УДК 523.98;550.388

ЭФФЕКТИВНЫЙ ИНДЕКС СОЛНЕЧНОЙ АКТИВНОСТИ ДЛЯ КРАТКОСРОЧНОГО ПРОГНОЗА СРЕДНЕГО ИНДЕКСА ЭТОЙ АКТИВНОСТИ

© 2022 г. М. Г. Деминов*

Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН (ИЗМИРАН), г. Москва, г. Троицк, Россия *e-mail: deminov@izmiran.ru Поступила в редакцию 18.11.2021 г. После доработки 14.12.2021 г. Принята к публикации 27.01.2022 г.

Во многих моделях крайнего ультрафиолетового излучения Солнца, ионосферы и термосферы в качестве характеристики солнечной активности (как входного параметра) использованы индексы F_1 и F_{81} – величина потока солнечного излучения на длине волны 10.7 см в данный день и среднее за 81 день значение этого потока, центрированное на данный день. Использование индекса \tilde{F}_{81} в задачах краткосрочного прогноза перечисленных параметров по этим моделям затруднительно, поскольку для вычисления F_{81} необходим прогноз F_1 на 40 дней вперед. Представлены результаты поиска индекса солнечной активности F(T, N) для замены F_{81} в этих задачах, где F(T, N) – кумулятивный (средневзвешенный с характерным временем Т в сутках) индекс этой активности, вычисленный по данным F_1 за данный и предыдущие N дней. Этот поиск основан на определении оптимальных параметров T, N из условия минимума среднеквадратичного отклонения индекса F(T, N)от F_{81} при относительно низких значениях N. Получено, что индекс F(27, 81) с параметрами T = 27и N = 3T является искомым эффективным индексом солнечной активности для замены F_{81} в перечисленных задачах. Индекс F(27, 81) применим при любом уровне солнечной активности и на любых фазах солнечных циклов. Например, среднеквадратичное отклонение отношения $F(27, 81)/F_{81}$ незначительно (примерно равно 5%) как для относительно высоких (1954–1996 гг.), так и низких (1996–2020 гг.) циклов солнечной активности. Среднее отклонение (сдвиг) индекса F(27, 81) от F₈₁ можно не учитывать во многих случаях. Например, в среднем для фаз роста или спада солнечных циклов в интервале 1954–1996 гг. этот сдвиг не превышает 2 (в единицах измерения F₁) по абсолютной величине.

DOI: 10.31857/S0016794022030051

1. ВВЕДЕНИЕ

В моделях крайнего ультрафиолетового (КУФ) излучения Солнца в качестве инликаторов солнечной активности обычно используют индексы *F*₁ и *F*₈₁ – поток радиоизлучения Солнца на длине волны 10.7 см (в 10⁻²² Вт/(Гц м²)) в данный день и среднее за 81 день значение этого потока, которое центрировано на данный день [Richards et al., 1994, 2006; Solomon and Qian, 2005; Lean et al., 2011; Girazian and Withers, 2015]. КУФ-излучение Солнца является одной из основных причин нагрева и ионизации термосферы. Поэтому индексы *F*₁ и *F*₈₁ используются во многих эмпирических моделях параметров термосферы [Picone et al., 2002; Bowman et al., 2008; Emmert et al., 2020] и ионосферы [Huang et al., 2015; Yang et al., 2017; Feng et al., 2019; Jakowski and Hoque, 2021; Деминов и др., 2021] в качестве индикаторов солнечной активности. Индекс F₈₁ неудобен для краткосрочного прогноза солнечной активности на несколько дней, поскольку для вычисления этого индекса необходим прогноз ежедневных значений индекса солнечной активности F_1 на 40 дней вперед. Один из вариантов решения этой задачи связан с заменой индекса F_{81} в данный день на индекс солнечной активности F(T, N) в этот день, который является кумулятивным (средневзвешенным с характерным временем T в сутках) индексом этой активности в данный и предыдущие N дней:

$$F(T,N) = \sum_{n=0}^{N} F_1(-n) \tau^n / \sum_{n=0}^{N} \tau^n,$$
 (1)

где $\tau = \exp(-1/T)$, индекс n = 0 соответствует данному дню.

Индекс *F*(*T*, *N*) ранее использовался для поиска оптимальной зависимости критической часто-

Рис. 1. Зависимость среднеквадратичного отклонения о индекса F(T, N) от индекса F_{81} (в 10^{-22} Вт/(Гц м²)) от характерного времени T (в сутках) при фиксированном отношении T/N = 3 для интервалов 1954– 1996 гг. (1) и 1996–2020 гг. (2). Индекс F(T, N) определен уравнением (1).

ты *F*2-слоя *foF*2 от солнечной активности при определенных условиях на длину ряда в уравнении (1). Для линейной зависимости *foF*2 от *F*₁ и *F*(*T*, *N*) было получено, что характерное время *T* равно 55 сут (или $\tau = 0.98$) при дополнительном условии $\tau^N \ll 1$, которое соответствует достаточно большому интервалу времени для суммирования в уравнении (1) [Wrenn and Rodger, 1989]. В глобальной модели *foF*2 было получено, что нелинейная зависимость *foF*2 от *F*(*T*, *N*) оптимальна для *T* = 27 сут (или $\tau = 0.96$) при дополнительном условии *T* = *N* в уравнении (1) [Шубин, 2017].

Более общий подход основан на поиске оптимальных параметров T и N для замены индекса F_{81} на F(T, N), т.е. на поиске оптимального индекса солнечной активности для краткосрочного прогноза этой активности. Решение этой задачи было главной целью данной работы. Следующий этап исследования — определение эффективности замены F_{81} на F(T, N) в моделях термосферы и ионосферы — выходит за рамки данной работы.

2. ЭФФЕКТИВНЫЙ ИНДЕКС

Для решения задачи поиска оптимальных параметров T и N в уравнении (1) можно учесть, что последний член ряда в этом уравнении должен быть гораздо меньше его первого члена:

$$(F_1(-N)/F_1(0))\tau^N \ll 1.$$
 (2)

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 62 № 3 2022

Кроме того, целесообразно выбрать минимальное значение N, при котором неравенство (2) выполнено для широкого набора индексов солнечной активности. Для этого необходимо оценить частоту наблюдения заданных значений отношения $C = F_{1\text{max}}/F_{1\text{min}}$, где $F_{1\text{max}}$ и $F_{1\text{min}}$ – максимальное и минимальное значения индекса F₁ в заданном интервале времени Δt в сутках. Для данных индекса F₁ за 1954–1996 гг. получено, что условие $C \ge 3$ не наблюдалось ни разу для скользящих значений $\Delta t = 41$ и наблюдалось в 0.1% случаев для $\Delta t = 81$. Для сравнения, условие $C \ge 2$ наблюдалось в 14% случаев для $\Delta t = 81$. Следовательно, условие $(F_1(-N)/F_1(0)) < 3$ нарушается редко, и уравнение (2) можно представить в виде $3\tau^N = 0.1-0.2$. Это дает приближенное равенство N = 3T с учетом явного вида τ , где N и T измеряются в сутках. Следовательно, оптимальная длина ряда N в уравнении (1) примерно в три раза больше характерного времени T сглаживания индекса F_1 .

Для определения оптимального характерного времени $T = T_c$ для заданного N = 3T используем условие минимума среднеквадратичного отклонения (σ) индекса F(T, N) от F_{81} . На рисунке 1 показана зависимость σ от Т для двух интервалов времени: 1954-1996 и 1996-2020 гг. Из данных на этом рисунке следует, что о для 1954–1996 гг. больше, чем для 1996-2020 гг., при любом фиксированном Т. Это обусловлено более высокой солнечной активностью в интервале 1954-1996 гг. Тем не менее, о минимально ($\sigma = \sigma_{min}$) для $T = T_c = 27$ сут для этих двух интервалов времени. В данном случае σ_{\min} равно 7.8 и 6.2 (в единицах измерения потока F₁) для интервалов 1954-1996 и 1996-2020 гг. Среднеквадратичное отклонение отношения *F*(27, 81)/*F*₈₁ примерно равно 5% для этих двух интервалов времени.

Следовательно, индекс F(T, N) для $T = T_c = 27$ и N = 81 является эффективным индексом солнечной активности, который применим для любого уровня этой активности. Он предназначен для замены индекса F_{81} в задачах краткосрочного прогноза солнечной активности, параметров ионо-сферы и термосферы.

Оптимальное отношение N/T = 3 было получено из компромиссного условия, когда первый член ряда в уравнении (1) на порядок больше последнего члена этого ряда при минимальном значении N. Такое оптимальное отношение можно получить иначе. Для этого необходимо вычислить оптимальное время T_c , при котором σ минимально, для разных фиксированных значений отношения N/T по аналогии с данными на рис. 1 для N/T = 3. Для интервала 1954—1996 гг. результат показан на рис. 2. Из данных на этом рисунке следует, что увеличение N/T приводит к уменьшению оптимального времени T_c . При увеличе-

нии N/T от 1 до 3 время T_c стремительно уменьшается от 48 до 27 сут. Дальнейшее увеличение N/T не приводит к заметному изменению T_c . По оценкам, даже для N/T = 24 время $T_c = 25$ сут. Следовательно, отношение N/T = 3 является оптимальным для искомого индекса F(T, N), поскольку дальнейшее увеличение N/T не приводит к заметному изменению T_c .

Следует отметить, что для всех приведенных на рис. 2 случаев систематический сдвиг F(T, N)относительно F_{81} практически отсутствует (не превышает 0.01), поэтому среднеквадратичные отклонения F(T, N) от F_{81} почти совпадают с их стандартными отклонениями. Минимальные значения σ , которые соответствуют T_c для фиксированных отношений N/T от 1 до 12, также отличаются слабо: 7.8 < σ < 7.9 для интервала 1954—1996 гг.

Выше отмечалось, что оптимальное отношение N/T = 3 получено из компромиссного условия, когда первый член ряда в уравнении (1) на порядок больше последнего члена этого ряда при минимальном значении *N*. Одна из причин ограничения, накладываемого на длину ряда в уравнении (1), обусловлена увеличением абсолютного значения сдвига $\Delta F = F(T, N) - F_{81}$ при увеличении *N* для фаз роста и спада солнечных циклов. Например, интервал 1954–1996 гг. соответствует солнечным циклам 19-22 [Hathaway, 2015]. Фазы роста этих циклов: 1954-1957, 1964-1968, 1976-1979, 1986-1989; фазы спада: 1958-1964; 1970-1976; 1981-1986; 1990-1996 гг. Для фаз роста циклов 19–22 получено, что сдвиг $\Delta F < 0$. В эти фазы для фиксированного отношения *N*/*T* абсолютное значение ΔF увеличивается с ростом N или T. Haпример, для N/T = 3 величина ΔF равна -1.5, -1.9и -2.4 для T = 20, 27 и 34. Для фаз спада циклов 19—22 получено, что сдвиг $\Delta F > 0$. В эти фазы для фиксированного отношения N/T значение ΔF увеличивается с ростом N или T. Например, для N/T = 3 величина $\Delta F = 0.9, 1.2$ и 1.5 для T = 20, 27и 34. Следовательно, абсолютное значение сдвига ΔF для фазы роста больше, чем для фазы спада при прочих равных условиях. Это обусловлено тем, что продолжительность фазы роста меньше продолжительности фазы спада и, как следствие, скорость увеличения солнечной активности в фазу роста больше скорости уменьшения этой активности в фазу спада. Абсолютные значения ΔF увеличиваются не только с ростом N или T для фиксированного отношения N/T, но и с ростом N для фиксированного Т. Например, в фазу роста для T = 27 величина $\Delta F = -1.0$ и -2.0 для N = T и N = 4T.

Для оптимальных условий $T = T_c = 27$ и $N = 3T_c$ сдвиг ΔF равен -1.9 и 1.2 для фаз роста и спада циклов 19–22. Этот сдвиг не приводит к существенному увеличению среднеквадратичного отклонения σ относительно стандартного отклоне-

Рис. 2. Оптимальные характерные времена T_c (в сутках) для различных значений отношения T/N (точки). Параметры T и N индекса F(T, N) определены уравнением (1).

ния σ_{st} : $\sigma = 7.5$, $\sigma_{st} = 7.2$ для фаз роста и $\sigma = 7.5$, $\sigma_{st} = 7.4$ для фаз спада солнечных циклов 19–22. Поэтому оптимальные условия $T = T_c = 27$ и $N = 3T_c$ для эффективного индекса F(T, N), которые были получены для солнечных циклов в целом, могут быть использованы и для каждой из фаз солнечных циклов.

3. ОБСУЖДЕНИЕ

Эффективный индекс солнечной активности F(27, 81), т.е. индекс F(T, N) с параметрами T == 27 дней и N = 3T = 81 день, предназначен для замены индекса F₈₁ как входного параметра в моделях солнечного излучения, ионосферы и термосферы, в первую очередь, в задачах краткосрочного прогноза этих величин. Индекс F(27, 81) вычисляется по ежедневным значениям потока радиоизлучения Солнца F₁ за три оборота Солнца, предшествующих данному дню, и в данный день. Индекс F_{81} также вычисляется по F_1 за три оборота Солнца, но эти значения центрированы на данный день, т.е. учитываются значения F₁ в данный день и в предыдущие и последующие 40 дней. Для индекса F(27, 81) нет необходимости вычисления F₁ в последующие 40 дней, поэтому он предпочтительнее индекса F₈₁ в задачах краткосрочного прогноза солнечного излучения, ионосферы и термосферы.

В глобальной модели *foF*2 было получено, что нелинейная зависимость *foF*2 от F(T, N) оптимальна для N = T = 27 дней [Шубин, 2017]. Выше отмечалось, что для N/T = 1 оптимальное время гораздо больше: $T = T_c = 48$ дней, если основываться только на солнечных данных. Тем не менее, для фиксированного характерного времени T = 27 дней среднеквадратичное отклонение о

305

F(T, N) от F_{81} для N = 27 дней только на 20% больше о для N = 81 дней, если основываться на солнечных данных для анализируемых интервалов 1954—1996 и 1996—2020 гг.

В работе [Wrenn and Rodger, 1989] для линейной зависимости *foF*2 от F_1 и F(T, N) было получено, что оптимальное время Т равно 55 дням при дополнительном условии $\tau^N \ll 1$, которое соответствует достаточно большому интервалу времени для суммирования в уравнении (1). Достаточно большой интервал времени соответствует варианту, когда отношение N/T ~ 10, поскольку в этом случае $\tau^{N} = \exp(-N/T) \sim 5 \times 10^{-5}$. Условие минимума среднеквадратичного отклонения индекса F(T, N) от F_{81} для N/T = 10 дает $T = T_c = 26$ дней для интервалов 1954-1996 и 1996-2020 гг. (см. также рис. 2). Анализ показал, что в данном случае разница в характерных временах Тобусловлена тем, что решались разные задачи: корреляция F(T, N) с F_{81} и корреляция foF2 с F_1 и F(T, N), когда дисперсия F_1 гораздо больше дисперсии F(T, N).

Эффективный индекс солнечной активности F(27, 81) предназначен для замены индекса F_{81} как входного параметра в моделях солнечного излучения, ионосферы и термосферы. Оценка оправданности этой замены может быть предметом будущих исследований. На этом пути важно оценить условия, при которых замена индекса F_{81} на F(27, 81) может привести к увеличению точности некоторых моделей солнечного излучения, ионо-сферы или термосферы.

4. ЗАКЛЮЧЕНИЕ

Индексы F_1 и F_{81} – величина потока солнечного излучения на длине волны 10.7 см в данный день и среднее за 81 день значение этого потока, центрированное на данный день – использованы во многих моделях крайнего ультрафиолетового излучения Солнца, ионосферы и термосферы в качестве характеристики солнечной активности. Использование индекса F₈₁ в задачах краткосрочного прогноза перечисленных параметров по этим моделям затруднительно, поскольку для вычисления F_{81} необходим прогноз F_1 на 40 дней вперед. Представлены результаты поиска индекса солнечной активности F(T, N) для замены F_{81} в этих задачах, где F(T,N) – кумулятивный (средневзвешенный с характерным временем Т в сутках) индекс этой активности, вычисленный по данным F_1 за данный и предыдущие N дней. Этот поиск основан на определении оптимальных параметров Т и N из условия минимума среднеквадратичного отклонения индекса F(T, N) от F_{81} при относительно низких значениях *N*. Получены следующие результаты.

1. Индекс F(27, 81) с параметрами T = 27 и N = 3T является искомым эффективным индексом солнечной активности для замены F_{81} в перечисленных задачах.

2. Индекс F(27, 81) применим при любом уровне солнечной активности и на любых фазах солнечных циклов. Например, среднеквадратичное отклонение отношения $F(27, 81)/F_{81}$ незначительно (примерно равно 5%) как для относительно высоких (1954—1996 гг.), так и низких (1996— 2020 гг.) солнечных циклов.

3. Среднее отклонение (сдвиг) индекса F(27, 81) от F_{81} можно не учитывать во многих случаях. Например, в среднем для фаз роста и спада солнечных циклов в интервале 1954—1996 гг. этот сдвиг не превышает 2 (в единицах измерения F_1) по абсолютной величине.

5. БЛАГОДАРНОСТИ

Автор благодарит WDC for Solar-Terrestrial Physics, Великобритания за данные об индексах солнечной активности (http://www.ukssdc.ac.uk/wdcc1/).

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено при поддержке Российского фонда фундаментальных исследований (РФФИ) в рамках научного проекта № 20-05-00050 и Российского научного фонда (РНФ) в рамках научного проекта № 20-72-10023.

СПИСОК ЛИТЕРАТУРЫ

– Деминов М.Г., Шубин В.Н., Бадин В.И. Модель критической частоты Е-слоя для авроральной области // Геомагнетизм и аэрономия. Т. 61. № 5. С. 610–617. 2021.

— Шубин В.Н. Глобальная эмпирическая модель критической частоты *F*2-слоя ионосферы для спокойных геомагнитных условий // Геомагнетизм и аэрономия. Т. 57. № 4. С. 450–462. 2017.

- Bowman B.R., Tobiska W.K., Marcos F.A., Valladares C. The JB2006 empirical thermospheric density model // J. Atmos. Solar-Terr. Phys. V. 70. P. 774–793. 2008.

- Emmert J.T., Drob D.P., Picone J.M., Siskind D.E., Jones M. Jr., Mlynczak M.G. et al. NRLMSIS 2.0: A whole atmosphere empirical model of temperature and neutral species densities // Earth and Space Sci. V. 7. e2020EA001321. 2020.

https://doi.org/10.1029/2020EA001321

– Feng J., Han B., Zhao Z., Wang Z. A new global total electron content empirical model // Remote Sensing. V. 11(6).706. 2019.

https://doi.org/10.3390/rs11060706

- *Girazian Z., Withers P.* An empirical model of the extreme ultraviolet solar spectrum as a function of F10.7 // J. Geophys. Res. –Space. V. 120. P. 6779–6794. 2015. https://doi.org/10.1002/2015JA021436 - Hathaway D.H. The Solar Cycle // Living Rev. Solar Phys. V. 12. № 4. 2015. https://doi.org/10.1007/lrsp-2015-4

- Huang H., Chen Y., Liu L., Le H., Wan W. An empirical model of the topside plasma density around 600 km based on ROCSAT-1 and Hinotori observations // J. Geophys. Res.- Space.V. 120. P. 4052–4063. 2015. https://doi.org/10.1002/2014JA020940

– Jakowski N., Hoque M.M. Global equivalent slab thickness model of the Earth's ionosphere // J. Space Weather Space Clim. V. 11. № 10. 2021. https://doi.org/10.1051/swsc/2020083

- Lean J.L., Woods T.N., Eparvier F.G. et al. Solar extreme ultraviolet irradiance: Present, past, and future // J. Geophys. Res. V. 116. A01102. 2011. https://doi.org/10.1029/2010JA015901

- Picone J.M., Hedin A.E., Drob D.P., Aikin A.C. NRLM-SISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues // J. Geophys. Res. V. 107. P. 1468. 2002. https://doi.org/10.1029/2002JA009430

- *Richards P.G., Fennelly J.A., Torr D.G.* EUVAC: A solar EUV flux model for aeronomic calculations // J. Geophys. Res. V. 99. P. 8981–8992. 1994.

- Richards P.G., Woods T.N., Peterson W.K. HEUVAC: A new high resolution solar EUV proxy model // Adv. Space Res. V. 37. P. 315–322. 2006.

- Solomon S.C., Qian L. Solar extreme-ultraviolet irradiance for general circulation models // J. Geophys. Res. V. 110. A10306. 2005.

https://doi.org/10.1029/2005JA011160

- Wrenn G.L., Rodger A.S. Geomagnetic modification of the mid-latitude ionosphere: Toward a strategy for the improved forecasting of foF2 // Radio Sci. V. 24. P. 99–111. 1989.

- Yang Z., Ssessanga N., Tran L.T., Bilitza D., Kenpankho P. On improvement in representation of foE in IRI // Adv. Space Res. V. 60. P. 347–356. 2017.