УДК 550.388.2

ПРОСТРАНСТВЕННАЯ СТРУКТУРА ОБЛАСТИ ЗАСВЕТКИ ОНЧ АВРОРАЛЬНОГО ХИССА ПО ДАННЫМ НАЗЕМНЫХ НАБЛЮДЕНИЙ В АВРОРАЛЬНЫХ ШИРОТАХ

© 2022 г. А. С. Никитенко^{1,} *, Ю. Маннинен², Ю. В. Федоренко¹, Н. Г. Клейменова³, М. В. Кузнецова¹, А. В. Ларченко¹, Е. Б. Бекетова⁴, С. В. Пильгаев¹

¹Полярный геофизический институт, г. Апатиты (Мурманская обл.), Россия ²Геофизическая обсерватория Соданкюля, г. Соданкюля, Финляндия ³Институт физики Земли им. О.Ю. Шмидта Российской академии наук (ИФЗ РАН), г. Москва, Россия ⁴Филиал Мурманского арктического государственный университета в г. Апатиты, г. Апатиты (Мурманская обл.), Россия *e-mail: alex.nikitenko91@gmail.com Поступила в редакцию 28.12.2021 г. После доработки 10.01.2022 г. Принята к публикации 27.01.2022 г.

Представлены результаты наземных наблюдений всплесков ОНЧ аврорального хисса в обсерваториях Ловозеро (Россия) и Каннуслехто (Финляндия), расположенных на близких геомагнитных широтах и разнесенных по долготе на расстояние ~400 км. Проанализировано 22 события, зарегистрированных с 7 ноября 2018 г. по 9 февраля 2020 г. Выявлено 4 типа пространственной структуры области засветки аврорального хисса: (1) область засветки имеет размеры, малые относительно расстояния между станциями; (2) область засветки вытянута по долготе; (3) область засветки перемещается по долготе; (4) смешанный тип. Для каждого типа сформулированы отличительные особенности временны́х вариаций горизонтальной компоненты магнитного поля, индекса круговой поляризации, отношения вертикальной компоненты электрического поля к горизонтальной компоненте магнитного поля и распределения плотности потока энергии по углам прихода на частоте 8 кГц. Мы предполагаем, что размеры и положение области засветки ОНЧ аврорального хисса могут быть индикатором положения и поперечных размеров области, занятой мелкомасштабными неоднородностями электронной концентрации в верхней ионосфере.

DOI: 10.31857/S0016794022030129

1. ВВЕДЕНИЕ

Авроральный хисс – один из типов естественных магнитосферных ОНЧ (очень низкочастотные волны, от сотен Гц до десятков кГц) излучений, регистрируемых у земной поверхности. Эти излучения могут занимать широкую полосу частот – от единиц до сотен кГц. Максимум интенсивности хисса отмечен в полосе частот 8-10 кГц [Makita, 1979]. На земной поверхности авроральный хисс наблюдается на геомагнитных широтах 65°-70° [Harang and Larsen, 1965; Morozumi, 1965; Jørgensen, 1966; Haykawa et al., 1975] и типичен для подготовительной фазы магнитосферной суббури [Клейменова и др., 2019: Manninen et al., 2020]. Низкоорбитальные спутники регистрируют хисс практически при каждом пересечении авроральных широт в вечернее и ночное время [Gurnett, 1966; Hughes et al., 1971].

Генерация хисса происходит в высокоширотной области магнитосферы на высотах 5-20 тыс. км за счет развития черенковской неустойчивости электронов с энергиями меньше 10 кэВ [Jørgensen, 1968; Maggs, 1976; Makita, 1979]. Многочисленные спутниковые наблюдения показывают, что всплески аврорального хисса коррелируют с потоками мягких электронов с энергиями ниже 1 кэВ [Hoffman and Laaspere, 1972; Laaspere and Hoffman, 1976; Mosier and Gurnett, 1972]. Волновая нормаль генерируемых волн лежит вблизи резонансного конуса [Maggs, 1976: Sazhin et al., 1993]. который для волн ОНЧ-диапазона близок к 90°. Такие волны называют квазиэлектростатическими [Sonwalkar, 2000]. Волны ОНЧ-диапазона с волновыми нормалями вблизи резонансного конуса не способны выйти к земной поверхности [Budden, 1985]. Они могут отразиться или в верхней ионосфере на высоте, где их частота становится равной локальной частоте нижнегибридного резонанса [Kimura, 1966], или в нижней ионосфере, где происходит полное внутреннее отражение волн из-за непопадания волновых нормалей в конус выхода, определяемый из закона Снеллиуса [Budden, 1985].

Основным механизмом, обеспечивающим выход квазиэлектростатических волн к земной поверхности, считается их рассеяние на мелкомасштабных (порядка сотен метров) неоднородностях плотности электронной концентрации в ионосфере на высотах меньше 5000 км [Sonwalkar, 2000]. На земной поверхности регистрируются рассеянные волны, волновые нормали которых попали в конус выхода [Sonwalkar, 2000; Лебедь и др., 2019].

На основе сравнения результатов моделирования распространения аврорального хисса от области генерации до наземного наблюдателя с результатами наземных наблюдений аврорального хисса было показано [Лебедь и др., 2019; Никитенко и др., 2021], что рассеянные волны "засвечивают" область на земной поверхности (далее область засветки), положение и размер которой определяются положением и поперечным размером области в верхней ионосфере, занятой мелкомасштабными неоднородностями электронной концентрации. Область засветки (как и область, занятая неоднородностями) локальна и может быть как вытянутой по долготе на расстояние вплоть до 400-600 км, так и иметь относительно малые размеры по широте и долготе (~100 км) [Лебедь и др., 2019; Никитенко и др., 2021]. Локальная по широте область была также обнаружена экспериментально в ходе одновременных наземных наблюдений аврорального хисса в авроральных и приполярных широтах [Пильгаев и др., 2020]. Сопоставление результатов моделирования распространения аврорального хисса и данных наземных наблюдений хисса позволило сделать вывод, что при анализе таких излучений использование распределения плотности потока энергии по азимутальным углам прихода привносит дополнительную информацию о положении области засветки и. соответственно, области в ионосфере, занятой неоднородностями, относительно точки регистрации [Лебедь и др., 2019; Никитенко и др., 2021]. При этом локализация этих областей может быть проведена даже по данным наблюдений только на одной станции.

Целью данной работы является исследование особенностей пространственной структуры области засветки и соответствующих им особенностей временны́х вариаций параметров поля аврорального хисса по данным наземных наблюдений в авроральных широтах в двух разнесенных по долготе точках.

2. ДАННЫЕ

Одновременные наземные ОНЧ-наблюдения проводятся в обс. Ловозеро (LOZ, Россия, географические координаты: $\phi = 67.97^{\circ}$ N, $\lambda = 35.02^{\circ}$ E, исправленные геомагнитные координаты: Ф = $= 64.7^{\circ}, \Lambda = 113.1^{\circ})$ и на финской ст. Каннуслехто (KAN, географические координаты: $\phi = 67.74^{\circ}$ N, $\lambda = 26.27^{\circ}$ E, исправленные геомагнитные координаты: $\Phi = 64.6^\circ$, $\Lambda = 105.6^\circ$), расположенных на близких геомагнитных широтах и разнесенных по долготе на ~400 км (рис. 1). В этих точках ведется регистрация горизонтальных компонент напряженности магнитного поля H_x , H_y с использованием взаимно ортогональных рамочных антенн и вертикальной компоненты напряженности электрического поля E_z с помощью вертикального диполя. Регистрирующая аппаратура имеет схожие частотные характеристики, отличается низким уровнем собственных шумов и имеет точную привязку данных к мировому времени. Более подробно устройство приемников приведено в работах [Маннинен, 2005; Пильгаев и др., 2021]. Для сравнения результатов наблюдений в двух точках проведена тщательная калибровка регистраторов с использованием метода, изложенного в работе [Пильгаев и др., 2021]. Для достижения высокой точности калибровки использован генератор с привязкой волновой формы сигнала к сигналу GPS/GLONASS-приемника [Пильгаев и др., 2017, 2018].

3. АНАЛИЗ ДАННЫХ

Записи компонент ОНЧ-поля обычно зашумлены атмосфериками - импульсными электромагнитными сигналами, вызванными грозовыми разрядами. Для подавления этих сигналов применен метод, используемый в работе [Лебедь и др., 2019]. На временной форме каждой компоненты поля производился поиск атмосфериков. Выделенные атмосферики удалялись, а полученные зазоры заменялись отрезком прямой, соединяющей крайние отсчеты сигнала. Анализ поля всплесков аврорального хисса производился в выделенной полосе частот в окрестности максимума интенсивности аврорального хисса (8–10 кГц) [Makita, 1979]. Для этого записи компонент поля были подвергнуты фильтрации полосовым фильтром с центральной частотой 8 кГц и шириной полосы 1 кГц. Рассматривались временные вариации горизонтальной компоненты магнитного поля $H_t = \sqrt{H_x^2 + H_y^2}$, индекса круговой поляризации (P_c), отношения вертикальной компоненты электрического поля к горизонтальной компоненте магнитного ($|E_z|/H_t$) и распределения плотности потока энергии по углам прихода волн в точку наблюдений ($p(\phi)$).

Рис. 1. Карта расположения точек ОНЧ-наблюдений Каннуслехто (KAN) и Ловозеро (LOZ) в географических координатах.

Индекс круговой поляризации рассчитывался, как $P_c = 2 \text{Im}(\tilde{H}_x \tilde{H}_y^*) / (\tilde{H}_x^2 + \tilde{H}_y^2)$, [Рытов, 1976]. Здесь \tilde{H}_x , \tilde{H}_y – отфильтрованные записи компонент магнитного поля, представленные в виде комплексных аналитических сигналов [Рытов, 1976], символ Im означает мнимую часть от выражения в скобках, звездочкой обозначено комплексное сопряжение. Индекс круговой поляризации отрицателен для лево-поляризованных волн и положителен для право-поляризованных. При значениях ±1 поляризация круговая, а при $P_c = 0$ – поляризация линейная.

Отношение вертикальной компоненты электрического поля к горизонтальной компоненте магнитного ($|E_z|/H_t$) пропорционально синусу угла падения регистрируемой волны [Makita, 1979; Tsuruda, 1979]. Распределения плотности потока энергии по углам прихода волн в точку наблюдений $p(\phi)$ показывают величину плотности потока энергии регистрируемых излучений, попадающую в тот или иной интервал углов прихода волн. Максимум распределения $p(\phi)$ показывает наиболее вероятное направление прихода волн в точку наблюдений, а ширина распределения характеризует разброс направлений потока энергии относительно максимума. Форма распределения зависит от взаимного положения точки наблюдений и области засветки и, соответственно, области в ионосфере, занятой мелкомасштабными

неоднородностями [Лебедь и др., 2019, Никитенко и др., 2021]. При расположении точки наблюдений в центре области засветки, плотность потока энергии распределена практически равномерно по всему диапазону углов прихода – 0°–360°. По мере удаления от центра в распределении появляется выраженный максимум, указывающий на центр области засветки, и уменьшается ширина распределения [Лебедь и др., 2019]. В данной работе мы рассчитывали распределения плотности потока энергии по углам прихода волн в точку наблюдений $p(\phi)$ для 15-ти секундных интервалов с перекрытием 50%.

4. РЕЗУЛЬТАТЫ НАБЛЮДЕНИЙ И ОБСУЖДЕНИЕ

Исследовались всплески аврорального хисса, зарегистрированные в КАN и LOZ с 07 ноября 2018 г. по 9 февраля 2020 г. Для анализа выбрано 22 события регистрации аврорального хисса с отношением сигнал/шум на обеих станциях не меньше 10 дБ и длительностью, не превышающей 10–15 мин. Эти события были разделены на 4 группы по особенностям поведения параметров поля H_t , P_c , $|E_z|/H_t$ и $p(\varphi)$: 1) индекс круговой поляризации и отношение $|E_z|/H_t$ слабо меняются во времени и существенно отличаются в двух точках; 2) индекс круговой поляризации и отношение $|E_z|/H_t$ слабо меняются во времени и принимают близкие значения в двух точках; 3) параметры H_t , P_c , $|E_z|/H_t$ и $p(\varphi)$ испытывают плавные вариации; 4) параметры H_t , P_c , $|E_z|/H_t$ и $p(\varphi)$ испытывают скачкообразные вариации. Ниже рассмотрены наиболее типичные события из каждой группы и предложена интерпретация этих событий.

4.1. Область засветки с размерами, малыми относительно расстояния между станциями

Рассмотрим авроральный хисс, зарегистрированный на станциях KAN и LOZ 20 декабря 2018 в 19:17-19:37 UT. На рисунке 2а представлены временны́е вариации параметров H_t , P_c , $|E_z|/H_t$ и $p(\phi)$ на обеих станциях в данном интервале. Как видно из рисунка, в LOZ амплитуда горизонтальной компоненты (H_i) в 3–5 раз выше, чем в КАN. С 19:23 по 19:28 UT индекс круговой поляризации Р. меняется мало и составляет около 0.8. Это означает, что в данный момент регистрируются волны с правой, близкой к круговой, поляризацией [Лебедь, 2019; Никитенко, 2021; Рытов, 1976]. При этом отношение $|E_z|/H_t$ уменьшается практически в два раза по сравнению с началом всплеска в 19:23 UT (рис. 2*a*), что, по-видимому, вызвано существованием в этот момент волн с малыми углами падения. Плотность потока энергии распределена практически равномерно, то есть волны приходят в точку наблюдений со всех направлений [Лебедь и др., 2019; Никитенко и др., 2021].

На станции КАN индекс круговой поляризации P_c в течение всего всплеска близок к нулю, а отношение $|E_z|/H_t$ от начала всплеска к его концу увеличивается в полтора раза. В данной точке регистрируются практически линейно поляризованные волны, с углами падения выше, чем в LOZ. Распределение плотности потока энергии по углам прихода $p(\varphi)$ в KAN имеет выраженный максимум примерно на 80°, а разброс по углам составляет около 60°–80°. В используемой системе координат азимутальный угол отсчитывается по часовой стрелке от направления на север, то есть в данном случае волны приходят в точку наблюдений преимущественно с востока, где расположена ст. LOZ.

Правая, близкая к круговой, поляризация волн ($P_c = 0.8$) и широкое распределение $p(\varphi)$, наблюдаемые в LOZ, означают, что в данном случае точка наблюдений находится вблизи центра области засветки рассеянных волн [Лебедь и др., 2019; Никитенко и др., 2021]. Уменьшение отношения $|E_z|/H_t$ подтверждает этот вывод. Линейная поляризация волн и малый разброс по углам в распределении $p(\varphi)$ в KAN указывают на расположение этой точки вдали от центра области засветки, где, по-видимому, уже начинает доминировать волна, испытавшая отражения от стенок волновода Земля-ионосфера [Лебедь и др., 2019; Никитенко и др., 2021]. Это подтверждается и наблюдаемым в этой точке увеличением отношения $|E_z|/H_t$. Поскольку расстояние между станциями KAN и LOZ составляет около 400 км, можно предположить, что в данном случае область засветки имела размеры в 2–3 раза меньше расстояния между станциями. Обнаружено еще 4 подобных события, в двух из которых центр области засветки находился в окрестности ст. KAN, а в двух других – вблизи LOZ.

4.2. Область засветки, вытянутая по долготе

На рисунке 2б представлены вариации параметров H_t , P_c , $|E_z|/H_t$ и $p(\varphi)$ во время регистрации аврорального хисса 5 января 2019 г. в 20:06– 20:12 UT. На станциях KAN и LOZ индекс круговой поляризации P_c принимает близкие значения ($P_c \sim 0$), т.е. в данном случае на обеих станциях регистрируются волны с линейной поляризацией. Отношение $|E_z|/H_t$ на станциях не меняется в течение всплеска, поэтому можно предположить, что в точках наблюдений регистрируются волны, испытавшие отражения от стенок волновода Земля-ионосфера. Максимум распределения $p(\varphi)$ в KAN находится примерно на 45°, а в LOZ на –60°. В данном случае область засветки находилась на более высоких широтах, чем KAN и LOZ.

Наблюдаемые временные вариации параметров поля отличаются от рассмотренных в предыдущем примере. Они могут быть объяснены только существованием в данный момент области засветки, вытянутой по долготе. При этом ее долготные размеры сравнимы или превышают расстояние между станциями. Поскольку амплитуда горизонтальный компоненты магнитного поля в KAN выше, чем в LOZ (рис. 26), по-видимому, в рассматриваемом примере центр области засветки рассеянных волн находится ближе к KAN. Подобные вариации обнаружены еще в пяти событиях из 22-х.

4.3. Перемещение области засветки по долготе

В трех событиях регистрации аврорального хисса из 22-х отмечены вариации параметров поля H_t , P_c , $|E_z|/H_t$ и $p(\varphi)$ схожие представленным на рис. 3a, рассчитанным для случая регистрации аврорального хисса 5 марта 2019 21:29–21:36 UT. В 21:31:15 UT в KAN амплитуда вариаций H_t и индекс круговой поляризации P_c достигают максимумов ($P_c = 0.75$). От начала всплеска к этому моменту отношение $|E_z|/H_t$ уменьшается почти в два раза. Распределение плотности потока энер-

Рис. 2. (сверху вниз) Временны́е вариации горизонтальной компоненты магнитного поля H_t , индекса круговой поляризации P_c , отношения вертикальной компоненты напряженности электрического поля к горизонтальной компоненте напряженности магнитного $|E_z|/H_t$, распределения плотности потока энергии по обратному азимуту вектора Пойнтинга $p(\phi)$ на частоте 8 кГц на станциях КАN и LOZ для события регистрации аврорального хисса: (*a*) – 20 декабря 2018 г. 19:17–19:37 UT, (*b*) – 5 января 2019 года в 20:06–20:12 UT.

гии по углам прихода $p(\varphi)$ практически равномерно (рис. 3*a*). По-видимому, в этот момент центр области засветки находится в окрестности ст. KAN аналогично рассмотренному ранее событию 20 декабря 2018 в 19:17–19:37 UT, когда этот центр находился в окрестности LOZ. Затем происходит плавное уменьшение амплитуды вариаций H_t и индекса круговой поляризации P_c , увеличение значений отношения $|E_z|/H_t$, а также уменьшение разброса в распределении $p(\varphi)$. К концу всплеска (около 21:33 UT) индекс круго-

Рис. 3. (То же самое, что на рис. 2) Параметры H_t , P_c , $|E_z|/H_t$ и $p(\varphi)$ на частоте 8 кГц на станциях КАN и LOZ для события регистрации аврорального хисса: (*a*) – 5 марта 2019 г. 21:29–21:36 UT, (*б*) – 20 декабря 2018 г. 19:41–19:51 UT.

вой поляризации $P_c \sim 0$, отношение $|E_z|/H_t$ увеличивается почти в два раза относительно значений в 21:31:15 UT, а максимум распределения $p(\varphi)$ находится примерно на 90° с разбросом по углам 50°-60°. Согласно представленным выше рассуждениям, в этот момент в KAN с востока приходят волны, испытавшие одно или несколько отражений от стенок волновода Земля-ионосфера.

На станции LOZ наблюдаются похожие вариации параметров поля с некоторой временной задержкой. Максимумы H_t и P_c , а также минимум

 $|E_z|/H_t$, наблюдаются около 21:31:45 UT (через 30 с после наблюдения их в KAN). В 21:31 UT максимум распределения $p(\varphi)$ находится на $-(80^\circ - 90^\circ)$, что означает западное направление прихода волн (со стороны станции KAN), где появился авроральный хисс. Затем разброс плотности потока энергии по обратному азимуту увеличивается. Около 21:31:45 UT распределение $p(\varphi)$ становится практически равномерным. В этот момент центр области засветки находится вблизи станции LOZ. После этого разброс в углах начи-

нает уменьшаться. В 21:33:15 UT максимум распределения находится на 75° (восточное направление прихода), а разброс составляет около 50° .

В рассмотренном примере, по-видимому, происходит перемещение области засветки и, соответственно, области рассеяния по долготе в направлении запад-восток, как и в работе [Лебедь, 2019]. Наблюдаемые в LOZ значения амплитуды горизонтальной компоненты магнитного поля выше, чем в KAN, могут быть вызваны особенностями генерации аврорального хисса. В одном из трех событий данного типа перемещение области засветки происходит с востока на запад.

4.4. Смешанный тип

Наиболее часто (8 случаев из 22) на станциях КАN и LOZ регистрируются всплески аврорального хисса, которые не могут быть объяснены существованием упомянутых выше простых конфигураций области засветки. Ниже рассмотрено одно из таких событий.

На рисунке 3б показаны вариации параметров H_t , P_c , $|E_z|/H_t$ и $p(\phi)$ для 20 декабря 2018 19:41— 19:51 UT. Наблюдаемые в LOZ достаточно высокие значения индекса круговой поляризации Р. (0.6-0.7) и небольшое уменьшение отношения $|E_z|/H_t$ относительно начала всплеска свидетельствуют о расположении данной точки на некотором удалении от центра области засветки. Отсутствие существенных временных вариаций этих параметров позволяет предположить отсутствие изменений в положении области засветки в течение развития всплеска. При этом вариации распределения $p(\phi)$ показывают, что в 19:44 UT происходит резкая смена направления прихода волн с восточного на западное. В 19:48 UT разброс в распределении увеличивается, означая приближение области засветки к точке наблюдений. В КАN при этом до 19:44 UT отсутствуют всплески аврорального хисса, а в 19:44 UT регистрируется мощный всплеск длительностью около минуты. Индекс круговой поляризации Р равен около 0.2, отношение $|E_z|/H_t$ относительно начала всплеска уменьшается на 0.1. Максимум распределения $p(\phi)$ находится примерно на 75°, означая приход всплеска с направления восток-северо-восток, а разброс в распределении составляет примерно 90°. После окончания этого всплеска в KAN регистрируется другой менее мощный всплеск, который согласно распределению $p(\phi)$ приходит в точку наблюдений с востока (рис. 3б).

Наблюдаемые вариации параметров H_t , P_c , $|E_z|/H_t$ в KAN и LOZ, а также резкие изменения формы распределений $p(\varphi)$ не подходят под опи-

санные выше конфигурации области засветки. По-видимому, в данный момент на фоне продолжительного всплеска, центр поля которого находился в окрестности LOZ, возник более мощный всплеск в направлении восток—северо-восток от KAN. Изменение распределения $p(\varphi)$ в LOZ в 19:44 UT, вероятно, обусловлено существованием именно этого всплеска. Суперпозиция волн двух источников, вероятно, вызвала наблюдаемые нетипично малые значения параметров P_c и $|E_z|/H_t$ в KAN.

Заметим, что обсуждаемое событие было зарегистрировано сразу после всплеска аврорального хисса, обсуждаемого выше в разделе 3.1, когда интенсивность излучений в LOZ была значительно больше, чем в KAN, и область засветки имела размеры в 2-3 раза меньше расстояния между станциями. Однако примерно через 10 мин ситуация изменилась, появился новый, более мощный всплеск в окрестности KAN, и авроральгный хисс стал более интенсивным в KAN. Сопоставление особенностей положения области засветки ОНЧ в этих двух событиях свидетельствует о быстрой динамике развитии плазменных процессов в ионосфере, что проявляется в быстром изменении параметров аврорального хисса.

Мы предполагаем, что размеры и положение области засветки ОНЧ аврорального хисса могут быть индикатором положения и поперечных размеров области, занятой мелкомасштабными неоднородностями электронной концентрации в верхней ионосфере. К сожалению, пока не имеется инструментальных ионосферных измерений, подтверждающих это предположение, однако полученные результаты представляют интерес и для исследования распределения ионосферных неоднородностей.

Заметим, что все рассмотренные выше события наблюдались в подготовительную фазу суббури. Полученные результаты свидетельствуют о том, что подготовительная фаза суббури развивается немонотонно, и в ионосфере авроральных широт возможно появление изменяющихся со временем локальных мелкомасштабных неоднородностей, косвенным индикатором положения которых может быть пространственное положение области засветки ОНЧ аврорального хисса.

5. ВЫВОДЫ

Проанализировано 22 случая аврорального хисса длительностью не превышающей 10–15 мин, зарегистрированных с 7 ноября 2018 г. по 9 февраля 2020 г. в обсерваториях Ловозеро (Россия) и Каннуслехто (Финляндия), расположенных на близких геомагнитных широтах и разнесенных по долготе на расстояние ~400 км.

Исследование особенностей временны́х вариаций на частоте 8 кГц (максимум интенсивности аврорального хисса) горизонтальной компоненты магнитного поля, индекса круговой поляризации, отношения вертикальной компоненты электрического поля к горизонтальной компоненте магнитного поля и распределения плотности потока энергии по углам прихода позволило выделить 4 типа пространственной структуры области засветки аврорального хисса: (1) область засветки имеет размеры, малые относительно расстояния между станциями; (2) область засветки вытянута по долготе; (3) область засветки перемещается по долготе; (4) смешанный тип.

Экспериментально показано, что при существовании малой области засветки в точке наблюдений, расположенной ближе к центру области, индекс круговой поляризации и отношение $|E_z|/H_t$ и существенно отличаются от наблюдаемых в соседней точке. Распределения плотности потока энергии по углам прихода $p(\varphi)$ в ближней точке имеют значительно больший разброс по углам, чем в удаленной точке.

В случае вытянутой области засветки индекс круговой поляризации и отношение $|E_z|/H_t$ принимают близкие значения на обеих точках наблюдений, а максимумы распределения $p(\varphi)$ указывают примерно на центр области.

При перемещении области засветки по долготе на обеих точках наблюдаются похожие вариации параметров H_t , P_c , $|E_z|/H_t$ и $p(\varphi)$ с некоторой задержкой, определяемой направлением перемещения области засветки.

В случае смешанного типа в точках наблюдений регистрируются скачкообразные изменения параметров поля, означающие существование нескольких областей засветки.

Мы предполагаем, что размеры и положение области засветки ОНЧ аврорального хисса может быть индикатором положения и поперечных размеров области, занятой мелкомасштабными неоднородностями электронной концентрации в верхней ионосфере.

СПИСОК ЛИТЕРАТУРЫ

— Клейменова Н.Г., Маннинен Ю., Громова Л.И., Громов С.В., Турунен Т. Всплески ОНЧ-излучений типа "авроральный хисс" на земной поверхности на $L \sim 5.5$ и геомагнитные возмущения // Геомагнетизм и аэрономия. Т. 59. № 3. С. 291–300. 2019.

https://doi.org/10.1134/S0016794019030088

– Лебедь О.М., Федоренко Ю.В., Маннинен Ю., Клейменова Н.Г., Никитенко А.С. Моделирование прохождения аврорального хисса от области генерации к земной поверхности // Геомагнетизм и аэрономия. Т. 59. № 5. С. 618–627. 2019.

https://doi.org/10.1134/S0016794019050079

– Никитенко А.С., Лебедь О.М., Федоренко Ю.В., Маннинен Ю., Клейменова Н.Г., Громова Л.И. Оценка положения и размера области рассеяния аврорального хисса по данным высокоширотных наблюдений в пространственно-разнесенных точках // Изв. РАН. Сер. физ. Т. 85. № 3. С. 398–403. 2021.

https://doi.org/10.31857/s0367676521030200

— Пильгаев С.В., Ларченко А.В., Лебедь О.М., Филатов М.В., Никитенко А.С., Федоренко Ю.В. Устройство для калибровки регистраторов электромагнитного поля // Тр. Кольского научного центра РАН. № 3. С. 75–80. 2017.

— Пильгаев С.В., Ларченко А.В., Филатов М.В., Федоренко Ю.В., Лебедь О.М. Генератор сигналов специальной формы для калибровки регистраторов электромагнитного поля // Приборы и техника эксперимента. № 6. С. 49–55. 2018.

https://doi.org/10.1134/S0032816218060125

— Пильгаев С.В., Федоренко Ю.В., Клейменова Н.Г., Маннинен Ю., Никитенко А.С., Ларченко А.В., Филатов М.В., Лебедь О.М., Фролов И.Е., Козелов Б.В. Первые результаты ОНЧ-наблюдений во время полярной экспедиции "Трансарктика 2019" // Геомагнетизм и аэрономия. Т. 60. № 2. С. 216–219. 2020. https://doi.org/10.31857/s0016794020020121

— Пильгаев С.В., Ларченко А.В., Федоренко Ю.В., Филатов М.В., Никитенко А.С. Трехкомпонентный приемник сигналов очень низкого частотного диапазона с прецизионной привязкой данных к мировому времени // Приборы и техника эксперимента. № 5. С. 115– 125. 2021.

https://doi.org/10.31857/s0032816221040248

— Рытов С.М. Введение в статистическую радиофизику. М.: Наука, 1976. 494 с.

- Budden K. The Propagation of Radio Waves: The Theory of Radio Waves of Low Power in the Ionosphere and Magnetosphere. Cambridge: Cambridge University Press. 1985. 669 c.

https://doi.org/10.1017/CBO9780511564321

- *Gurnett D.A.* A satellite study of VLF hiss // J. Geophys. Res. V. 71. P. 5599–5615. 1966.

https://doi.org/10.1029/JZ071i023p05599

– Harang L., Larsen R. Radio wave emissions in the VLFband observed near the auroral zone–I. Occurrence of emissions during disturbances // J. Atmos. Terr. Phys. V. 27. P. 481–497. 1965.

https://doi.org/10.1016/0021-9169(65)90013-9

- Haykawa M., Tanaka Y., Ontsu I. The morpholocies of low-latitude and auroral VLF hiss // J. Atmos. Terr. Phys. V. 37. № 3. P. 517–529. 1975.

https://doi.org/10.1016/0021-9169(75)90178-6

- Hoffman R.A., Laaspere T. Comparison of very-low-frequency auroral hiss with precipitating low-energy electrons by the use of simultaneous data from two OGO 4 experiments // J. Geophys. Res. V. 77. P. 640–650. 1972. https://doi.org/10.1029/JA077i004p00640

- Hughes A.R.W., Kaiser T.R., Bullough K. The frequency of occurrence of VLF radio emissions at high latitudes // Space Res. V. 11. P. 1323–1330. 1971.

- Jørgensen T.S. Morphology of VLF hiss zones and their correlation with particle precipitation events // J. Geophys.

Res. V. 71. P. 1367–1375. 1966.

https://doi.org/10.1029/JZ071i005p01367

- Jørgensen T.S. Investigation auroral hiss measured on OGO-2 and Byrd statiion in terms of incoherent Cherenkov radiation // J. Geophys. Res. V. 73. P. 1055–1069. 1968. https://doi.org/10.1029/JA073i003p01055

- *Kimura I.* Effects of Ions on Whistler-Mode Ray Tracing // Radio Science. V. 1. № 3. P. 269–283. 1966. https://doi.org/10.1002/rds196613269.

- Laaspere T., Hoffman R.A. New results on the correlation between low-energy electrons and auroral hiss // J. Geophys. Res. V. 81. P. 524–530. 1976.

https://doi.org/10.1029/JA081i004p00524

 Makita K. VLF/LF hiss emissions associated with aurora // Mem. Nat. Inst. Polar Res. Tokyo. Ser. A. № 16. P. 1–126. 1979.

- Manninen J. Some aspects of ELF_VLF emissions in geophysical research, Sodankyla Geophysical Observatory Publications. № 98. 177 p. 2005. Oulu Univ. Press. Finland. [http://www.sgo.fi/Publications/SGO/thesis/Manninen-Jyrki.pdf].

– Manninen J., Kleimenova N., Kozlovsky A., Fedorenko Y., Gromova L., Turunen T. Ground-based auroral hiss recorded in Northern Finland with reference to magnetic substorms // Geophys. Res. Lett. V. 47. 2020. https://doi.org/10.1029/2019GL086285

– Morozumi H.M. Diurnal variation of auroral zone geophysical disturbances // Rep. Ionos. Space Res. Japan. V. 19. P. 286–298. 1965.

Mosier S.R., Gurnett D.A. Observed correlations between auroral and VLF emissions // J. Geophys. Res. V. 77. № 7.
P. 1137–1145. 1972.

https://doi.org/10.1029/JA077i007p01137

- Sazhin S.S., Bullough K., Hayakawa M. Auroral hiss: a review // Planet. Space Sci. V. 41. P. 153–166. 1993. https://doi.org/10.1016/0032-0633(93)90045-4

– Sonwalkar V.S., Harikumar J. An explanation of ground observations of auroral hiss: Role of density depletions and meter-scale irregularities // J. Geophys. Res. V. 105. P. 18.867–18.884. 2000.

https://doi.org/10.1029/1999JA000302

- *Tsuruda K., Ikeda M.* Comparison of three different types of VLF direction-finding techniques // J. Geophys. Res. V. 84 (A9). P. 5325–5332. 1979.

https://doi.org/10.1029/JA084iA09p05325