вычислены средние значения \lg foEs, которые показаны на рис. 1 точками вместе с их среднеквадратичными отклонениями. Из рисунка 1 следует, что логарифмическая зависимость $\lg foEs$ и $\lg fbEs$ различна для сейсмоактивного и сейсмоспокойного периодов. На графиках видна отчетливая сходная по форме зависимость логарифмов предельной частоты foEs от частоты экранировки fbEs в сейсмоспокойный и сейсмоактивный периоды. Точки, расположенные выше прямой линии, соответствуют условию $foEs \ge 2fbEs$. Это происходит при увеличении foEs и уменьшении fbEs, вклад которых существенен для низких значений частоты экранирования.

Для анализа использовались данные 15-минутных измерений на станции ВЗ ионосферы СП-3 Института астрофизики Национальной Академии наук Таджикистана. К ночным условиям мы относили период с 18:00 одних суток до 06:00 следующих суток. Методом наложения эпох были получены условия сейсмоактивных и сейсмоспокойных периодов. За сейсмоактивные периоды принимались ночи "-1", "-2" и "-3", остальные ночи были отнесены к сейсмоспокойным периодам, "-5", "-4" и "+1", "+2", "+3". Знак "-" обозначает ночи до землетрясения, знак "+" – ночи после землетрясения.

На рисунке 2 в качестве примера представлены зависимости $\lg foEs$ и $\lg fbEs$ для Гиндукушского землетрясения с магнитудой M = 6.1, которое произошло 01.02.1991 г. на расстоянии 320 км к юго-востоку от станции вертикального зондирования Душанбе. Были обработаны и определены по 15-минутному интервалу времени величины *foEs* и *fbEs* с 26 января по 5 февраля 1991 г. Отчетливо видно, что формы зависимостей в сейсмоактивный и сейсмоспокойный периоды отличаются между собой. Особая разница заметна в величинах α в сейсмоспокойный и сейсмоактивный периоды.

Кроме того, были использованы данные наблюдений за 1986 и 1991 г. на ст. Душанбе в период подготовки 12 землетрясений с магнитудой $4.2 \le M \le 6.3$ и расстоянием 80 км < R < 320 км от эпицентра до станции вертикального зондирования. Экспериментальные величины показателя трехмерного спектра атмосферной турбулентности Р и показателя степенной зависимости α представлены в табл. 1. Значения параметра α – показателя степенной зависимости foEs ~ $f_b^{\alpha}Es$ заключены в пределах α = 0.65-0.90 в сейсмоспокойный период, а в сейсмоактивный период находятся в пределах $\alpha = 0.40 - 0.70$. Параметр *Р* заключен в пределах P = 4.44 - 6.15 в сейсмоспокойный период, а в сейсмоактивный период заключен в пределах P = 5.7 - 10.0. Полученные экспериментально значения Р ≈ 4.8 в сейсмоспокой-

Рис. 2. Зависимость логарифмов предельной частоты отражения *foEs* от частоты экранирования *fbEs* для сейсмоактивного (1) и сейсмоспокойного (2) периодов для Гиндукушского землетрясения.

ный период в среднем примерно соответствуют показателю теоретического трехмерного спектра атмосферной турбулентности (P = 11/3) [Ерухимов и Савина, 1980].

Значение параметра P — показателя трехмерного спектра атмосферной турбулентности определено по углу наклона показателя степенной зависимости α из логарифмических зависимостей lg*foEs* $\approx \alpha$ lg*fbEs* отдельно в сейсмоактивный и сейсмоспокойный периоды в ночном спорадическом слое *Es* приведены в табл. 1. Как показано в табл. 1, величина α в сейсмоактивный период меньше по сравнению с сейсмоспокойным периодом. Величина *P* больше в сейсмоактивный период, а в сейсмоспокойный период параметр меньше. Из табл. 1 видно, что величина α уменьшается, а Р возрастает в сейсмоактивный период, а в сейсмоспокойный период величины α и Р также изменяются с малыми амплитудами. Увеличение параметра Р в ночное время свидетельствует о вкладе турбулентности в создание мелкомасштабных неоднородностей, формирующих радиоотражения от спорадического слоя Es. Уменьшение параметра α и возрастание Р в период подготовки сильных землетрясений может быть вызвано усилением образования мелкомасштабных неоднородностей в спорадическом слое Es.

Существует достаточно много экспериментов по исследованию среднеширотного спорадического слоя *Es*, которые указывают на тонкую структуру, содержащую мелкомасштабные неоднородности концентрации электронов. Установ-

Дата землетрясения	М	<i>R</i> , км	Полупрозрачный слой Ез по ст. Душанбе			
			сейсмоактивный период		сейсмоспокойный период	
			α	Р	α	Р
17.08.1986 г.	4.5	250	0.60	6.67	0.90	4.44
21.08.1986 г.	5.3	250	0.60	6.67	0.90	4.44
23.08.1986 г.	4.8	250	0.60	6.67	0.90	4.44
27.08.1986 г.	5.1	250	0.60	6.67	0.90	4.44
1.02.1991 г.	6.1	320	0.50	8.00	0.70	5.71
1.03.1991 г.	4.2	150	0.40	10.00	0.80	5.00
2.03.1991 г.	4.4	150	0.40	10.00	0.80	5.00
18.04.1991 г.	5.6	80	0.70	5.71	0.84	4.76
13.05.1991 г.	4.6	200	0.70	5.71	0.81	4.94
14.05.1991 г.	4.6	200	0.70	5.71	0.81	4.94
14.07.1991 г.	6.3	300	0.48	8.33	0.65	6.15
23.08.1991 г.	5.6	200	0.55	7.27	0.70	5.71

Таблица 1. Численные значения параметров α и *P* в сейсмоактивный и сейсмоспокойный периоды

лено, что предельная частота слоя *Es* – *foEs* больше частоты экранировки *fbEs* в 2–3 раза [Ерухимов и Савина, 1980; Корсунова и Бакалдина, 1986].

Неоднородности электронной концентрации спорадического *Es*-слоя можно условно разделить на мелкомасштабные, с характерным масштабом в десятки метров, и крупномасштабные, – с характерным масштабом в сотни метров. Поэтому исследование прозрачности спорадического слоя *Es* может быть полезным при изучении структуры *Es*-слоя и применимо для объяснения механизма его образования.

Для обнаружения физических механизмов сейсмоионосферной связи принципиально необходимы комплексы одновременных наблюдений различных ионосферных и геофизических параметров в различных частотных диапазонах для одних и тех же землетрясений. Для объяснения больших диапазонов полупрозрачности спорадического слоя *Es* и вариаций полупрозрачности (изменений ее величины) необходимо учитывать вклад влияния сейсмической активности на формирование радиоотражения от спорадического слоя *Es* при воздействии электромагнитного нагрева сейсмического происхождения.

3. ЗАКЛЮЧЕНИЕ

Таким образом можно заключить, что значения показателя трехмерного спектра атмосферной турбулентности $P \ge 4-5$ в сейсмоактивный период 1.5–2 раза больше по сравнению с сейсмоспокойным периодом за 1–3 сут до землетрясений, что свидетельствует об интенсивности возникновения мелкомасштабных неоднородностей перед землетрясением. Предполагается, что воздействие на ионосферу электромагнитными полями сейсмического происхождения вызывает усиление мелкомасштабных неоднородностей слоя *Es* перед землетрясениями. Таким образом, интенсивное возникновение мелкомасштабных неоднородностей в *Es* при $\alpha \leq 0.7$ и $P \geq 5$ в сейсмоактивный период можно отнести к предвестникам землетрясений.

СПИСОК ЛИТЕРАТУРЫ

– Алимов О.А., Гохбере М.Б., Липеровская Е.В., Гуфельд И.Л., Липеровский В.А., Рубцов Л.Н. Эффект резких уменьшений плотности спорадического слоя Е ионосферы – предвестник землетрясений // Докл. АН СССР. Т. 305. № 6. С. 1335–1339. 1989.

— Алимов О.А., Калашникова Т.М. Сейсмоионосферные эффекты в спорадическом слое *Es* метеорного происхождения / Сб. докл. Междунар. конф. "Актуальные проблемы современной сейсмологии" 12–14 октября 2016 г. г. Ташкент, Узбекистан. С. 181–186. 2016.

– Алимов О.А., Гулямов М.И. Влияние сейсмической активности на торможение космических аппаратов в верхней ионосфере перед сильными землетрясениями / Материалы XIII Междунар. сейсмологической школы. 11–15 сентября 2018 г. Обнинск. С. 12–15. 2018.

— Гершман Б.Н. Динамика ионосферной плазмы. М.: Наука, 265 с. 1974.

— Гериман Б.Н., Игнатьев Ю.А., Каменецкая Г.Х. Механизмы образования ионосферного слоя *Es* на различных широтах. М.: Наука, 108 с. 1976.

– Ерухимов Л.М., Савина О.Н. О роли мелкомасштабных неоднородностей в формировании радио отражений от среднеширотного спорадического слоя E // Ионосферные исслед. М.: Советское радио. № 30. С. 80–86. 1980.

- Корсунова Л.П., Бакалдина В.Д. Экспериментальное подтверждение турбулентного происхождения неоднородностей *Es* на средних широтах // Геомагнетизм и аэрономия. Т. 8. № 3. С. 497–498. 1968.

— Липеровский В.А., Похотелов О.А., Шалимов С.А. Ионосферные предвестники землетрясений. М.: Наука. 304 с. 1992.

- *Pulinets S.A.* Seismic activity as a source of the ionospheric variability // Adv. Space Res. V. 22. P. 903–906. 1998.