УДК 550.388.2

ИНДЕКС СОЛНЕЧНОЙ АКТИВНОСТИ ДЛЯ КРИТИЧЕСКОЙ ЧАСТОТЫ *Е*-СЛОЯ НА СРЕДНИХ ШИРОТАХ

© 2022 г. М. Г. Деминов*

Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН (ИЗМИРАН), г. Москва, г. Троицк, Россия

*e-mail: deminov@izmiran.ru Поступила в редакцию 08.09.2021 г. После доработки 20.09.2021 г. Принята к публикации 24.09.2021 г.

На основе анализа данных среднеширотных ионосферных станций получено, что индекс $P = 0.5(F_1 + F_{81})$ является оптимальным индексом солнечной активности для ежедневных значений критической частоты *E*-слоя *foE*, где F_1 и F_{81} – поток радиоизлучения Солнца на длине волны 10.7 см в данный день и среднее за 81 день значение этого потока. Стандартные отклонения σ зависимости *foE* от *P* в дневные часы почти одинаковы для зимы и лета на широте примерно 50° N, величина σ максимальна для лета на более низких широтах и для зимы на более высоких широтах. Подстановка индекса *P* в модели ИПГ, IRI или NeQuick позволяет использовать эти модели для вычисления ежедневных значений *foE*. На основе предварительного анализа (полдень, средняя солнечная активность) получено, что точности вычислений *foE* по этим моделям примерно одинаковы. Наибольшая разница между моделями наблюдается для лета, когда на широтах 50°–60° N модели ИПГ и NeQuick точнее IRI, на более низких широтах модель IRI может быть предпочтительной.

DOI: 10.31857/S0016794022020055

1. ВВЕДЕНИЕ

Слой Е ионосферы в дневные часы на средних широтах образуется в результате ионизации атмосферы крайним ультрафиолетовым и мягким рентгеновским излучением Солнца и определяется балансом ионизационно-рекомбинационных процессов [Solomon, 2006; Pavlov and Pavlova, 2013]. Для этих процессов в качестве индикаторов солнечной активности обычно используют линейную комбинацию индексов F_1 и F_{81} – потока радиоизлучения Солнца на длине волны 10.7 см в данный день и среднего за 81 день значения этого потока, центрированного на данный день. Например, индекс $P = (F_1 + F_{81})/2$ использован в моделях солнечного излучения EUVAC [Richards et al., 1994] и HEUVAC [Richards et al., 2006]. В модели крайнего ультрафиолетового излучения Солнца для общей циркуляции атмосферы использованы линейные комбинации индексов Р, F_1 и F_{81} [Solomon and Qian, 2005].

В базовом варианте международной справочной модели ионосферы (IRI) использован индекс Rz_{12} для оценки критической частоты *E*-слоя *foE*, где Rz_{12} – среднее за 12 месяцев число солнечных пятен [Bilitza, 2018]. Этот вариант модели дает средние за месяц (медианные) значения *foE*. Дополнительный анализ показал, что модель IRI можно применить и для вычисления ежедневных

значений foE, если использовать индексы F_1 или F_{81} вместо $R_{Z_{12}}$ с учетом корреляционной связи между индексами Rz и F [Yang et al., 2017]. При этом индекс F₈₁ дает большее увеличение точности вычисления *foE* по модели IRI, чем F_1 . Эти результаты были получены на основе анализа данных *foE* ряда ионосферных станций за 2002 и 2009 гг., которые соответствовали высокой и низкой солнечной активности. Использование данных только за 2 года, по-видимому, недостаточно для окончательного выбора индекса солнечной активности для вычисления ежедневных значений *foE* по модели IRI или любой другой эмпирической модели. Анализ ежедневных данных ст. Москва без разделения на сезоны показал, что для коэффициента корреляции foE с линейной комбинацией F_1 и F_{81} существует широкий макси-мум вблизи $P = (F_1 + F_{81})/2$ [Антонова и др., 1996]. Тем не менее, для ст. Москва двухкомпонентная модель foE с индексом P не намного точнее однокомпонентных моделей *foE* с индексами F_1 или F_{81} [Антонова и др., 1996].

Целью данной работы был поиск оптимального индекса солнечной активности для вычисления *foE* на средних широтах на основе анализа имеющихся данных *foE* станций Боулдер (Boulder, 40.0° N, 254.7° E), Слау (Slough, 51.5° N, 359.4° E) и Юлиусру/Рюген (Juliusruh/Rugen, 54.6° N, 13.4° E) в дневные часы в интервале 1959— 1995 гг., где в скобках указаны географические координаты станций. Наш анализ включал оценки не только оптимального индекса солнечной активности для *foE* с учетом сезонных особенностей изменений *foE*, но и эффективности включения этого индекса в известные эмпирические модели ионосферы для вычисления *foE*.

2. МЕТОДИКА

Для поиска оптимального индекса солнечной активности для *foE* конкретной станции использован массив данных *foE* этой станции. Этот массив использован для определения коэффициентов уравнения регрессии:

$$r(F) = (foE/foE(66)_{IRI})^4 = a + b(F - 66) \pm \sigma,$$
 (1)

где

$$F = kF_1 + (1 - k)F_{81},$$
(2)

foE – критическая частота E-слоя, полученная по данным ионосферной станции для конкретных геофизических условий (географические широта и долгота, год, день года, местное время, индекс солнечной активности F), foE(66)_{IRI} - критическая частота *E*-слоя по базовой модели IRI для этих геофизических условий за одним исключением: индекс солнечной активности F = 66. Задаваемый параметр k может изменяться в диапазоне 0-1; $F = F_{81}$ для k = 0, $F = F_1$ для k = 1. В этом диапазоне можно найти параметр $k = k^*$, который удовлетворяет условию минимума стандартного отклонения σ уравнения регрессии (1), т.е. отклонения вычисленных по этому уравнению значений r(F) от измеренных значений. Подстановка параметра $k = k^*$ в уравнение (2) дает оптимальный индекс солнечной активности $F = F^*$ для вычисления foE в ионосфере над данной ионосферной станцией по уравнению (1) или по одной из эмпирических моделей ионосферы, т.е. решение поставленной задачи.

Дополнительные условия, которые были приняты для получения устойчивых закономерностей, следующие. В уравнении (1) использованы средние из пяти часовых значений r(F) для данного дня: местный полдень, два часа до и два часа после полудня. Данные foE для каждого часа обычно определены по мировому времени, поэтому местный полдень в данном случае означает ближайшее к полдню измерение foE. Из этих пяти часовых значений r(F) в данный день оставляются значения, которые соответствуют не очень высокой геомагнитной активности: $Kp^* < 4$. Кроме того, если для данного дня число значений r(F)меньше трех, то данный день исключается из рассмотрения. Индекс *Кр*^{*} определен по средневзвешенному (с весовым коэффициентом $\tau = 0.6$) ин-

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 62 № 2 2022

дексу геомагнитной активности $ap(\tau)$ [Деминов и Шубин, 2018]:

$$Kp^* = 2.1\ln(0.2ap(\tau) + 1), \tag{3}$$

где [Wrenn, 1987]

$$ap(\tau) = (1 - \tau)(ap_0 + ap_{-1}\tau + ap_{-2}\tau^2 + \ldots),$$

*ар*₀, *ар*₋₁ и т.д. – значения *ар*-индекса в данный, предыдущий и т.д. трехчасовые интервалы. Индекс Кр* использовался для учета зависимости широты главного ионосферного провала (ГИП) от геомагнитной активности [Деминов и Шубин, 2018]. Широта ГИП до некоторой степени является экваториальной границей авроральной области [Гальперин и др., 1990]. Тем самым косвенно учтено, что расширение авроральной области и увеличение джоулева нагрева термосферы в этой области может быть причиной изменения foE на средних широтах. Обычно влияние геомагнитной активности на изменения *foE* на средних широтах не превышает нескольких процентов [Антонова и др., 1996], что и определило выбор критерия $Kp^* < 4$ для анализируемых станций.

В базовой модели IRI уравнение (1) имеет вид:

$$r_{\rm IRI} = (foE_{\rm IRI}/foE(66)_{\rm IRI})^4 = 1 + B(\rm COV - 66), \ (4)$$

где B = 0.0094, COV — среднее за 12 месяцев значение индекса солнечной активности *F*. Отметим, что в базовой модели IRI для вычисления foE использована эмпирическая модель [Kouris and Muggleton, 1973a, 1973b]. Более детальная модель (ниже она названа моделью ИПГ) показывает. что коэффициент В может зависеть от широты и сезона [Нусинов, 1988, 2004; Nusinov, 2006]. Модель foE [Titheridge, 1996] в NeQuick [Nava et al., 2008] также содержит зависимость от сезона коэффициента, аналогичного коэффициенту В в уравнении (4). Это означает, что искомый коэффициент $k = k^*$ в уравнении (2) может зависеть от сезона. Здесь использовано разделение месяцев года по сезонам, аналогично принятому в модели NeQuick: зима (11, 12, 1, 2), равноденствие (3, 4, 9, 10), лето (5, 6, 7, 8), где в скобках указан номер месяца.

Итак, задача определения оптимального индекса солнечной активности для *foE* в дневные часы по базе данных ионосферной станции на средних широтах для $Kp^* < 4$ сводится к поиску индекса $k = k^*$ в уравнении (2) для каждого сезона, который удовлетворяет условию минимума стандартного отклонения о уравнения регрессии (1). Результаты решения этой задачи приведены ниже.

3. РЕЗУЛЬТАТЫ АНАЛИЗА

На рисунке 1 показаны зависимости стандартных отклонений σ уравнения регрессии (1) от параметра *k* для каждого сезона, полученные по данным *foE* станций Боулдер, Слау и Юлиусру/Рюген. Для этого по данным конкретной стан-

Рис. 1. Зависимости стандартных отклонений σ уравнения регрессии (1) от параметра *k* в уравнении (2), полученные по данным *foE* станций Боулдер, Слау и Юлиусру/Рюген в дневные часы для зимы (тонкие линии), равноденствия (штриховые линии) и лета (толстые линии).

ции в интервале 1959-1995 гг. в дневные часы (10-14 LT) данного сезона при *Кр*^{*} < 4 для каждого значения параметра k (с шагом 0.05 в интервале от 0 до 1) были вычислены коэффициенты уравнения регрессии (1) и стандартное отклонение σ этого уравнения. На следующем этапе из массива исключались данные, которые удовлетворяли условию $r(F) > 3\sigma$, и вычисления повторялись. В результате были получены зависимости σ от k. На рисунке 1 они аппроксимированы полиномом пятой степени для большей наглядности. Из данных на рис. 1 следует, что для всех приведенных случаев наблюдаются широкие минимумы о, где $k = k^*$, которые расположены в диапазоне $0.4 < k^* < 0.6$. Для каждого случая отклонение σ для k = 0.5 от σ для $k = k^*$ меньше 0.1%. Следова-тельно, параметр $k = k^* = 0.5$ в уравнении (2) обеспечивает минимальные (или близкие к минимальным) значения σ для каждого из рассмотренных случаев. Дополнительный анализ показал, что данное свойство *foE* выполнено и для других среднеширотных ионосферных станций, включая станции Вакканаи (Wakkanai, 45.4° N, 141.7° E) и Ленинград (Leningrad, 60° N, 30.7° E). Параметру k = 0.5 в уравнении (2) соответствует индекс

$$P = (F_1 + F_{81})/2.$$
(5)

Следовательно, индекс P — оптимальный индекс солнечной активности для *foE* на средних широтах, что является решением поставленной задачи.

Из данных на рис. 1 можно видеть, что самые высокие значения σ наблюдаются для лета в Боулдере (40.0° N) и для зимы в Юлиусру/Рюген (54.6° N). По-видимому, это связано с широтной зависимостью разницы между летними и зимними значениями σ . Разница между летними и зимними значениями σ минимальна в Слау (51.5° N), на более низких широтах летние значения σ больше зимних, на более высоких широтах наблюдается противоположная тенденция. Эта тенденция сохраняется и по данным других станций. Например, при k = 0 для ст. Ленинград (60° N) значения σ равны 18.2, 10.9 и 11.8% для зимы, равноденствия и лета.

Подстановка индекса P вместо F в уравнение регрессии (1) позволяет получить значимые коэффициенты этого уравнения по данным ионосферной станции для конкретных условий, поскольку индекс Р известен, например, для каждого месяца в дневные часы. В данном случае это дает локальную эмпирическую модель foE, например, для полудня как функцию месяца года и индекса солнечной активности Р, поскольку частота foE(66)_{IRI} известна для этих условий. В известных глобальных эмпирических моделях используются другие индексы солнечной активности. Например, в базовой модели IRI используется индекс COV (см. уравнение (4)). В этих моделях можно заменить используемый индекс солнечной активности на Р для вычисления ежедневных значений *foE* по глобальным моделям. Для предварительной оценки такой возможности можно сопоставить локальную модель foE, построенную по данным ионосферной станции, с результатами расчетов *foE* по глобальным моделям для координат этой станции. На рис. 2 представлены результаты такого составления для годовых изменений foE анализируемых станций в полдень для среднего уровня солнечной активности (Р=150). Данные на этом рисунке показывают, что для каждой станции разница ΔfoE между foE по локальной модели и глобальным моделям IRI [Bilitza, 2018], NeQuick [Nava et al., 2008] или ИПГ [Nusinov, 2006] может быть максимальна для лета, и даже в этом случае она не превышает 0.1 МГц или 2.7%. Для сравнения, стандартное отклонение σ урав-

Рис. 2. Годовые изменения *foE* в полдень при средней солнечной активности в Боулдере, Слау и Юлиусру/Рюген по моделям IRI (тонкие линии), NeQuick (толстые линии), ИПГ (штриховые линии) и по локальным моделям (точки).

нения регрессии (1), т.е. величины $r(F) \sim (foE)^4$, для анализируемых станций для лета составляет 11-14% для k = 0 (см. рис. 1). Поэтому приближенная оценка стандартной ошибки **σ**₁ критической частоты *foE* по локальной модели дает $\sigma_1 =$ $= \sigma/4 = 2.7 - 3.5\%$. Следовательно, разница ΔfoE между локальной моделью и глобальными моделями сопоставима со стандартной ошибкой локальной модели. Это означает, что все три рассмотренные глобальные модели обладают достаточно высокой точностью, и по данным на рис. 2 ни одна из этих моделей не является предпочтительной. Тем не менее, для Боулдера модель IRI точнее моделей ИПГ и NeQuick. Для Слау и Юлиусру/Рюген модели ИПГ и NeQuick точнее модели IRI. По-видимому, относительные точности рассмотренных моделей зависят от широты в пределах средних широт. На относительно низких широтах (меньше 50°) предпочтительнее модель IRI, на более высоких широтах – модели ИПГ и NeQuick. Данные станций Вакканаи и Ленинград подтверждают этот вывод. Этот вывод является предварительным, поскольку основан на анализе данных ограниченного числа станций только для полудня при среднем уровне солнечной активности.

4. ОБСУЖДЕНИЕ

Для анализа использовано линейное уравнение регрессии (1). В полной версии модели ИПГ учтена нелинейная зависимость r(F) от F, которая становится заметной для высокой солнечной активности F > 200 [Нусинов, 1988, 2004]. Анализ показал, что учет этой нелинейности не приводит к изменению выбора оптимального индекса солнечной активности для *foE*. Поэтому здесь использовано уравнение (1).

Из данных на рис. 1 следует, что для каждого сезона максимальные значения σ наблюдаются для k = 0 и (или) k = 1, и разница между минимальным и максимальным значениями σ не превышает 2%. Следовательно, индекс P является оптимальным индексом для *foE* на средних широтах, но преимущество этого индекса по сравнению с F_1 или F_{81} незначительно. Этот вывод согласуется с результатами анализа данных ст. Москва [Антонова и др., 1996]. Тем не менее, использование именно индекса P может быть важным для краткосрочного прогноза *foE* и решения обратной задачи, т.е. оценки индекса P по известным *foE*.

Коэффициент *b* в уравнении регрессии (1) зависит от сезона и широты по модели ИПГ [Nusinov, 2006], зависит только от сезона по модели NeQuick [Nava et al., 2008], не зависит от сезона и широты по модели IRI [Bilitza, 2018]. Как следствие, на средних широтах (30° - 60° N) для лета в полдень при средней солнечной активности значения *foE* по моделям ИПГ и NeQuick почти совпадают и они больше, чем по модели IRI. Для этих условий на низких широтах (10° - 20° N) значения *foE* по моделям ИПГ и IRI почти совпадают и они немного больше, чем по модели NeQuick. Сопоставляя эти свойства моделей с данными на рис. 2, можно видеть, что для лета в полдень модель ИПГ имеет определенные преимущества, поскольку в ней дополнительно учтена зависимость коэффициента b в уравнении (1) от широты. Тем не менее, эта зависимость требует уточнения для согласования с данными измерений на широтах $30^{\circ}-40^{\circ}$ N. Следует отметить, что в любом случае локальная модель *foE* по данным ионосферной станции точнее результатов расчетов *foE* по глобальным моделям для этой станции. Поэтому для решения обратной задачи, в том числе определения среднего индекса *P* по данным измерений *foE* на нескольких станциях, целесообразно использовать локальные модели *foE* для этих станций. Одна из методик построения таких локальных моделей приведена в разделе 2.

5. ЗАКЛЮЧЕНИЕ

Выполнен поиск оптимального индекса солнечной активности для вычисления *foE* на средних широтах на основе анализа имеющихся данных критической частоты *foE* станций Боулдер, Слау и Юлиусру/Рюген в дневные часы в интервале 1959–1995 гг. Получены следующие выводы.

1. Индекс $P = 0.5(F_1 + F_{81})$ является оптимальным индексом солнечной активности для ежедневных значений критической частоты *E*-слоя *foE*, где F_1 и F_{81} – поток радиоизлучения Солнца на длине волны 10.7 см в данный день и среднее за 81 день значение этого потока.

2. Стандартные отклонения σ зависимости *foE* от *P* в дневные часы почти одинаковы для зимы и лета на широте ~50° N, величина σ максимальна для лета на более низких широтах и для зимы на более высоких широтах.

3. Подстановка индекса P в модели ИПГ, IRI или NeQuick позволяет использовать эти модели для вычисления ежедневных значений *foE*. На основе предварительного анализа (полдень, средняя солнечная активность) получено, что точности вычислений *foE* по этим моделям примерно одинаковы. Максимальная разница между моделями наблюдается для лета, когда на широтах 50° – 60° N модели ИПГ и NeQuick точнее IRI, на более низких широтах модель IRI может быть предпочтительной.

5. БЛАГОДАРНОСТИ

Автор благодарит WDC for Solar-Terrestrial Physics, Великобритания за данные *foE* ионосферных станций и индексы солнечной активности (http://www.ukssdc. ac.uk/wdcc1/); WDC for Geomagnetism, Япония, за данные *ap*-индекса (http://wdc.kugi.kyoto-u.ac.jp/).

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено при частичной поддержке Российского научного фонда (РНФ) в рамках научного проекта № 20-72-10023.

СПИСОК ЛИТЕРАТУРЫ

– Антонова Л.А., Иванов-Холодный Г.С., Чертопруд В.Е. Аэрономия слоя Е (учет вариаций УФ-излучения и геомагнитных возмущений). М.: Янус, 168 с. 1996.

- Гальперин Ю.И., Сивцева Л.Д., Филиппов В.М., Халипов В.Л. Субавроральная верхняя ионосфера. Новосибирск: Наука, Сиб. отд-ние, 192 с. 1990.

— Деминов М.Г., Шубин В.Н. Эмпирическая модель положения главного ионосферного провала // Геомагнетизм и аэрономия. Т. 58. № 3. С. 366–373. 2018.

- Нусинов А.А. Детерминированная модель среднеширотного и экваториального Е-слоя (описание и сравнительные характеристики точности) // Ионосферные исслед. № 44. С. 94–99. 1988.

– *Нусинов А.А.* Ионосфера как природный детектор для исследования долговременных изменений пото-ков солнечного геоэффективного излучения // Геомагнетизм и аэрономия. Т. 44. № 6. С. 779–786. 2004.

- *Bilitza D.* IRI the international standard for the ionosphere // Adv. Radio Sci. V. 16. P. 1–11. 2018.

- Kouris S.S., Muggleton L.M. Diurnal variation in the E-layer ionization // J. Atmos. Terr. Phys. V. 35. P. 133–139. 1973a.

– Kouris S.S., Muggleton L.M. World morphology of the Appleton E-layer seasonal anomaly // J. Atmos. Terr. Phys. V. 35. 141–151. 1973b.

- Nava B., Coisson P., Radicella S.M. A new version of the NeQuick ionosphere electron density model // J. Atmos. Sol.-Terr. Phys. V. 70. P. 1856–1862. 2008.

- *Nusinov A.A.* Seasonal-latitudinal variations of ionospheric E-layer critical frequencies dependence on solar activity in empirical models // Adv. Space Res. V. 37. P. 433– 436. 2006.

- Pavlov A.V., Pavlova N.M. Comparison of NmE measured by the boulder ionosonde with model predictions near the spring equinox // J. Atmos. Sol.-Terr. Phys. V. 102. P. 39– 47. 2013.

- *Richards P.G., Fennelly J.A., Torr D.G.* EUVAC: A solar EUV flux model for aeronomic calculations // J. Geophys. Res. V. 99. P. 8981–8992. 1994.

- Richards P.G., Woods T.N., Peterson W.K. HEUVAC: A new high resolution solar EUV proxy model // Adv. Space Res. V. 37. P. 315–322. 2006.

- Solomon S.C., Qian L. Solar extreme-ultraviolet irradiance for general circulation models // J. Geophys. Res. V. 110. A10306. 2005.

https://doi.org/10.1029/2005JA011160.

- Solomon S.C. Numerical models of the E-region ionosphere // Adv. Space Res. V. 37. P. 1031–1037. 2006.

– Titheridge J.E. Re-modeling the ionospheric E region // Kleinheubacher Berichte. V. 39. P. 687–696. 1996.

- Wrenn G.L. Time-weighted accumulations $ap(\tau)$ and $Kp(\tau) // J$. Geophys. Res. V. 92. P. 10125–10129. 1987.

- Yang Z., Ssessanga N., Tran L.T., Bilitza D., Kenpankho P. On improvement in representation of foE in IRI // Adv. Space Res. V. 60. P. 347–356. 2017.