УДК 550.388.2

ОПРЕДЕЛЕНИЕ ЗОНЫ ПОВЫШЕНИЯ ТЕМПЕРАТУРЫ ЭЛЕКТРОНОВ В СУБАВРОРАЛЬНОЙ ИОНОСФЕРЕ В ГЛОБАЛЬНОМ МАСШТАБЕ ВО ВРЕМЯ МАГНИТНЫХ БУРЬ

© 2022 г. И. А. Голиков^{1, *}, А. Ю. Гололобов^{1, 2, **}, Д. Г. Баишев^{1, ***}, Г. А. Макаров^{1, ****}

¹Институт космофизических исследований и аэрономии им. Ю.Г. Шафера Сибирского отделения Российской академии наук (ИКФИА СО РАН), г. Якутск, Россия ²Северо-Восточный федеральный университет им. М.К. Аммосова (СВФУ), г. Якутск, Россия *e-mail: golart87@gmail.com **e-mail: gia2008n@mail.ru ***e-mail: baishev@ikfia.ysn.ru ****e-mail: gmakarov@ikfia.ysn.ru

Поступила в редакцию 07.07.2021 г. После доработки 04.09.2021 г.

Принята к публикации 24.09.2021 г.

В работе предпринята попытка определить в глобальном масштабе зону повышения температуры электронов (T_e) в субавроральной ионосфере во время магнитных бурь, сочетая данные измерений T_e и изображения устойчивых субавроральных красных дуг (красных дуг) – SAR (Stable Auroral Red) дуг, полученных на спутниках. Для этого использованы данные серии спутников DMSP и CHAMP по регистрации температуры электронов (T_e) и спутника POLAR по наблюдениям красных дуг. Показано, что за период проявления красных дуг при использовании результатов измерений T_e можно за сравнительно короткое время в период фазы восстановления геомагнитной бури определить зону повышения T_e в координатах географическая широта – местное время и выявить зависимость ее параметров от мирового времени (UT – контроль).

DOI: 10.31857/S0016794022010084

1. ВВЕДЕНИЕ

В работах [Голиков и др., 2019; Golikov et al., 2020] на основе сопоставления результатов численного моделирования и спутниковых данных показано, что существует зависимость зоны повышения температуры Т_е, формирующейся в субавроральной ионосфере от мирового времени (UT-контроль), обусловленная несовпадением географического и геомагнитного полюсов. Расчеты были проведены с помошью трехмерной модели высокоширотной ионосферы, построенной на основе уравнений магнитной гидродинамики в переменных Эйлера, при задании нисходящего потока тепла в предположении, что основной причиной повышения Те является магнитосферный кольцевой ток, возникающий во время магнитных бурь [Kozyra et al., 1997]. В модели учтено несовпадение географического и геомагнитного полюсов. Вместе с тем спутниковые измерения не дают мгновенную пространственно-временную картину распределения Т, в высокоширотной ионосфере, как в случае модельных расчетов. Поэтому для сопоставления были использованы обобщенные результаты измерений T_e , полученные на прецессирующем спутнике Земли СНАМР за длительный период с 2002 по 2009 г. Показано, что в зимних условиях в 04–07 UT в северном полушарии и 16–19 UT в южном полушарии зона повышения T_e может иметь наибольшие параметры, такие, как длина и площадь, и принимать кольцевидную форму. В 16–19 UT в северном полушарии и 04–07 UT в южном полушарии параметры зоны становятся наименьшими, ее форма принимает серповидный вид, а в другие моменты UT – вид неполного кольца.

Устойчивые субавроральные красные дуги (SAR-дуги) являются следствием взаимодействия энергичных ионов кольцевого тока с внешней плазмосферой. Считается, что красные дуги формируются во время магнитных бурь [Kozyra et al., 1997]. Однако, в работах [Khalipov et al., 2018; Shiokawa et al., 2013; Иевенко и др., 2004] показано, что формирование красных дуг также связано с суббурями, а в работе [Oyama et al., 2020] описан случай формирования красной дуги во время псевдобрейкапа в относительно магнитоспокойное время. Предполагается, что дуги формируются в области перекрытия кольцевого тока с плазмосферой, где тепло, генерируемое частицами кольцевого тока на высотах нескольких радиусов Земли, передается вниз на высоты ионосферы и приводит к повышению электронной температуры, что затем сопровождается эмиссией атомарного кислорода в линии 630.0 нм в виде красной дуги [Kozyra te al., 1997]. Поэтому было бы интересно сопоставить результаты расчетов мгновенного пространственно-временно́го распределения Т_е в субавроральной ионосфере с глобальными проявлениями красных дуг для определения зоны повышения T_e, поскольку в области свечения дуг T_e существенно повышена [Maier et al., 1975].

Цель настоящей работы — определение параметров зоны повышения T_e в субавроральной ионосфере на основе местоположений пиков T_e по данным спутниковых измерений и изображений красных дуг в глобальном масштабе за относительно короткое время.

2. ИЗОБРАЖЕНИЯ КРАСНЫХ ДУГ, ПОЛУЧЕННЫЕ НА ИСЗ POLAR

На борту ИСЗ POLAR была установлена система VIS (Visible Imaging System), состоящая из двух фотометров с высокой и низкой чувствительностями, позволяющими получать изобра-

жения эмиссий в линиях N₂⁺ 391.4 нм, О 557.7 и 630.0 нм, Н 656.3 нм и ОП 732.0 нм, а также фотометра, получающего изображение Земли в линиях OI 130.4 и 135.6 нм [Frank et al., 1995]. С учетом того, что наиболее интенсивные красные дуги проявляются во время магнитных бурь, были отобраны дни, когда среднесуточное значение индекса магнитной активности Dst < -50 нТл за период с 17 марта 1996 г. по 16 апреля 2008 г., что соответствует периоду наблюдения SAR дуг на ИСЗ POLAR [Frank et al., 1995]. Было выявлено 213 магнитных бурь разной интенсивности и продолжительности. Из них 39 событий – бури с Dst < -100 нТл. Вместе с тем число событий, когда наблюдалось свечение в эмиссии 630.0 нм, отождествленных с красными дугами, оказалось всего лишь 10. Это можно объяснить тем, что из двух фотометров чувствительностями 0.8 и 3 кРл, установленных на спутнике, функционировал только второй с низкой чувствительностью. Также были технические причины, которые не позволили получить изображения свечений на длине волны 630.0 нм во время 154 магнитных бурь, в том числе в 32 случаях с *Dst* < −100 нТл. Дополнительно было обнаружено две красные дуги во время магнитных бурь с Dst > -50 нТл. Для отождествления красных дуг использовано описание процесса формирования устойчивых красных дуг по изображениям, полученным на спутнике DE-1 [Сгаven et al., 1982]. В статье показано, что красная дуга формируется в начале фазы восстановления суббури в виде узкой полосы свечения на длине волны 630.0 нм, отдаленной от авроральной зоны приблизительно на несколько градусов в сторону экватора. Максимальная интенсивность свечения в дуге составляла 2.1 кРл. Также показано, что красные дуги могут простираться на ночной стороне от вечерней части терминатора до утренней вдоль магнитных широт, опоясывая авроральный овал.

На рисунке 1 представлены в качестве примера типичные изображения красных дуг для отдельных периодов их проявления, полученные на POLAR. и размешенные по датам в том же порядке, как и в табл. 1. Там же показаны соответствующие географические местоположения аврорального овала в линии 130.4 нм в периоды регистрации красных дуг. Видно, что красные дуги различимы в данных фотометра при существенном увеличении размера изображения, поэтому в кадре помещаются фрагменты изображения овала и дуг в ночные часы. Во всех изображениях, как и ожидалось, красные дуги наблюдаются на некотором расстоянии от аврорального овала узкой полосой свечения в линии 630.0 нм и окружают его на ночной стороне. Очевидно, что, чем выше чувствительность фотометра и его пространственный охват, тем большую протяженность дуги можно было бы наблюдать. На рисунке 1 вследствие низкой чувствительности действующего фотометра и фрагментарности изображений трудно выявить зависимость параметров красной дуги, таких как площадь и форма, от мирового времени (UT – контроль), как показано в случае зоны повышения T_e в работе [Golikov et al., 2020].

Красная дуга, обнаруженная на ИСЗ POLAR 27 декабря 2002 г., наблюдалась также и по данным высокочувствительной наземной камеры всего неба на ст. Миллстоун Хилл (42°37 N, 71°28 W). Изображения дуги на длине волны 630.0 нм представлены на рис. 2. Видно, что в отличие от данных ИСЗ POLAR, где дуга наблюдалась только с 04:10 по 04:37 UT, на камере всего неба ст. Миллстоун Хилл она проявляется сравнительно долго, с 02:17 по 07:36 UT. Вероятно, это связано тем, что в интервалах 02:17–04:10 UT и 04:37–07:36 UT интенсивность дуги была недостаточной для регистрации фотометром на ИСЗ POLAR.

На рисунке 3 приведены вариации индексов геомагнитной активности *Кр* и *Dst*, относящиеся к периодам наблюдения красных дуг, представленных в табл. 1. Видно, что красные дуги наблюдаются, в основном, во время восстановительной фазы магнитных бурь. В некоторых случаях за период магнитной бури дуга наблюдалась в течение нескольких интервалов времени (27, 28, 29 нояб-

ГОЛИКОВ и др.

Рис. 1. Изображения красных дуг на 630.0 нм и аврорального овала на 130.4 нм, размещенные по датам в порядке, что и в табл. 1.

N⁰	Дата	Dst	Период наблюдения SAR дуг на ИСЗ POLAR		
	(месяц, число, год)	(нТл)	(UT)		
1	Январь, 23, 2000	-64	01:44-04:50		
2	Февраль, 12, 2000	-75	09:39-10:10, 12:10-13:07		
3	Ноябрь, 27, 2000	-49	08:50-10:04		
4	Ноябрь, 28, 2000	-52	23:44–23:51		
5	Ноябрь, 29, 2000	-82	14:39-15:00		
6	Октябрь, 22, 2001	-150	01:23-01:44, 19:41-20:48		
7	Ноябрь, 06, 2001	-202	07:37-09:10		
8	Ноябрь, 07, 2001	-110	01:10-01:47		
9	Ноябрь, 24, 2001	-123	14:00-16:01		
10	Январь, 11, 2002	-42	13:21–13:47, 16:29–18:38		
11	Ноябрь, 21, 2002	-76	07:45-08:00		
12	Декабрь, 27, 2002	-54	04:10-04:37		

Таблица 1. SAR дуги, обнаруженные на ИСЗ POLAR

ря 2000 г.; 22 октября 2001 г.; 6, 7 ноября 2001 г.). Вероятно, они представляют собой одну дугу, интенсивность излучения которой зависит от времени и ее местоположения в пространстве. Если бы функционировал фотометр с чувствительностью 0.8 кРл, то, возможно, наблюдалась бы одна продолжительная дуга.

3. ДАННЫЕ О ТЕМПЕРАТУРЕ И КОНЦЕНТРАЦИИ ЭЛЕКТРОНОВ, ПОЛУЧЕННЫЕ НА ИСЗ СНАМР и DMSP

С учетом связи красных дуг с повышением T_e в субавроральной ионосфере и подтверждением в работе [Сгаven et al., 1982] предположения о том, что дуга может простираться от вечерней части терминатора до утренней на ночной стороне, можно определить зону повышения T_e в период магнитной бур. Для этого обратимся к данным спутников серии Defence Meteorological Satellite Program (DMSP) и Channeling Minisatellite Payload (СНАМР), пролетавших над субавроральной областью ионосферы во время регистрации красных дуг, приведенных на рис. 1, и проводивших измерение T_e вдоль траектории полета.

Спутники серии DMSP имеют почти круговые солнечно-синхронные полярные орбиты с наклонением 98.8°, орбитальной высотой около 830 км и периодом обращения 102 мин проводили измерения n_e и T_e с 2000 по 2002 годы в вечернем (~17:00– 21:00 LT) и утреннем (~05:00–09:00 LT) секторах местного времени [Greenspan et al., 1986; Rich and Hairston, 1994].

Спутник СНАМР, запущенный 15 июля 2000 г. с почти круговой полярной орбитой и наклонением 87.18°, имеет орбитальную высоту 300—500 км и период обращения 94 мин [Reigber et al., 2002].

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 62 № 1 2022

Отличительной особенностью спутника СНАМР является то, что спутник вследствие прецессии плоскости орбиты со скоростью ~1.36 град./сут с течением времени меняет траекторию полета относительно местного времени и может пролетать над всеми временными секторами за 132 сут.

Было найдено 30 случаев регистрации красных дуг во время пролетов спутников DMSP (24 пролетов) и CHAMP (6 пролетов) над субавроральной ионосферой (табл. 2). В периоды регистрации непродолжительных красных дуг 28, 29 ноября 2000 г. и 7 ноября 2001 г. пролеты спутников DMSP и CHAMP отсутствовали. Видно, что во время проявления красной дуги в субавроральной ионосфере, в большинстве случаев, наблюдаются повышение T_e и провал концентрации электронов (n_e). В последних двух столбцах приведены средние ширины зоны повышения T_e по широте и долготе, определенные по данным спутниковых измерений в периоды проявления красных дуг.

На рисунках 4-7 в качестве примеров показаны полярные проекции изображений, полученные фотометром на длине волны 130.4 нм, а также данные спутниковых измерений T_e и n_e для разных моментов UT. Сплошными линиями показаны траектории спутников. Кружки на траекториях – положения пиков повышения Т_е. Штриховая линия – положение терминатора при зенитном угле $\chi = 90^{\circ}$. Полдень находится наверху. Область свечения красной дуги показана затененной полосой, которая получена путем проекции изображения на длине волны 630.0 нм на уровень высоты 400 км (a) по методу (https://cdaweb.gsfc.nasa.gov/Polar VIS docs/Coordinate Calculation.txt). Штрихпунктирной линией показана граница пространственного охвата фотометра на длине

Рис. 2. Изображения красной дуги на длине волны 630.0 нм по данным высокочувствительной камеры всего неба на ст. Миллстоун Хилл 27 декабря 2002 г.

волны 630.0 нм для данного момента UT. Зона повышения T_e , определенная на основе местоположения пиков T_e с учетом ее средней ширины и проекции красной дуги, заштрихована.

На рисунке 4*a* представлена полярная проекция изображения, полученная фотометром на ИСЗ POLAR 23 января 2000 г. в 03:08 UT. Видно, что изображение утреннего сектора отсутствует, поскольку спутник в это время находился в вечернем секторе (рис. 1*a*). Экваториальнее аврорального овала в полуночном секторе показана только ночная часть красной дуги, попавшая в зону обзора фотометра в данный момент времени UT (рис. 1). Во время наблюдения красной дуги в интервале 01:44–04:50 UT спутники DMSP пересекали субавроральную ионосферу 9 раз в полуночном и вечернем секторах местного времени (рис. 4*б*–4*ж*). Как видно, в субавроральной ионо-

сфере повышения T_e регистрируются в области главного ионосферного провала (ГИП), т.е. в районе проекции плазмопаузы на ионосферные высоты [Taylor and Walsh, 1972; Котова, 2007]. По положению пиков T_e и красной дуги, и с учетом того, что ее формирование обусловлено повышением T_e , можно полагать, что зона повышения T_e здесь имеет форму полукольца, протяженностью почти от полудня до полуночи через вечерний сектор. К сожалению, в послеполуночные часы пролетов спутников не было.

27 ноября 2000 г. красная дуга наблюдалась в интервале 09:39–10:10 UT и 12:10–13:07 UT. На рис. 5*a* показана полярная проекция изображения, полученная фотометром на ИСЗ POLAR на длине волны 130.4 нм в момент 09:50 UT. В полярной области хорошо виден авроральный овал. Красная дуга здесь также наблюдается в предпо-

Рис. 3. Вариации индексов геомагнитной активности *Кр* (штриховые кривые) и *Dst* (сплошные кривые) в периоды проявления красных дуг.

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 62 № 1 2022

№ пролета	Спутник	Дата (месяц, число, год)	Время пролета	Повышение <i>T_e</i>	Провал п _е	Средняя ширина зоны повышения <i>T_e</i> (в град.) по	
						широте	долготе
1	DMSP F11	Январь, 23, 2000	01:36-02:06	+	+		
2	DMSP F11		03:18-03:48	+	+		
3	DMSP F12		02:32-03:02	+	+		
4	DMSP F13		01:50-02:20	+	+		
5	DMSP F13		03:32-04:02	+	+	6.55	2.75
6	DMSP F14		02:03-02:33	+	+		
7	DMSP F14		03:45-04:16	+	Нет данных		
8	DMSP F15		02:20-02:50	+	+		
9	DMSP F15		04:02-04:32	+	+		
10	DMSP F13	Ноябрь, 06, 2001	07:30-08:00	Нет данных	+	12.4	
11	CHAMP		07:53-08:23	+	+	13.4	5.08
12	DMSP F13	Ноябрь, 24, 2001	15:18-15:48	Нет данных	+	7.70	2.23
13	CHAMP		14:40-15:10	+	+	/./8	
14	DMSP F13	Январь, 11, 2002	13:00-13:30	+	+		
15	DMSP F13		16:24-16:54	+	+	5.20	2.00
16	DMSP F14		17:27-17:57	+	+	5.30	3.09
17	CHAMP		16:48-17:18	+	+		
18	DMSPF15	Декабрь, 27, 2002	03:56-04:26	+	+	+ 4.24	
19	CHAMP		03:38-04:04	+	+	4.34	1.0/
20	DMSP F15	Февраль, 12, 2000	09:37-10:07	+	+		
21	DMSP F13		09:32-10:02	+	+	3.85	0.45
22	DMSP F13		12:55-13:25	+	+		
23	DMSP F12	Ноябрь, 27, 2000	09:08-09:38	+	_		
24	DMSP F13		08:38-09:08	+	+	5.05	2 0 2
25	DMSP F14		09:31-10:01	+	_	5.05	3.83
26	DMSP F15		09:21-09:51	+	_		
27	DMSP F13	Октябрь, 22, 2001	19:19-19:49	Нет данных	+		
28	CHAMP		01:48-02:18	+	+	6.69	1.83
29	CHAMP		20:27-20:57	+	+		
30	DMSP F15	Ноябрь, 21, 2002	07:56-08:26	Нет данных	_	—	_

Таблица 2. Пролеты спутников DMSP и CHAMP над субавроральной ионосферой во время регистрации красных дуг

луночные часы (затененная полоса). По данным DMSP F12–F15 пики повышения T_e (кружочки) регистрируются в вечернем секторе (рис. 56-5d). Здесь зона повышения T_e имеет серпообразную форму. Подобная картина также наблюдается и на рис. 6, где представлены данные ИСЗ POLAR, DMSP F13 и CHAMP, полученные 6 ноября 2001 г. В отличие от предыдущего случая здесь ширина аврорального овала больше, дуга располагается на более низких широтах, а зона повышения T_e – шире. Это связано, вероятно, с тем, что 6 ноября

2001 г. была сильная геомагнитная буря (*Dst* ~ ~ -202 нТл).

Иная картина видна 11 января 2002 г., когда красная дуга наблюдалась в интервалах 13:21–13:47 UT и 16:29–18:38 UT. На рис. 7*а* показана полярная проекция изображения, полученная фотометром на ИСЗ POLAR на длине волны 130.4 нм, а также положение красной дуги, определенное по изображению на длине волны 630.0 нм на высоте 400 км. Видно, что авроральный овал и дуга переместились на дневную сторону, причем

Рис. 4. Полярная проекция изображения эмиссии атомарного кислорода на длине волны 130.4 нм для 03:08 UT (*a*), данные спутниковых измерений T_e (сплошная кривая) и n_e (пунктирная кривая) для интервала ~01–04 UT (δ - ∞) 23 января 2000 г.

Рис. 5. Полярная проекция изображения эмиссии атомарного кислорода на длине волны 130.4 нм для 09:10 UT (а), данные спутниковых измерений T_e (сплошная кривая) и n_e (пунктирная кривая) для интервала ~08–10 UT (δ –d) 27 но-ября 2000 г.

оказываются на более высоких широтах в отличие от предыдущих случаев. В период наблюдения красной дуги субавроральную ионосферу пересекали спутники DMSP F13, F14 и CHAMP, которые зарегистрировали повышения T_e в вечерние, предполуночные, околополуночные и утренние часы (рис. $76-7\partial$), соответственно. Зона повышения T_e здесь может иметь серпообразную форму, простирающуюся на ночной стороне от вечерней части терминатора до утренней (рис. 7a).

4. СОПОСТАВЛЕНИЕ РЕЗУЛЬТАТОВ РАБОТЫ С ДАННЫМИ, ПОЛУЧЕННЫМИ ЗА ДЛИТЕЛЬНЫЙ ПЕРИОД ВРЕМЕНИ

На рисунке 8 представлено пространственное распределение местоположения пиков T_e (точки) в координатах местное время — географическая широта по данным спутника СНАМР для зимних месяцев (декабрь и январь) 2002—2009 гг. [Golikov et al., 2020]. Геомагнитный полюс показан для 05 и 17 UT, когда он находится в полуночном и полу-

Рис. 6. Полярная проекция изображения эмиссии атомарного кислорода на длине волны 130.4 нм для 08:39 UT (*a*), данные спутниковых измерений T_e (сплошная кривая) и n_e (пунктирная кривая) для интервала ~06–08 UT (δ –e) 6 но-ября 2001 г.

денном секторах, соответственно, почти на меридиане "полдень – полночь". Видно, что в интервале примерно 04-07 UT зона может иметь кольцевидную форму (рис. 8*a*). В интервале 16–19 UT длина и площадь зоны повышенных значений Т. уменьшаются, а ее форма в ночном секторе принимает вид серпа (рис. 8б). Отметим, что пространственно-временное распределение пиков Т_е удалось получить за длительный период, как было сказано выше, благодаря прецессии плоскости орбиты спутника. Так, охват всех секторов местного времени спутником СНАМР достигается за ~132 сут и, соответственно, время определения зоны повышения T_e в данном случае составляет 132 сут и более. В настоящей работе форма зоны повышения Т_е может быть определена за сравнительно короткий промежуток времени в период фазы восстановления геомагнитной бури, когда

проявляются красные дуги (до нескольких часов). Проведем сопоставление полученных в настоящей работе результатов с результатами, полученными за длительный период [Golikov et al., 2020].

Время наблюдения красной дуги 23 января 2000 г., представленной на рис. 4, ближе к интервалу 04–07 UT. На рисунке 4*a* видно, что зона повышения T_e занимает весь вечерний сектор и тянется до восточной границы зоны обзора фотометра, а ее длина больше, чем те, что показаны на рис. 5 и 6. Сопоставляя рис. 4*a* и 8*a*, можно предположить, что здесь зоны повышенных значений T_e имеют почти кольцевидную форму. Далее, представленные на рис. 5*a* и 6*a* изображения, полученные 27 ноября 2000 г. и 6 ноября 2001 г., близки по времени – 08:39 и 09:50 UT. Видно, что формы зоны повышенных T_e , полученные на основе проекции красных дуг и положения пиков

Рис. 7. Полярная проекция изображения эмиссии атомарного кислорода на длине волны 130.4 нм для 17:32 UT (*a*), данные спутниковых измерений T_e (сплошная кривая) и n_e (пунктирная кривая) для интервала ~13–18 UT (δ - ∂) 11 января 2002 г.

 T_e , соответствуют виду неполного кольца, что согласуется с результатами [Golikov et al., 2020]. На рис. 7 представлены данные, полученные 11 января 2002 г., соответствующие интервалу 16–19 UT. Как видно, здесь зона повышения T_e имеет наименьшую длину, а ее форма принимает серпообразный вид, как на рис. 86, что также согласуется с результатами работы [Golikov et al., 2020].

Таким образом, в настоящей работе показана возможность определения зоны повышенных T_e

за сравнительно короткий промежуток времени благодаря сочетанию измерений T_e на спутниках DMSP, CHAMP и изображений красных дуг, полученных на ИСЗ POLAR. Сопоставление полученных результатов с ранее полученными данными [Golikov et al., 2020] показало их хорошее качественное согласие для рассмотренных моментов UT. Также прослеживается UT – контроль параметров зоны повышения T_e , связанный с несовпадением географического и геомагнитного по-

Рис. 8. Пространственное распределение положения пиков *T_e* в координатах местное время – географическая широта по данным "CHAMP" в интервалах 04–07 UT и 16–19 UT в северном полушарии [Golikov et al., 2020].

люсов. К сожалению, ограниченность пространственного охвата и низкая чувствительность фотометра на ИСЗ POLAR на длине волны 630.0 нм не позволили получить изображение красной дуги в более полном виде.

Как было показано в табл. 2 и на рис. 4–7 по данным измерений спутников DMSP и CHAMP зоны повышения T_e почти во всех случаях совпадают с положением ГИП. Это связано с тем, что зона повышенных T_e формируется под действием нисходящего потока тепла, идущего из области перекрытия плазмосферы и кольцевого тока в периоды магнитных бурь (вблизи плазмопаузы) [Ковалевский, 1982]. Следовательно, по форме зоны повышения T_e в субавроральной ионосфере также можно ориентировочно определить положение плазмопаузы во время магнитных бурь.

5. ЗАКЛЮЧЕНИЕ

В результате проведенных работ по определению зоны повышения T_e в глобальном масштабе можно сделать следующие выводы:

1. Показано, что в период проявления красных дуг во время магнитных бурь при использовании результатов измерения T_e можно за несколько часов определить зону повышения T_e в координатах географическая широта — местное время и выявить зависимость ее параметров от мирового времени. Очевидно, зона повышения T_e будет точнее определяться с повышением чувствительности фотометра для получения изображения красных дуг и увеличением пространственного охвата пролетов спутников по долготе и их числа. Зона повышения T_e позволяет ориентировочно определить положение плазмопаузы во время магнитных бурь, т.к. значительное повышение T_e в субавроральной ионосфере обусловлено перекрытием развивающегося кольцевого тока и плазмосферы.

2. Сравнение результатов настоящей работы с ранее полученными данными на спутнике СНАМР показало хорошее качественное согласие зон повышения T_e , как по положению, так и по форме, определенных при коротком (несколько часов) и длительном (2002–2009 гг.) периодах времени. Это также подтверждает предположение о том, что основной причиной повышения T_e в субавроральной ионосфере во время магнитных бурь является магнитосферный кольцевой ток, передающий часть выделяемого тепла вдоль силовых линий геомагнитного поля на ионосферные высоты.

6. БЛАГОДАРНОСТИ

Данные по геомагнитным индексам получены в World Data Center C2 for Geomagnetism, Kyoto (http:// wdc.kugi.kyoto-u.ac.jp/dst realtime/index.html) и World Dat System ICSU (http://www.wdcb.ru/stp/geomag/geomagn Kp ap Ap ind.ru.html). Экспериментальные данные измерений серии спутников Defence Meteorological Satellite Program (DMSP) и Channeling Minisatellite Payload (CHAMP) получены в CEDAR Madrigal Database (http://cedar.haystack.mit.edu/) и GeoForschungZentrum (GFZ) Helmholtz Centre Potsdam (ftp://anonymous@isdcftp.gfz-potsdam.de/champ/ME/Level2/PLPT/). Изображения фотометра на ИСЗ Polar и камеры всего неба на ст. Миллстоун Хилл получены в CDAWeb (the Coordinated Data Analysis Web) (https://cdaweb.sci.gsfc.nasa.gov) и Boston University Imaging Science Laboratory (http://sirius.bu.edu).

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания (номер госрегистрации № АААА-А21-121012000007-4) и частично поддержана Российским фондом фундаментальных исследований (проект № 18-45-140037 р а).

СПИСОК ЛИТЕРАТУРЫ

– Голиков И.А., Гололобов А.Ю., Попов В.И. Моделирование распределения температуры электронов в области F2 высокоширотной ионосферы для условий зимнего солнцестояния // Солнечно-земная физика. Т. 2. № 4. С. 54–62. 2016.

https://doi.org/10.12737/19424

– Голиков И.А., Гололобов А.Ю., Попов В.И., Варламов И.И. Формирование кольцеобразной области повышения температуры электронов в субавроральной ионосфере // Геомагнетизм и аэрономия. Т. 59. № 2. С. 213–218. 2019. https://doi.org/0.1134/S0016794019020081

— Иевенко И.Б., Алексеев В.Н. Влияние суббури и бури на динамику SAR-дуги. Статистический анализ // Геомагнетизм и аэрономия. Т. 44. № 5. С. 643–654. 2004.

— Ковалевский И.В. Процессы нагрева холодной геомагнитосферной плазмы // Геомагнетизм и аэрономия. Т. 22. № 3. С. 445–459. 1982.

– *Котова Г.А.* Плазмосфера Земли. Современное состояние исследований (обзор) // Геомагнетизм и аэрономия. Т. 47. № 4. С. 435–449. 2007.

 Craven J.D., Frank L.A., Ackerson K.L. Global observations of a SAR arc // Geophys. Res. Lett. V. 9. P. 961–964.
1982.

- Frank L.A., Sigwarth J.B., Craven J.D., Cravens J.P., Dolan J.S., Dvorsky M.R., Hardebeck P.K., Harvey J.D., Muller D. The Visible Imaging System (VIS) for the Polar Spacecraft // Space Sci. Rev. 71. 297–328. 1995.

- Golikov I.A. Gololobov A.Yu., Baishev D.G. Universal time control of the parameters of the electron temperature enhancement zone in the winter subauroral ionosphere // J. Atmos. Solar-Terr. Phys. V. 211. id. 105458. 2020. https://doi.org/10.1016/j.jastp.2020.105458 - Greenspan M.E., Andreson P.B., Pelegatti J.M. Characteristics of the thermal plasma monitors (SSIES) for the Defense Meteorological Satellite Program (DMSP) spacecraft S8 through F10, Tech. Rep. AFG:-TR-86-0227, Air Force Geophys. Lab. Hanscorn AFB. Mass. 1986.

- *Khalipov V.L., Kotova G.A., Stepanov A.E., Ievenko I.B., Panchenko V.A.* Formation of red arc in the polarization jet band // J. Atmos. Sol-Terr. Phys. V. 179. 2018. https://doi.org/10.1016/j.jastp.2018.08.005

– Kozyra J.U., Nagy A.F., Slater D.W. High-altitude energy source(s) for stable auroral red arc // Rev. Geophys. V. 35. Is. 2. P. 155–190. 1997.

https://doi.org/10.1029/96RG03194

- Maier E.H., Chandra S., Brace L., Hoffman J.H., Shepherd G.G., Whitteker J.H. The SAR arc event observed during the December 1971 magnetic storm // J. Geophys. Res. V. 80. № 34. P. 4591–4597. 1975. https://doi.org/10.1029/JA080i034p04591

- Oyama S., Shinbori A., Ogawa Y. et al. An ephemeral red arc appeared at 68° MLat at a pseudo breakup during geomagnetically quiet conditions // J. Geophys. Res. V. 125. Is. 10. id. e2020JA028468. 2020.

https://doi.org/10.1029/2020JA028468

- Reigber C., Lühr H., Schwintzer P. CHAMP mission status // Adv. Space Res. V. 30. P. 129–134. 2002.

- *Rich F.J., Hairston M.* Large-scale convection patterns observed by DMSP // J. Geophys. Res. V. 99. A3. P. 3827–3844. 1994.

https://doi.org/10.1029/93JA03296

- Shiokawa K., Hosokawa K., Sakaguchi L., Leda A., Otsuka Y., Ogawa T., Connors M. The optical mesosphere thermosphere imagers (OMTIs) for network measurements of aurora and airglow, feature perspectives of space plasma and particle instrumentation and international collaborations. AIP Conf. Proc. V. 1 144. P. 212–215. 2009. https://doi.org/10.1063/1.3169292

- Taylor H.A. Jr., Walsh W.J. The light-ion trough, the main trough and the plasmapause // J. Geophys. Res. V. 77. N_{\odot} 34. P. 6716-6732, 1972.

https://doi.org/10.1029/JA077i034p06716