УДК 550.385

СУБАВРОРАЛЬНОЕ СВЕЧЕНИЕ STEVE НАД ЯКУТИЕЙ ВО ВРЕМЯ СУББУРИ: АНАЛИЗ СОБЫТИЯ 1 МАРТА 2017 г.

© 2022 г. С. Г. Парников^{1, *}, И. Б. Иевенко^{1, **}, И. И. Колтовской^{1, ***}

¹Институт космофизических исследований и аэрономии им. Ю.Г. Шафера СО РАН (ИКФИА СО РАН, ЯНЦ СО РАН), г. Якутск, Россия

> *e-mail: parnikov@ikfia.ysn.ru **e-mail: ievenko@ikfia.ysn.ru ***e-mail: koltik@ikfia.ysn.ru Поступила в редакцию 07.12.2021 г. После доработки 22.12.2021 г. Принята к публикации 27.01.2022 г.

Обнаруженная недавно узкая, вытянутая вдоль широты полоса субаврорального свечения, имеющая лиловый оттенок, получила название STEVE (strong thermal emission velocity enhancement). Это свечение ассоциируется с чрезвычайно интенсивными ионными дрейфами (sub-auroral ion drift, SAID). В работе представлены данные первого в России наблюдения явления STEVE в окрестности зенита субароральной станции Маймага (геомагнитные координаты 58°, 202°). Регистрация свечения осуществлялась цифровой камерой всего неба, оснащенной шестью интерференционными светофильтрами с полушириной пропускания 2 нм. Свечение STEVE возникло через ~40 мин после начала фазы развития суббури, полярнее ранее существовавшей SAR-дуги. В ходе совместного экваториального движения, область STEVE догнала красную дугу. Формирование свечения STEVE началось с возникновения неоднородностей, двигавшихся в западном направлении. Тепловое излучение STEVE с локальным усилением эмиссии 630.0 нм [OI] было вызвано SAID. Сигнатурой SAID в нашем случае, явилась скорость западного движения неоднородностей, составлявшая ~840 м/с. По мере приближения к зениту станции, неоднородности слились в непрерывную полосу, а затем и в узкую ленту свечения, которая просуществовала ~1 ч, при этом сместившись к экватору на ~190 км. В непрерывном спектре свечения, доминировала красная линия эмиссии [OI]. Рассчитана высота свечения STEVE.

DOI: 10.31857/S0016794022030130

1. ВВЕДЕНИЕ

С повышением качества и доступности современных фотоаппаратов, число любителей фотографировать полярные сияния неуклонно растет. Вооруженные высокочувствительными камерами и существующими сервисами по прогнозированию авроральных активизаций, в последнее время, фотографы любители все чаще и чаще стали сообщать о регистрации необычного типа полярных сияний. На фотографиях, полученных на субароральных широтах, демонстрировалась узкая и вытянутая лента свечения (десятки километров в направлении север-юг и тысячи километров в направлении восток-запад) лилового оттенка простирающаяся с востока на запад и часто сопровождаемая зелеными образованиями, в виде штакетника (в оригинале "Picket fence", далее PF). Новое явление, по началу, перепутанное с протонными сияниями, получила шуточное название Steve в честь одного из персонажей мультфильма. Вслед за первооткрывателями (фотографами-любителями), вопросами происхождения доселе неизученного свечения занялись специалисты в области полярных сияний. Они сразу определили, что узкая лента свечения не связана с высыпанием протонов. Далее, был сделан вывод, что новое свечение вовсе не связано с высыпанием частиц, а вызвано сильным повышением скорости теплового излучения (*Strong Thermal Emission Velocity Enhancement*).

Так, в первой научной работе, посвященной этому явлению, название Steve превратилось в бэкроним STEVE [MacDonald et al., 2018]. Тут нужно отметить, что это природное явление, по всей вероятности, носит регулярный характер и могло быть зарегистрировано гораздо раньше, чем в наши дни. В работе [Hunnekuhl, MacDonald, 2020], посвященной пионеру изучения полярных сияний Карлу Штёрмеру (*Carl Størmer*), авторы отмечают, что еще в 1930-х гг. Штёрмер и его команда наблюдали отдельный вид субавроральных дуг, существующих экваториальнее ак-

519

тивных полярных сияний и даже смогли определить высоту этих дуг, сильно превышавшую высоту обычных полярных сияний.

В работах 1960-70-х гг., посвященных SAR (Stable auroral red)-дугам, например, [Barbier, 1960; Schaeffer and Jacka, 1971] так же отмечаются редкие случаи кратковременного усиления зеленой эмиссии в пределах границ красных дуг. В работе [Hoch et al., 1971] сообщалось, что полоса в эмиссии 557.7 нм наблюдалась на широтах SAR-дуги на протяжении ~50 мин, что как выяснилось позже, является характерным временем жизни STEVE. В наблюдениях субаврорального свечения, регулярно проводимых в ИКФИА, так же, иногда регистрировалось кратковременное усиление зеленой эмиссии в виде узкой полосы на широтах SAR-дуги. Тем не менее, статья [Мас-Donald et al., 2018] является первой научной работой в которой был предложен общепринятый сейчас термин STEVE. В этой работе с привлечением наземной оптической аппаратуры и спутников Swarm Европейского космического агентства, авторы предположили, что новый вид субаврорального свечения является оптическим проявлением SAID (Subauroral Ion Drift) [Spiro et al., 1979] (в российско-советской номенклатуре, это явление имеет свой термин – Поляризационный джет [Galpperin et al., 1974; Степанов и др., 2017, монография]).

В работе [Gallardo-Lacourt et al., 2018] посвященной вопросам происхождения этого явления, авторы, сопоставив наземные наблюдения с пролетами спутника POES-17 пришли к выводу, что STEVE не связан с высыпаниями частиц. Дальнейшие исследования [Archer et al., 2019] на основе анализа нескольких событий, подтвердили гипотезу MacDonald и показали, что STEVE является сигнатурой чрезвычайно интенсивных SAID. Там же, авторы отметили MLT сектор наибольшей вероятности появления STEVE с 22 до 02 MLT. B pa6ote [Gallardo-Lacourt et al., 2018] посвященной статистическому анализу явления, было показано, что STEVE появляется на субавроральных широтах примерно через 1 ч после начала суббури в конце фазы развития. Широтная протяженность STEVE составляет ~20 км, долготная ~2000 км. Средняя продолжительность явления составляет ~1 ч в течение которой STEVE смещается на ~50 км к экватору относительно своего первоначального местоположения.

Основной спектральной характеристикой STEVE, отличающего его от обычных сияний, является подъем континуума на всех длинах волн в диапазоне 400–700 нм с локальным усилением эмиссии 630.0 нм [OI] [Gillies et al., 2019; Harding, et al., 2020]. Усиление красной линии, свидетельствует о высоте свечения ≥200 км. В работе [MacDonald et al., 2018] высота STEVE была измерена в

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 62 № 4 2022

диапазоне 170–230 км. В работе [Liang et al., 2019] была измерена высота двухслойного STEVE, авторы делают вывод, что основным источником яркости STEVE, является усиление континуума. В полосе, располагавшейся на высоте ≤150 км усиления красной линии не наблюдалось. В полосе, располагавшейся выше (~250 км) наблюдалось значительное повышение интенсивности красной эмиссии.

Как писалось выше, STEVE часто сопровождает PF. В работе [Archer et al., 2019] авторы, сопоставив любительские фотографии, сделанные из разных точек, сообщают, что высота PF составляет 95–150 км, тогда как STEVE наблюдается на высотах 130–270 км. Авторы предполагают, что PF и STEVE развиваются на очень близких или даже одинаковых силовых линиях.

Еще одной важной характеристикой субавроральной области являются SAR-дуги. Это субвизуальные, монохроматические дуги, отображающие плазмопаузу, являющиеся следствием взаимодействия внешней плазмосферы с кольцевым током [Cole, 1965]. Исследования в ИКФИА показали [Иевенко, 1993, 1995, 1999], что SAR-дуги появляются и/или уярчаются на фазе расширения суббурь. Формирование SAR-дуг начинается в области экваториальной границы диффузного сияния (ДС). В случае длительной суббуревой активности SAR-дуга отделяется от ДС и движется в экваториальном направлении.

Несмотря на огромный интерес к новому явлению, практически во всех работах, посвященных STEVE, авторы признаются, что накопленного наблюдательного материала недостаточно для полного описания и понимания явления. Дальнейшее изучение, которого, приведет к более полному пониманию физики магнитосферноионосферного взаимодействия.

К сожалению, в настоящее время в российских научных журналах нет ни одной статьи посвященной проблеме STEVE. По всей вероятности, представленная статья является первой научной работой с результатами инструментальных наблюдений этого явления в России. В первую очередь, целью данной работы, является привлечение внимания отечественного читателя к прежде не изученному явлению в субавроральном свечении. В статье анализируются оптические данные регистрации STEVE в окрестности зенита станции наблюдений. Рассмотрены динамические, пространственные и спектральные характеристики свечения.

2. АППАРАТУРА И МЕТОДЫ АНАЛИЗА ДАННЫХ НАБЛЮДЕНИЙ

Наблюдения проводились на оптической ст. Маймага ИКФИА СО РАН (географическая

широта 63° N, долгота 130° E). Исправленные геомагнитные координаты станции равны 58° N и 202° E на эпоху 2015 г. Полночь магнитного локального времени (MLT) соответствует 00:50 LT или 15:50 UT. Регистрация свечения осуществлялась с помощью *CCD* камеры всего неба "*Keo Sentry*", изготовленной фирмой "*Keo Scientific Ltd.*" (Канада). Камера имеет *CCD* прибор *PI Acton Pro-EM* 1024*B* и укомплектована шестью интерференционными светофильтрами с полушириной пропускания 2 нм. Фильтры центрированы на длины волн 557.7 и 630.0 [OI], 470.9 (N₂⁺), 486.1 (H_{β}), 620.0 (континуум), 480.0 (континуум) нм.

520

Данные камеры всего неба представлены в этой работе в виде снимков в режиме автоконтраста и кеограмм в проекции на поверхность Земли для высоты свечения 190 км (методология определения высоты описана в разделе "Взаимное расположение STEVE и Picket fence. Высота STEVE"). Кеограммы были построены в исправленных геомагнитных координатах (CGMLat) на основе моделей геомагнитного поля DGRF/IGRF (https://omniweb.sci.gsfc.nasa.gov/vitmo/cgm.html). Эта же молель. была использована при вычислении угла наклона силовой линии в окрестности станции наблюдений. При построении кеограмм, от значений интенсивностей, полученных через эмиссионные фильтры, отнимались значения фоновых (для эмиссий 470.9 и 486.1 фоновым являлся канал 480.0 нм; для 557.7 и 630.0 нм, фон 620.0 нм).

3. РЕЗУЛЬТАТЫ НАБЛЮДЕНИЙ

Рассматриваемое событие происходило в предполуночном секторе MLT и не являлось стационарным, уровень магнитной активности в анализируемый период был высок (Kp = 5 - в интервале 12–15 UT). Суббури происходили до и после рассмотренного периода. Возникновению PF и STEVE предшествовала кратковременная, узкая протонная дуга, наблюдавшаяся в зените станции наблюдений и сопровождаемая геомагнитными пульсациями диапазона Pc1 [Parnikov et al., 2020]. SAR-дуга, возникшая в результате предшествующих суббурь наблюдалась с ~11 UT, почти с самого начала наблюдений.

На рисунке 1 представлены данные среднеширотных магнитных станций 1 марта 2017 г. Станции подбирались таким образом, чтобы можно было определить положение центра начала развития суббури в ~12:45 UT, которая предшествовала наблюдениям STEVE. Знак и амплитуда вариаций компонент X и Y указывают на то, что центр этой суббуревой активизации находится восточнее Маймаги, в вечернем секторе MLT, в окрестности магнитного меридиана Магадана с последующим расширением на запад.

4. ДИНАМИКА И ИНТЕНСИВНОСТЬ STEVE, PF И SAR-ДУГИ

Ниже, на рисунках 2, 3 и 4 представлена широтно-долготная динамика явления. Анализируются снимки камеры всего неба, и кеограммы построенные с них, зарегистрировавшими STEVE во время наблюдений 1 марта 2017 г.

На рисунке 2 представлена динамика субаврорального свечения в эмиссиях 630.0 и 557.7 нм время регистрации STEVE 1 марта 2017 г. Возникшая в результате более ранней магнитосферной активности SAR-дуга, наблюдалась в красной линии с начала рассмотренного периода. По мере усиления магнитосферной конвекции, красная дуга смещалась к экватору и в ~12:40 UT пересекла зенит станции наблюдений. Далее, произошла стабилизация широтной динамики дуги, экваториальнее зенита станции. На начало суббури в ~12:45 UT, красная дуга отреагировала резким уярчением и зигзагообразным изменением положения. По мере спада активности, дуга сместилась на север, перешла зенит станции и постепенно затухла в ~14:13 UT.

Формирование STEVE началось в 13:23 UT с возникновения неоднородностей свечения, зарегистрированных по всем каналам камеры. Неоднородности (пятна) двигались с востока на запад со скоростью ~840 м/с (рис. 3). Вытянутая вдоль широты полоса, заполненная неоднородностями, плавно двигалась в экваториальном направлении со скоростью ~45 м/с. Неоднородности возникли полярнее SAR-дуги (рис. 3). В ходе своего экваториального смещения, неоднородности догнали затухающую SAR-дугу. Ширина отдельно взятой неоднородности составляла ~80 км. По мере приближения к зениту станции, неоднородности сужались и с ~14:00 UT образовали непрерывную полосу, а затем и узкую ленту свечения шириной ~8 км. В это время увеличилась скорость экваториального смещения STEVE до ~55 м/с.

Своей кульминации (максимальной яркости и минимальной ширины) STEVE достиг в 14:20 UT (рис. 4). В виде узкой ленты свечения, STEVE просуществовал совсем не долго, ~10 мин. За это время, узкая лента сместилась в экваториальном направлении на ~30 км. К 14:30 UT, STEVE резко затухает с востока на запад. За время своего существования (~1 ч), STEVE сместился на ~190 км к экватору. До появления STEVE в эмиссии 557.7 нм в окрестности зенита станции, наблюдалась узкая протонная дуга с двумя активизациями в окрестности зенита станции в 12:45 и 13:05 UT. Так же, период регистрации STEVE, можно отметить кратковременными вспышками, в зеленой линии, идентифицируемыми на кеограммах в виде кольев полярнее зенита станции. К 14:20 UT экваториальная граница ДС достигает зенита стан-

Рис. 1. Магнитограммы среднеширотных станций 1 марта 2017 г. (*a*, *б*, *в*) – вариации X и Y-компонент на трех магнитных меридианах: Магадан (MGD), Хабаровск (КНВ) и Иркутск (IRT) соответственно. На магнитограммах указаны исправленные геомагнитные координаты станций и MLT начала расширения суббури. Стрелкой указано начало фазы развития очередной суббури, предшествовавшей возникновению STEVE.

ции наблюдений, а кратковременные вспышки в виде кольев пересекают его (рис. 2δ).

За несколько минут, до начала формирования STEVE (неоднородностей, регистрируемых по всем каналам и движущихся с востока на запад) полярнее широт будущего STEVE в зеленой эмиссии возникли образования, вытянутые вдоль силовых линий, действительно напоминающие штакетник (PF). Серии PF, движущихся с востока на запад, начались в 13:21 UT, после затухания протонной дуги (рис. 3). Иногда, серии отдельных PF вытягивались в сплошной забор, ориен-

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 62 № 4 2022

Рис. 2. Широтная динамика STEVE, SAR-дуги и протонного сияния во время наблюдений 1 марта 2017г. (*a*, *б*) – кеограммы свечения для эмиссий 630.0 и 557.7 нм соответственно в проекции на поверхность Земли для высоты свечения 190 км. На кеограммах, *Z* – зенит станции наблюдений.

тированный вдоль широты. PF сопровождал STEVE в ходе экваториального смещения при этом, находясь полярнее его до пересечения магнитного зенита станции (12° зенитного угла к югу). После затухания STEVE, более яркий PF, регистрировался еще ~10 мин до 14:40 UT.

На рисунке 5 представлена широтная динамика STEVE в виде кеограмм с указанием абсолютной интенсивности свечения. В отличие от рис. 2, на этом рисунке в зеленой эмиссии, максимум интенсивности был принят за 800 Рэлей для наилучшей идентификации PF. Методика построения кеограмм такова, что с интенсивностей, полученных через эмиссионные каналы, отнимаются значения, полученные через фоновые (для эмиссий 557.7 и 630.0 нм, фоновым является канал 620.0 нм; для эмиссий 486.1 и 470.9 нм, фоновым является канал 480.0 нм) поэтому широтнояркостная динамика особенно хорошо отслеживается в фоновых эмиссиях, от которых ничего не отнимается. На кеограммах, в эмиссиях 470.9 и 486.1 нм, после вычитания фона (480.0 нм), STEVE пропадает, что свидетельствует о равномерной интенсивности свечения на длинах волн 470.9; 480.0 и 486.1 нм. В эмиссии 557.7 нм слабое свечение STEVE (единицы Рэлей) [Gillies et al.,

2019]), сложно определить из-за высокой интенсивности свечения ночного неба и близости экваториальной границы ДС.

По фоновым каналам видно, что интенсивность неоднородностей с которых начал формироваться STEVE, а затем и широкой, непрерывной полосы в которую они слились составляла ~2–3 Рэлей. В конце своего существования с 14:20 по 14:30 UT STEVE резко сужается и его интенсивность достигает максимума в 12 Рэлей. В это же время (14:20 UT), в зеленой эмиссии наблюдалась непрерывная (сплошная) часть PF с отдельными максимумами вдоль нее. Интегральная интенсивность этой полосы с отдельными максимумами достигала 160 Рэлей (пример такой структуры хорошо виден на рис. 4).

На кеограмме в эмиссии 630.0 нм слабое свечение STEVE начало идентифицироваться только после затухания более яркой SAR-дуги.

При сравнении кеограмм в эмиссиях 620.0 и 630.0 нм, видно, что на всем временном интервале существования STEVE, SAR-дуга находилась экваториальнее. Так, к моменту времени 13:50 UT экваториальная граница STEVE достигла географического зенита станции. Тогда как та же грани-

Рис. 3. Снимки всего неба в разных эмиссиях в режиме автоконтраста во время наблюдений 1 марта 2017 г. Время и длины волн эмиссий указаны на снимках. Направления сторон света на кадрах: слева – запад, сверху – север.

1 марта 2017 г.

Рис. 4. Снимки всего неба в разных эмиссиях в режиме автоконтраста во время наблюдений 1 марта 2017 г.

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 62 № 4 2022

Рис. 5. Широтная и яркостная динамика субаврорального свечения в окрестности зенита станции наблюдений (Z) в разных эмиссиях во время наблюдений 1 марта 2017 г. Обозначения осей как на рис. 2.

ца SAR-дуги с начала рассмотренного периода вплоть до самого затухания, находилась экваториальнее зенита станции. Скорость экваториального смещения STEVE была выше чем у красной дуги и к моменту ее затухания STEVE догоняет дугу. При этом, происходит частичное перекрытие двух форм свечения, но даже к моменту затухания (14:13 UT), южная и северная границы SAR-дуги находились экваториальнее тех же границ STEVE. После затухания красной дуги, динамика и положение максимумов интенсивности STEVE в двух эмиссиях идентична, но нужно отметить, что в эмиссии 630.0 нм, границы STEVE были шире. Интенсивность STEVE в этой же эмиссии была гораздо выше интенсивности континуума и составляла ~20-30 Рэлей.

5. ВЗАИМНОЕ РАСПОЛОЖЕНИЕ STEVE И *PICKET FENCE*. ВЫСОТА STEVE

Как указано выше (см. Введение), PF и STEVE возникают на разных высотах. На рисунке 6 показана схема, объясняющая расхождение и схождение широтных разрезов свечения двух структур вне и в области магнитного зенита (*MZ*). Темнои светло-серые кружки, обозначающие STEVE и PF соответственно, будут наблюдаться на разных зенитных углах полярнее и южнее MZ. В области MZ, обе структуры будут наблюдаться на одном зенитном угле. Рассматривая треугольник с вершинами O, S и P с заданными зенитными углами m, b1 и b2 и высотой вершины P, легко рассчитать высоту вершины S. Задав высоту свечения PF равной 110 км, мы рассчитали высоту свечения STEVE. Высота оказалась равна ~190 км.

На рисунке 7 представлен широтный разрез STEVE (620.0 и 630.0 нм) и PF (557.7 нм) в ограниченном интервале зенитных углов вдоль меридиана наблюдений. На широте станции, МZ наклонен к югу от географического на ~12°. Таким образом, зенитный угол MZ составляет ~78°. На кеограммах, построенных в зенитных углах видно (здесь не представлено), что STEVE достиг MZ в ~14:21 UT. Из этих соображений, сканы (рис. 7) были построены для моментов времени: до, во время и после пересечения STEVE и PF магнитного зенита станции. В 14:18 UT. РГ находился на 1° севернее STEVE. Его интенсивность составляла ~12 Рэлей. Интенсивность STEVE в это время, в эмиссиях 620.0 и 630.0 нм была равна ~4 и ~20 Рэлей соответственно. В момент пересечения MZ (14:21 UT), профили свечения STEVE и PF совпали. Интенсивности обеих структур увеличились и достигали значений: STEVE ~9 и

Рис. 6. Схема, демонстрирующая расхождение и схождение светящихся структур, протекающих на одной силовой линии, на разных высотах. h1 u h2 - высоты свечения структур (<math>h1 < h2). a1, a2, b1 u b2 - зенитные углы, отсчитываемые с южного горизонта, на которых наблюдаются структуры. <math>m - зенитный угол магнитного зенита, отличающийся от географического на (<math>90 - m)°. Z u MZ - географический и магнитный зенит точки наблюдений. O, P u S - вершины треугольника, используемого для вычисления высоты STEVE.

~25 Рэлей в эмиссиях 620.0 и 630.0 нм, соответственно; PF ~ 85 Рэлей. После пересечения MZв 14:25 UT, PF находится на 1° южнее STEVE. Интенсивности структур снова снизились и составляли значения: ~6 и ~22 Рэлей (620.0 и 630.0 нм, соответственно), PF ~14 Рэлей. На всех трех сканах видно, что угловые размеры STEVE на длине волны 620.0 нм и PF были примерно одинаковы. Размеры STEVE в эмиссии 630.0 нм превышали размеры той же структуры на длине волны 620.0 нм.

6. ОБСУЖДЕНИЕ

Выше, мы представили результаты наблюдения STEVE на субавроральной станции Маймага. Регистрация свечения осуществлялась высокочувствительной цифровой камерой всего неба, оснащенной шестью интерференционными светофильтрами с полушириной пропускания 2 нм. Рассмотренный период протекал на фоне регулярных суббуревых инжекций. В силу этого, в окрестности зенита станции произошли необычные оптические явления. Так, с самого начала рассмотренного периода, полярнее станции, наблюдалась SAR-дуга, плавно смещавшаяся в экваториальном направлении. На суббурю с началом фазы развития в ~12:45 UT красная дуга реагирует усилением интенсивности. В эмиссии 486.1 нм ($H_{\rm B}$) в окрестности зенита станции, возникла узкая протонная полоса с двумя активизациями в ~12:45 и ~13:05 UT. Так же, как отмечено в некоторых работах, например [Gallardo-Lacourt et al., 2018; Liang et al., 2019] STEVE возникает через ~40 мин после начала фазы развития суббури, полярнее существующей SAR-дуги. При этом, в нашем случае, формирование STEVE началось с возникновения неоднородностей, двигавшихся вдоль широты в западном направлении. Неоднородности наблюдались по всем длинам волн, регистрируемым камерой. Ширина отдельно взятой неоднородности составляла ~80 км. Скорость западного смещения неоднородностей составляла ~840 м/с, что является сигнатурой SAID. По мере приближения к зениту станции, неоднородности образовали непрерывную полосу, а затем и узкую ленту свечения шириной ~8 км и имеющую максимальную яркость за все время существования структуры. В общей сложности с момента на-

Рис. 7. Широтные разрезы (сканы) свечения STEVE и PF в окрестности магнитного зенита станции наблюдений в разных эмиссиях. Время сканов и длины волн эмиссий указаны на рисунках. По горизонтальной оси отложены зенитные углы, отсчитываемые с южного горизонта. По вертикальным шкалам (слева и справа), отложены интенсивности свечения соответствующих эмиссий.

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 62 № 4 2022

чала регистрации отдельных неоднородностей до затухания узкой ленты свечения, STEVE просуществовал ~1 ч, сместившись за это время на ~190 км к экватору. Скорость экваториального смещения неоднородностей, сплошной полосы и наконец, узкой ленты свечения росла по мере сужения с ~45 до 55 м/с.

Возникший полярнее SAR-дуги STEVE, обладал большей скоростью экваториального смещения и в ходе совместного экваториального движения, нагнал красную дугу у зенита станции наблюдений. К моменту затухания красной дуги, произошло частичное наложение широтных границ двух структур, но все же, северная и южная границы SAR-дуги были экваториальнее тех же границ STEVE.

В спектральных характеристиках STEVE, полученных в меру возможностей нашей камеры, можно отметить, следующее: Свечение в структуре присутствует на всех длинах волн, регистрируемых камерой. В фоновых эмиссиях 480.0 и 620.0 нм и вероятно, к ним можно отнести, в отсутствии ярких сияний, и эмиссии 470.9 (N_2^+) и 486.1 (H_{β}), свечение происходит равномерно с интенсивностью в несколько Рэлей. Максимальной яркости в ~12 Рэлей, по этим каналам, STEVE достигает в конце своего существования, когда ширина его минимальна. Интенсивность красной эмиссии [OI] (630.0 нм) в свечении STEVE гораздо выше интенсивности континуума и составляла ~20-30 Рэлей. Границы структуры в этой эмиссии шире, чем границы в остальных эмиссиях. Вероятно, это связано с инерционностью красного свечения ввиду долгого (110 с) пребывания атома кислорода в возбужденном состоянии при переходе с уровня $O(^{1}D)$ на $O(^{3}P)$.

В эмиссии 557.7 нм слабое свечение STEVE (единицы Рэлей) [Gillies et al., 2019], сложно определить из-за высокой интенсивности свечения ночного неба и близости экваториальной границы ДС. Хотя нужно отметить, что попадаются редкие кадры с одновременной регистрацией STEVE и PF в эмиссии 557.7 нм (здесь не представлено). В ходе экваториального смещения, STEVE сопровождал PF. Серии кратковременных PF, двигавшихся так же в западном направлении, возникли за несколько минут до появления неоднородностей, регистрируемых по всем каналам. Широтные границы STEVE и PF совпадали. Факт схождения границ двух структур в магнитном зените станции, свидетельствует о протекании этих явлений вдоль одних силовых линий. Наблюдаемый исключительно в эмиссии 557.7 нм PF имел гораздо большую интенсивность, достигавшую значений в ~160 Рэлей. Так же, можно отметить что, по всей вероятности, РГ имеет непрерывную составляющую, интенсивность которой, так же, выше интенсивности свечения STEVE в области

континуума. Рассчитанная высота свечения STEVE (с учетом заданной высоты свечения PF равной 110 км) оказалась равна 190 км.

Подытоживая вышесказанное, нужно отметить, что в статье представлены первые результаты анализа данных инструментальной регистрации STEVE на станции Маймага. На факт регистрации STEVE, а не любого другого субаврорального свечения, указывают спектральные и динамические характеристики свечения, а также условия возникновения явления (STEVE возник через ~40 мин после начала фазы развития суббури полярнее ранее существовавшей SAR-дуги) [Мас-Donald et al., 2018; Gallardo-Lacourt et al., 2018]. Резюмируя современное состояние вопроса происхождения STEVE [MacDonald et al., 2018; Archer et al., 2019 и т.д.] можно сказать, что в рассмотренном случае, свечение вызвано развившимся в поле зрения камеры SAID на фоне суббури. На это косвенно указывают скорость западного движения неоднородностей, характерная для SAID. Нагрев и последующее излучение тепловой эмиссии с равномерным подъемом интенсивности континуума происходило благодаря деятельности SAID. При этом, в нашем случае, была локально усилена эмиссия 630.0 нм [OI] обусловленная большой высотой STEVE (~190 км) и низким потенциалом возбуждения (1.96 эВ).

7. ЗАКЛЮЧЕНИЕ

На основании высокочувствительных инструментальных измерений в различных эмиссионных линиях свечения атмосферы цифровой камерой всего неба явления STEVE, в окрестности зенита станции Маймага, получены следующие научные результаты:

– Спектральные и динамические характеристики, а также условия возникновения, дают основание полагать, что в период с ~13:23 по ~14:40 UT, нами был зарегистрирован STEVE. STEVE возник через ~40 мин после начала фазы развития суббури. Тепловое излучение STEVE было вызвано деятельностью SAID.

— Формирование STEVE началось с возникновения неоднородностей, регистрируемых по всем каналам камеры, двигавшихся вдоль широты с востока на запад. Скорость западного движения неоднородностей составляла ~840 м/с что, по нашему мнению, является сигнатурой SAID. Неоднородности возникли полярнее существовавшей SAR-дуги и догнали ее в ходе совместного экваториального смещения. Скорость экваториального смещения составляла ~50 м/с. По мере приближения к зениту станции, неоднородности слились в полосу, а затем и в узкую ленту свечения шириной ~8 км. В общей сложности, начиная с возникновения неоднородностей, заканчивая затуханием узкой полосы, STEVE просуществовал ~1 ч, сместившись при этом к экватору на ~190 км.

Показано, что PF и STEVE протекают на одних силовых линиях. Рассчитанная высота свечения STEVE равна ~190 км.Интенсивность свечения STEVE в эмиссиях 486.1; 470.9; 480.0; и 620.0 нм составляла единицы Рэлей. В эмиссии 630.0 нм [OI] интенсивность составляла ~20–30 Рэлей, причиной этому является низкий потенциал возбуждения и большая высота STEVE. Границы структуры в этой эмиссии были шире, чем в остальных. Это связано с инерционностью красной линии [OI].

Представленная детальная картина пространственных вариаций структур и их интенсивностей будет использована в построении физической картины развития феномена STEVE.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания № АААА-А21-121011990007-1 при частичной поддержке Российским фондом фундаментальных исследований, проект № 21-55-50013.

СПИСОК ЛИТЕРАТУРЫ

– Иевенко И.Б. Динамика диффузного аврорального свечения и SAR-дуги в период суббури // Геомагне-тизм и аэрономия. Т. 33. № 5. С. 42–57. 1993.

— Иевенко И.Б. Пульсирующие высыпания частиц в области SAR-дуги вследствие суббури // Геомагнетизм и аэрономия. Т. 35. № 3. С. 37–46. 1995.

— Иевенко И.Б. Воздействие магнитосферной активности на плазмосферу по наблюдениям диффузного сияния и SAR-дуги // Геомагнетизм и аэрономия. Т. 39. № 6. С. 26–32. 1999.

- Степанов А.Е., Халипов В.Л., Голиков И.А., Бондарь Е.Д. Поляризационный джет: узкие и быстрые дрейфы субавроральной ионосферной плазмы. Якутск: Издательский дом СВФУ. 176 с. 2017.

- Archer W.E., Gallardo-Lacourt B., Perry G.W., St-Maurice J.P., Buchert S.C., Donovan E. Steve: The optical signature of intense subauroral ion drifts // Geophys. Res. Lett. V. 46. № 12. P. 6279–6286. 2019. https://doi.org/10.1029/2019GL082687

- Archer W.E., St.-Maurice J.P., Gallardo-Lacourt B., Perry G.W., Cully C.M., Donovan E., Gillies D.M., Downie R., Smith J., Eurich D. The vertical distribution of the optical emissions of a Steve and Picket fence event // Geophys. Res. Lett. V. 46. № 19. P. 10719–10725. 2019. https://doi.org/10.1029/2019GL084473

– Barbier D. L'arc Auroral Stable // Ann. Geophys. V. 16. № 4. P. 544–549. 1960.

- Harding B.J., Mende S.B., Triplett C.C., Wu Y.-J.J. A Mechanism for the STEVE continuum emission // Geophys. Res. Lett. V. 47. № 7. e2020GL087102. 2020. https://doi.org/10.1029/2020GL087102 - *Cole K.D.* Stable auroral red arcs, sinks for energy of *Dst* Main phase // J. Geophys. Res. V. 70. № 7. P. 1689–1706. 1965. https://doi.org/10.1029/JZ070i007p01689

- Gallardo-Lacourt B., Liang J., Nishimura Y., Donovan E. On the origin of STEVE: Particle precipitation or ionospheric skyglow? // Geophys. Res. Lett. V. 45. № 16. P. 7968– 7973. 2018.

https://doi.org/10.1029/2018GL078509

- Gallardo-Lacourt B., Nishimura Y., Donovan E., Gillies D.M., Perry G.W., Archer W.E., Nava O.A., Spanswick E.L. A statistical analysis of STEVE // J. Geophys. Res.: Space Physics. V. 123. № 11. P. 9893–9905. 2018. https://doi.org/10.1029/2018JA025368

- Galperin Yu.L., Ponomarev V.N., Zosimova A.G. Plasma convection in the polar ionosphere // Annales de Geophysique V. 30. № 1. P. 1–7. 1974.

- Gillies D.M., Donovan E., Hampton D., Liang J., Connors M., Nishimura Y., Gallardo-Lacourt B., Spanswick E. First observations from the TREx spectrograph: The optical spectrum of STEVE and the picket fence phenomena // Geophys. Res. Lett. V. 46. \mathbb{N} 13. P. 7207–7213. 2019. https://doi.org/10.1029/2019GL083272

- *Hoch R.J., Smith L.L., Clark K.C.* λ5577 [OI] and λ4278 N₂⁺ emissions in a SAR arc // J. Geophys. Res. V. 76. № 31. P. 7663–7668. 1971. https://doi.org/10.1029/JA076i031p07663

− Hunnekuhl M., MacDonald E. Early ground-based work by auroral pioneer Carl Størmer on the high-altitude detached subauroral arcs now known as "STEVE" // Space Weather V. 18. \mathbb{N} 3. e2019SW002384. 2020. https://doi.org/10.1029/2019SW002384

 Liang J., Donovan E., Connors M., Gillies D., St-Maurice J.P., Jackel B., Gallardo-Lacourt B., Spanswick E., Chu X. Optical spectra and emission altitudes of double-layer STEVE: A case study // Geophys. Res. Lett. 2019. V. 46. № 23. P. 13630–13639.

https://doi.org/10.1029/2019GL085639

- MacDonald E.A., Donovan E., Nishimura Y. et al. New science in plain sight: Citizen scientists lead to the discovery of optical structure in the upper atmosphere // Sci. Adv. V. 4. No 3. eaaq0030. 2018.

https://doi.org/10.1126/sciadv.aaq0030

- Parnikov S.G., Ievenko I.B., Baishev D.G., Koltovskoy I.I. Proton aurora observation as a result of ion cyclotron instability / Proc. SPIE 11560. 26th International Symposium on Atmospheric and Ocean Optics, Atmospheric Physics. 1156086. Moscow. 6–10 July 2020. 2020. https://doi.org/10.1117/12.2575266

− Schaeffer R.C., Jacka F. Stable auroral red arc observed from Adelaide during 1967–69 // J. Atmos. and Solar-Terrest. Phys. V. 33. \mathbb{N} 2. P. 237–250. 1971. https://doi.org/10.1016/0021-9169(71)90200-5

- Spiro R.W., Heelis R.A., Hanson W.B. Rapid subauroral ion drifts observed by Atmospheric Explorer C // Geophys. Res. Lett. V. 6. № 8. P. 657–660. 1979. https://doi.org/10.1029/GL006i008p00657