УЛК 550.383

ОСОБЕННОСТИ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ПУЧКА ИЗЛУЧЕНИЯ СВИСТОВОГО ДИАПАЗОНА, ПАДАЮЩЕГО НА НОЧНУЮ ИОНОСФЕРУ СВЕРХУ

© 2021 г. В. Г. Мизонова^{1, *}, П. А. Беспалов^{2, **}

¹Нижегородский государственный технический университет им. Р.Е. Алексеева (НГТУ), г. Нижний Новгород, Россия ²Институт прикладной физики РАН (ИПФ РАН), г. Нижний Новгород, Россия *e-mail: vermiz@mail.ru **e-mail: peter@appl.sci-nnov.ru

Поступила в редакцию 01.03.2021 г. После доработки 16.04.2021 г. Принята к публикации 27.05.2021 г.

Рассмотрена задача о численном расчете пространственной зависимости пучка излучения свистового диапазона, падающего на ночную ионосферу сверху. Для расчетов использованы совместно метод коллокаций решения граничной задачи, матричный алгоритм приближенного решения волновых уравнений в плавно неоднородной плоскослоистой плазме и метод быстрого преобразования Фурье по горизонтальным координатам. Проанализированы особенности пространственного распределения волнового поля при различных характеристиках падающего излучения. Вычислены доли энергии излучения, отраженной от верхней границы ионосферы и дошедшей до земной поверхности. Сопоставлено волновое электрическое поле на высоте 400 км, пространственное распределение поперечного магнитного поля и поляризации излучения вблизи поверхности Земли. Полученные результаты важны для сопоставления свойств КНЧ/ОНЧ-излучений, наблюдаемых на спутниках и на Земле.

DOI: 10.31857/S0016794021060110

1. ВВЕДЕНИЕ

Одним из не до конца понятных вопросов теории магнитосферного КНЧ/ОНЧ-излучения являются механизмы его распространения от верхней границы ионосферы до поверхности Земли. Тем не менее, понимание этих механизмов является связующим звеном между известными экспериментальными данными, полученными на спутниках и в наземных обсерваториях, и объяснением генерации этого излучения в магнитосфере. Кроме того, изучение закономерностей распространения КНЧ/ОНЧ-волн через ионосферу важно для понимания свойств ионосферной плазмы и происходящих в ней процессов, для сопоставления характеристик излучений, регистрируемых на спутниках и на Земле. Например, существует много данных об одновременной регистрации сигналов на спутниках и в наземных обсерваториях [Manninen et al., 2012; Nemec et al., 2013]. Однако в некоторых случаях излучение регистрируется на спутниках, но не обнаруживается на Земле [Manninen et al., 2013; Titova et al., 2015]. Различными и не всегда понятными оказываются наблюдаемые свойства этого излучения. В частности, в определенных условиях обнаруживается нетипичная для свистовых волн поляризация излучения вблизи земной поверхности [Титова и др., 2015].

Традиционным подходом при расчете волновых полей в неоднородной ионосферной плазме из многих однородных слоев является анализ закономерностей распространения плоской волны с заданным горизонтальным волновым вектором и затем сложение плоских волн для нахождения пространственной зависимости поля [Payne et al., 2007; Lehtinen and Inan, 2008]. Основной вычислительной трудностью при этом является численная расходимость, обусловленная большими декрементами нераспространяющихся мод в протяженной области ионосферы [Nygre'n, 1982; Budden, 1985; Kuzichev and Shklyar, 2010]. Еще одной проблемой является необходимость конкретизации распределения падающего на ионосферу сверху излучения.

В работах [Bespalov and Mizonova, 2017; Беспалов и Мизонова, 2018; Bespalov et al., 2018] для нахождения высотной зависимости поля, обусловленного плоской свистовой волной, падающей

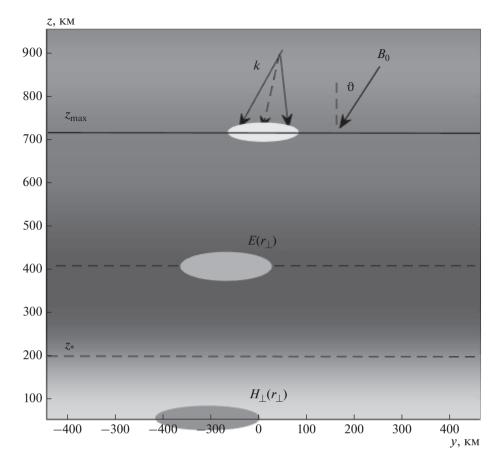


Рис. 1. Схема, поясняющая постановку задачи.

наклонно на границу ионосферы сверху, были использованы совместно метод коллокаций решения граничной задачи и матричный алгоритм приближенного решения волновых уравнений в плавно неоднородной плоскослоистой плазме. Такой подход позволил учесть реальные высотные зависимости ионосферных параметров сильно неоднородной ночной ионосферы и избежать проблемы расходимости численных решений на больших высотах. Разработанный в статье [Мизонова и Беспалов, 2021] алгоритм вычислений использован в настоящей работе для нахождения пространственной зависимости волнового поля излучения, падающего на ночную ионосферу сверху. Проводится анализ свойств излучений вблизи поверхности Земли, на спутниковых высотах, а также отраженного от верхней границы ионосферы, при разных параметрах задаваемого сверху пучка излучения. Полученные результаты важны для изучения взаимосвязи свойств КНЧ/ ОНЧ-волн, регистрируемых на спутниках и наземных станциях, а также для понимания природы естественного магнитосферного излучения.

2. ПОСТАНОВКА ЗАДАЧИ И АЛГОРИТМ ВЫЧИСЛЕНИЙ

Предположим, что на верхнюю границу ионосферы падает сверху монохроматический пучок электромагнитного излучения свистового диапазона, и рассмотрим задачу о нахождении пространственной зависимости поля излучения в ионосфере и на земной поверхности. Для решения будем использовать модель плоскослоистой среды, параметры которой зависят от вертикальной координаты z, значения z=0 и $z=z_{\rm max}$ соответствуют поверхности Земли и плоскости падения, плазма выше границы $z=z_{\rm max}$ считается однородной, магнитное поле лежит в плоскости yz и составляет с осью z угол ϑ . Схема, поясняющая постановку задачи, изображена на рис. 1.

Пространственное распределение напряженностей монохроматического электрического и магнитного полей $\mathbf{E}(\mathbf{r}_{\!\perp},z,t)=\mathbf{E}(\mathbf{r}_{\!\perp},z)e^{-i\omega t}$, $\mathbf{H}(\mathbf{r}_{\!\perp},z,t)=\mathbf{H}(\mathbf{r}_{\!\perp},z)e^{-i\omega t}$ с частотой ω удобно разложить в интеграл Фурье по поперечным координатам

$$\mathbf{E}(\mathbf{r}_{\perp},z) = \int \mathbf{E}(\mathbf{n}_{\perp},z) e^{ik_{0}\mathbf{n}_{\perp}\mathbf{r}_{\perp}} \frac{d\mathbf{n}_{\perp}}{(2\pi)^{2}},$$

$$\mathbf{H}(\mathbf{r}_{\perp},z) = \int \mathbf{H}(\mathbf{n}_{\perp},z) e^{ik_{0}\mathbf{n}_{\perp}\mathbf{r}_{\perp}} \frac{d\mathbf{n}_{\perp}}{(2\pi)^{2}},$$
(1)

имея в виду сохранение в плоскослоистой среде горизонтальных компонент волнового вектора $\mathbf{k}_{\perp}=k_0\mathbf{n}_{\perp},\ k_0=\frac{\omega}{c}$. Для расчета пространственной зависимости полей $\mathbf{E}(\mathbf{r}_{\perp},z),\ \mathbf{H}(\mathbf{r}_{\perp},z)$ необходимо задать распределение амплитуд падающего излучения по \mathbf{n}_{\perp} , вычислить электромагнитное поле для каждого значения \mathbf{n}_{\perp} во всей области решения $0 \leq z \leq z_{\max}$ и произвести преобразования Фурье (1).

Пусть распределение амплитуд по \mathbf{n}_{\perp} в падающем излучении задано. Высотное распределение напряженностей электромагнитного поля удовлетворяет уравнениям Максвелла

$$\nabla \times \mathbf{H} = -ik_0 \hat{\mathbf{\epsilon}} \mathbf{E}, \quad \nabla \times \mathbf{E} = ik_0 \mathbf{H}, \tag{2}$$

которые удобно записать в виде

$$d\mathbf{F}/dz = \hat{M}\mathbf{F}.$$
 (3)

Здесь **F** – четырехкомпонентный вектор-столбец

$$\mathbf{F} = \begin{pmatrix} E_x \\ E_y \\ H_x \\ H_y \end{pmatrix}, \tag{4}$$

 \hat{M} — матрица 4 × 4, компоненты которой выражены через элементы тензора диэлектрической проницаемости $\hat{\epsilon}$, значения $n_{x,y}$ и являются известными функциями координаты z [Budden, 1985]. В уравнениях (2)—(4) и ниже используется система единиц СИ для напряженности электрического поля \mathbf{E} и нормированная величина напряженности магнитного поля $\mathbf{H} = Z_0 \mathbf{H}_{SI}$, где $Z_0 = \sqrt{\mu_0/\epsilon_0}$ — волновое сопротивление вакуума; c — скорость света в вакууме;

$$\hat{\varepsilon} = \begin{bmatrix} \varepsilon & -ig\cos\vartheta & ig\sin\vartheta \\ ig\cos\vartheta & \varepsilon\cos^2\vartheta + \eta\sin^2\vartheta & (\eta - \varepsilon)\sin\vartheta\cos\vartheta \\ -ig\sin\vartheta & (\eta - \varepsilon)\sin\vartheta\cos\vartheta & \varepsilon\sin^2\vartheta + \eta\cos^2\vartheta \end{bmatrix}$$
(5)

- тензор диэлектрической проницаемости "холодной" плазмы, в котором

$$\varepsilon = 1 - \frac{\omega_{pe}^{2}}{(\omega + i\nu_{e})^{2} - \omega_{Be}^{2}} \frac{\omega + i\nu_{e}}{\omega} - \frac{\omega_{pi}^{2}}{(\omega + i\nu_{i})^{2} - \omega_{Bi}^{2}} \frac{\omega + i\nu_{i}}{\omega},$$

$$- \frac{\omega_{pi}^{2}}{(\omega + i\nu_{i})^{2} - \omega_{Bi}^{2}} \frac{\omega + i\nu_{i}}{\omega},$$

$$\eta = 1 - \frac{\omega_{pe}^{2}}{\omega(\omega + i\nu_{e})} - \frac{\omega_{pi}^{2}}{\omega(\omega + i\nu_{i})},$$

$$g = - \frac{\omega_{pe}^{2}\omega_{Be}}{\omega((\omega + i\nu_{e})^{2} - \omega_{Be}^{2})} + \frac{\omega_{pi}^{2}\omega_{Bi}}{\omega((\omega + i\nu_{i})^{2} - \omega_{Bi}^{2})},$$
(6)

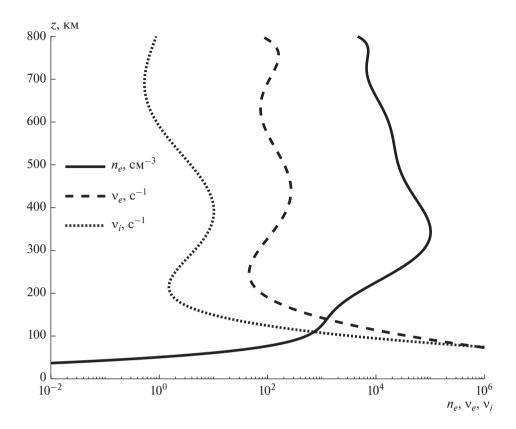
 $\omega_{pe,pi} = \sqrt{4\pi q_{e,i}^2 n/m_{e,i}}$ — электронная и ионная плазменная частоты; $\mathbf{v}_{e,i}$ — частоты столкновений электронов и ионов с нейтральными частицами; $\omega_{Be,Bi} = q_{e,i}B_0/(m_{e,i}c)$ — величины электронной и ионной гирочастот; $m_{e,i}$ и $q_{e,i}$ — массы и величины заряда электронов и ионов.

Представим вектор поля F(4) в виде суммы четырех волновых мод

$$\mathbf{F}(\mathbf{n}_{\perp}, z) = \sum_{j=1}^{4} a_{j}(\mathbf{n}_{\perp}) \exp \left(-\int_{z}^{z_{\text{max}}} i\kappa_{j}(\mathbf{n}_{\perp}, z') dz'\right) \mathbf{P}_{j}(\mathbf{n}_{\perp}, z),$$
(7)

где коэффициенты $a_j(\mathbf{n}_\perp)$ определяют амплитуду на границе падения $z=z_{\max}$, величины $\kappa_j(\mathbf{n}_\perp,z)$ определяют волновое число и четырехкомпонентные вектора \mathbf{P}_j определяют поляризацию j-й волновой моды. Пусть индексы 1, 2 в формуле (7) соответствуют слабозатухающим распространяющимся в направлении земной поверхности (j=1) и от нее (j=2) волновым модам, а индексы 3, 4—нераспространяющимся затухающим в направлениях вниз (j=3) и вверх (j=4) волновым молам.

Для нахождения поля в области $0 \le z \le z_{\text{max}}$ дополним систему уравнений (3) четырьмя граничными условиями. Два из них определим на нижней границе z=0, считая поверхность Земли идеально проводящей


$$E_x(\mathbf{n}_{\perp}, z = 0) = 0, \quad E_v(\mathbf{n}_{\perp}, z = 0) = 0.$$
 (8)

Два других условия зададим на плоскости $z = z_{\text{max}}$, используя разложение поля по волновым модам (7)

$$a_1 = a_i(\mathbf{n}_\perp), \quad a_3 = 0.$$
 (9)

Здесь первое условие определяет амплитуду волны, падающей сверху на границу $z=z_{\rm max}$, второе исключает нарастающее вверх $z>z_{\rm max}$ решение.

Учтем, что в свистовом диапазоне две волновые моды являются нераспространяющимися с

Рис. 2. Плазменная концентрация n_e и частоты столкновений v_e, v_i электронов и ионов с нейтральными частицами.

большими декрементами затухания, что приводит к численной расходимости решения системы уравнений (3) в протяженном ионосферном слое [Lehtinen and Inan, 2008]. Для решения проблемы численной расходимости область решения $0 \le z \le z_{\max}$ разделим на две части, $0 \le z \le z_{\ast}$ и $z_{\ast} \le z \le z_{\max}$. Границу $z = z_{\ast}$ выберем таким образом, чтобы выше нее плазма была плавно неоднородной — характерный масштаб неоднородности существенно превышал длины волн распространяющихся мод и длины затухания нераспространяющихся мод.

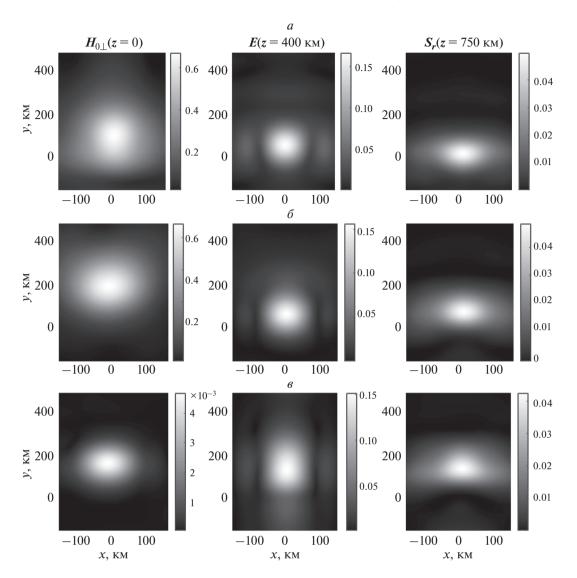
Для нахождения поля в нижнем слое $0 \le z \le z_*$ используем метод коллокаций решения граничной задачи [Кіегzеnka and Shampine, 2001]. Для нахождения поля в верхнем плавно неоднородном слое $z_* \le z \le z_{\max}$ используем матричный алгоритм приближенного решения [Мизонова, 2019]. Решения, полученные двумя методами, должны сшиваться на границе $z = z_*$. Алгоритм вычисления волнового поля компоненты с заданным вектором \mathbf{n}_{\perp} , комбинирующий два метода решений, подробно описан в работах [Веspalov et al., 2018; Мизонова и Беспалов, 2021]. Определив распределение амплитуды падающей волны

 $a_i(\mathbf{n}_{\perp})$ (7) на верхней границе $z=z_{\text{max}}$ и вычислив далее интеграл Фурье (1), можно найти пространственное распределение волновых полей $\mathbf{E}(\mathbf{r}_{\perp},z), \mathbf{H}(\mathbf{r}_{\perp},z)$.

В частности, интересующее нас горизонтальное магнитное поле $H_{\perp}(z=0)$ и поляризация П на поверхности Земли равны соответственно

$$H_{\perp}(z=0) = \sqrt{H_x^2(z=0) + H_y^2(z=0)},$$
 (10)

$$\Pi = |\Pi| e^{i\phi} = E_{v'}(z=0) / E_{x'}(z=0), \tag{11}$$


а величина электрического поля равна

$$E\left(\mathbf{r}_{\perp},z\right) = \sqrt{\left|E_{x}\left(\mathbf{r}_{\perp},z\right)\right|^{2} + \left|E_{y}\left(\mathbf{r}_{\perp},z\right)\right|^{2} + \left|E_{z}\left(\mathbf{r}_{\perp},z\right)\right|^{2}}.(12)$$

Значения вертикальной составляющей вектора Пойнтинга падающего (i) на границу z излучения и отраженного (r) от этой границы излучения определяются выражениями

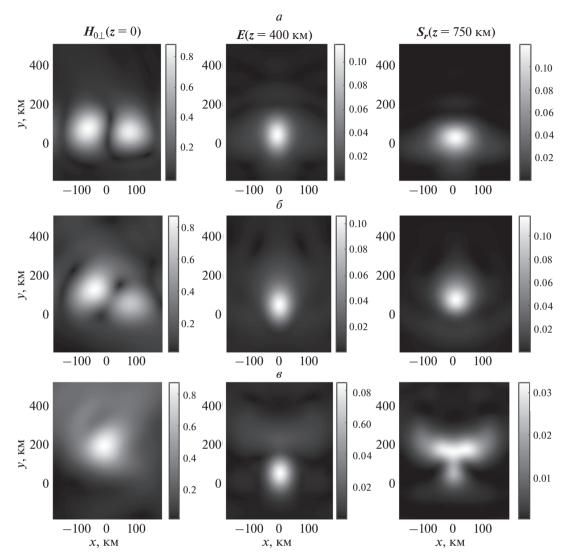
$$S_{i,r} = (2Z_0)^{-1} \operatorname{Re} \left[E_{\perp i,r}^*, H_{\perp i,r} \right].$$
 (13)

Отношение полных потоков энергии отраженного и падающего излучения на границе $z=z_{\rm max}$ равно

Рис. 3. Нормированные горизонтальное волновое магнитное поле (z=0), электрическое поле (z=400 км) и плотность потока энергии отраженного излучения (z=750 км) для волны с частотой $f=1.5 \text{ к}\Gamma$ ц и значениями $n_{0y}=0$ (a), $n_{0y}=1.6$ (δ) и $n_{0y}=3.2$ (s).

$$R_{\Sigma} = \frac{\int S_{z(r)}(\mathbf{r}_{\perp}, z = z_{\text{max}}) d\mathbf{r}_{\perp}}{\int S_{z(i)}(\mathbf{r}_{\perp}, z = z_{\text{max}}) d\mathbf{r}_{\perp}}.$$
 (14)

Отметим, что электрические компоненты $E_{x',y'}$ в формуле (11) записаны в системе координат с осью z' вдоль магнитного поля.


3. РЕЗУЛЬТАТЫ РАСЧЕТОВ

Для примера расчетов поля излучения используется нормальное распределение амплитуд (7) по горизонтальным компонентам волнового вектора в падающем сверху излучении

$$A_{l}(\mathbf{n}_{\perp}, z_{\text{max}}) = E_{0} 2\pi k_{0}^{2} L_{x} L_{y} \times \exp\left(-k_{0}^{2} L_{x}^{2} n_{x}^{2} / 2 - k_{0}^{2} L_{y}^{2} (n_{y} - n_{0y})^{2} / 2\right),$$
(15)

где
$$A_{\rm l}=a_{\rm l}(\mathbf{n}_\perp)\exp\Bigl(-\int_z^{z_{\rm max}}i\kappa_{\rm l}(\mathbf{n}_\perp,z')dz'\Bigr)$$
. Нормиро-

вочный множитель E_0 в выражении (15) выбран таким образом, чтобы максимальное значение плотности энергии падающего потока было равно единице. Профили плазменной концентрации и частот столкновений заряженных частиц с нейтральными изображены на рис. 2. Данные для плазменной концентрации получены с помощью модели IRI [Bilitza and Reinisch, 2019] и соответствуют 68° N, 25° E, 4.09.2019 г., 0:30 LT. Угол между направленной вверх вертикальной осью z и магнитным полем при этом равен $\vartheta=168^\circ$. За-

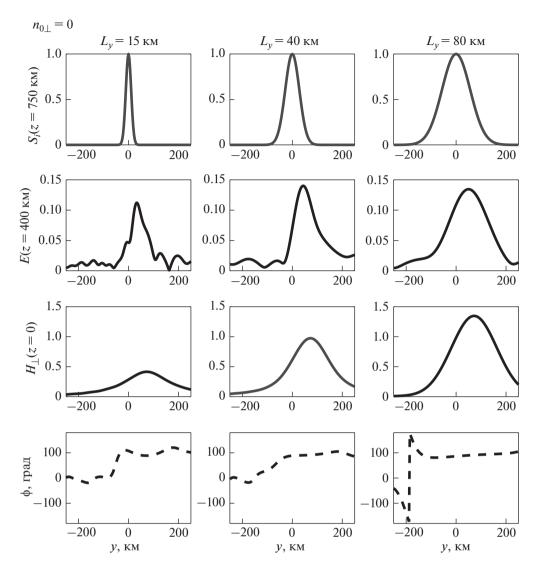


Рис. 4. Нормированные горизонтальное волновое магнитное поле (z=0), электрическое поле (z=400 км) и плотность потока энергии отраженного излучения (z=750 км) для волны с частотой $f=3 \text{ к}\Gamma$ ц и значениями $n_{0y}=0$ (a), $n_{0y}=0.3$ (b) и $n_{0y}=0.8$ (b).

висимости частот столкновений заряженных частиц с нейтральными соответствуют данным, приведенным в книге [Гуревич и Шварцбург, 1973]. Частота излучения равна 1.5 кГц, граница падения излучения $z_{\rm max}$ и граница "сшивки решений" z_* составляют 750 км и 145 км соответственно. Для нахождения пространственной зависимости поля использовался метод быстрого преобразования Фурье по горизонтальным координатам [Cooley and Tukey, 1965].

На рисунках 3, 4 приведены результаты расчетов горизонтального магнитного поля (10) на земной поверхности, электрического поля (12) на высоте z=400 км и плотности потока энергии (13) отраженного излучения на высоте z=750 км при пространственных масштабах падающего излуче-

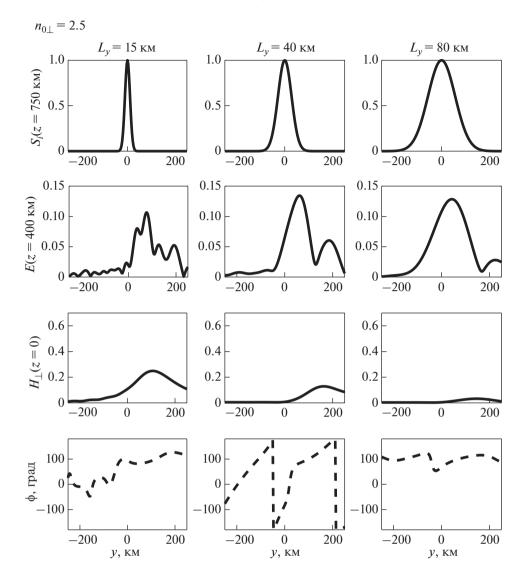
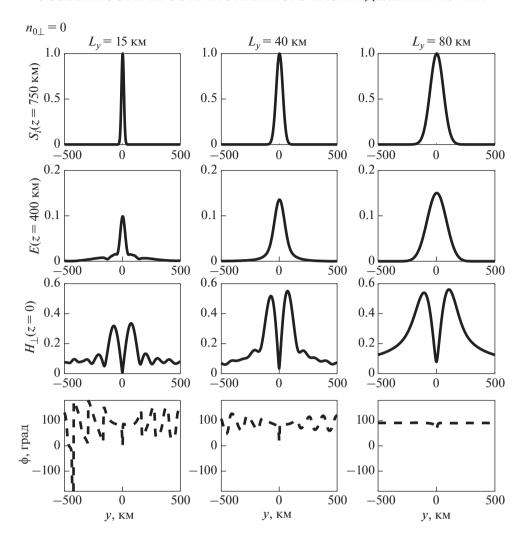

ния (15) $L_x=30$ км, $L_y=60$ км и различных значениях n_{0y} . Рисунок 3 соответствует излучению с частотой f=1.5 к Γ ц и рис. 4 соответствует излучению с частотой f=3 к Γ ц. Соответствующие разным значениям n_{0y} отношения (14) полных потоков энергии отраженного и падающего излучений на границе z=750 км равны $R_\Sigma=0.4360$ ($n_{0y}=0$), $R_\Sigma=0.1307$ ($n_{0y}=1.6$) и $R_\Sigma=0.2547$ ($n_{0y}=3.2$) в случае f=1.5 к Γ ц и $n_{0y}=0.2$ 0 и $n_{0y}=0.2$ 1 и $n_{0y}=0.2$ 2 в случае $n_{0y}=0.2$ 3 в случае $n_{0y}=0.2$ 3 в случае $n_{0y}=0.2$ 4 и $n_{0y}=0.2$ 5 в случае $n_{0y}=0.2$ 5 и $n_{0y}=0.2$ 6 в случае $n_{0y}=0.2$ 7 представлены примеры зависимостей от горизонтальных координат плотности потока энергии падающего излучения на высоте $n_{0y}=0.2$ 3 к $n_{0y}=0.2$ 3 к $n_{0y}=0.2$ 4 к $n_{0y}=0.2$ 5 км,

Рис. 5. Нормированные плотность потока энергии падающего излучения (z=750 км), электрическое поле (z=400 км), горизонтальное волновое магнитное поле и параметр ϕ , характеризующий поляризацию (z=0), при разных значениях L_v : f=1.5 кГц, $n_{0v}=0$.

электрического поля на высоте $z=400~{\rm km}$, горизонтального магнитного поля и параметра φ , характеризующего поляризацию, на земной поверхности (z=0), при разных значениях частоты f, величины $n_{0\perp}$ и пространственных масштабах L_x, L_y падающего излучения (15). Положительные значения величины φ соответствуют правой поляризации, типичной для свистовых волн, отрицательные значения φ — левой поляризации. Как видно из результатов, представленных на рисунках 5—7, в определенных условиях поляризация излучения вблизи земной поверхности оказывается левой, нетипичной для свистовых волн. Для пояснения эффекта изменения "характера поляризации" на рис. φ приведены зависимости от величины φ 0, горизонтального магнитного поля

 $H(\mathbf{n}_{\perp},z=0)$ (10) и параметра ф, характеризующего поляризацию П (11). Кроме магнитного поля, на тех же графиках изображены зависимости коэффициентов отражения по энергии $R=S_r/S_i$ (13) от границы z=145 км и схематично пунктирной линией вертикальная компонента волнового числа $n_{0z}=\mathrm{Re}(\sqrt{1-n_{\perp}^2})$. Звездочками отмечены точки, соответствующие левой поляризации. На рисунке $8\mathfrak{s},\ z$ изображены высотные зависимости амплитуд волновых мод в случаях "правой" (\mathfrak{s}) и "левой" (\mathfrak{s}) поляризаций. Как видно из результатов, представленных на рис. $\mathfrak{s},\mathfrak{s},\mathfrak{s}$ определенных условиях поляризация излучения вблизи земной поверхности оказывается левой, нетипичной для свистовых волн.


Рис. 6. Нормированные плотность потока энергии падающего излучения (z=750 км), электрическое поле (z=400 км), горизонтальное волновое магнитное поле и параметр ϕ , характеризующий поляризацию (z=0), при разных значениях L_v : f=1.5 кГц, $n_{0v}=2.5$.

4. ОБСУЖДЕНИЕ

Рассмотрена задача о нахождении пространственной зависимости поля излучения свистового диапазона с заданным распределением по \mathbf{n}_{\perp} , падающего сверху на границу ночной ионосферы. Для исключения численной расходимости в вычислениях используется совместно два подхода — метод коллокаций решения граничной задачи на высотах ниже 145 км и матричный алгоритм приближенного решения в области от 145 до 750 км. Выбор верхней границы решения, во-первых, позволяет провести расчеты в приближении однородного магнитного поля, во-вторых, соответствует высотам спутниковых наблюдений. Выбор границы сшивки двух решений определялся двумя условиями. Во-первых, выше 145 км длины

волн с частотами 1.5 кГц и выше не превышают 35 км, что меньше масштабов неоднородности ионосферной плазмы. Поэтому для нахождения поля в верхней области можно использовать приближенные методы решения. Во-вторых, в ограниченной области ионосферы ниже 145 км удается получить численно стабильное решение полной системы волновых уравнений.

Распределение по \mathbf{n}_{\perp} падающего излучения в общем случае несимметрично относительно вертикальной оси и соответствует пространственным горизонтальным масштабам в несколько десятков километров, что типично для данных спутниковых наблюдений [Титова и др., 2015]. Расчеты полей, выполненные для разных значений параметров распределения (15) падающего

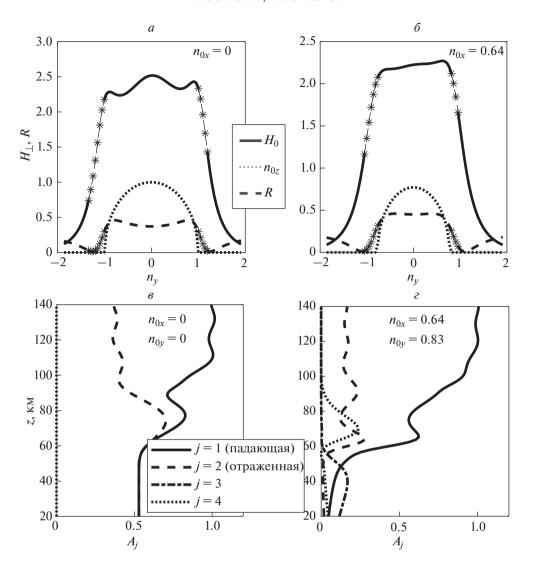


Рис. 7. Нормированные плотность потока энергии падающего излучения (z = 750 км), электрическое поле (z = 400 км), горизонтальное волновое магнитное поле и параметр ϕ , характеризующий поляризацию (z = 0), при разных значениях L_x : f = 3 к Γ ц, $n_{0x} = 0$.

излучения, показывают, что характерные горизонтальные размеры пятна и величина электрического поля на спутниковых высотах (в расчетах $400\,\mathrm{km}$) определяются в основном горизонтальными размерами (L_x,L_y) пятна падающего излучения и слабо зависят от его среднего направления n_{0y} (см. рис. 3-7). Действительно, в плоскослоистой ионосфере горизонтальные компоненты волнового вектора, в соответствии с законом Снеллиуса, сохраняются, соответственно не изменяется существенно и распределение поля по горизонтальным координатам. При этом центр пучка смещается в направлении к северу примерно на $50-100\,\mathrm{km}$.

Возможность выхода излучения на земную поверхность ограничена конусом $n_{\perp} \le 1$. Поэтому излучение с отличными от нуля параметром n_{0y} в распределении (15) может практически не до-

стигать поверхности Земли (см. рис. 3в). Отметим, что из-за больших показателей преломления на высотах $z \sim 750$ км угол падения волн с $n_{\perp} = 1$ составляет всего несколько градусов. Поэтому даже незначительные отклонения пучка падающего излучения от вертикали сильно ограничивают возможность его выхода на Землю, практически не сказываясь при этом на распределении и величине волнового поля на значительных высотах. Например, значению $n_{0y} = 3.2$ соответствует угол падения $\sim 15^{\circ}$. Магнитное поле на земной поверхности при этом (рис. 3e) уменьшается на два порядка по сравнению со случаем "нормального" падения (рис. 3*a*). Смещение в северном направлении пучка излучения на земной поверхности составляет от 100 до 200 км (рис. 3, 4). Кроме того, существует небольшая асимметрия пучка относительно плоскости уг (плоскости магнитного меридиана).

Рис. 8. Нормированное горизонтальное магнитное волновое поле и параметр ϕ , характеризующий поляризацию (z=0), при значениях $n_{0x}=0$ (a) и $n_{0x}=0.64$ (δ) (зведочками отмечены значения, соответствующие "левой" поляризации); высотные зависимости амплитуд волновых мод в случаях "правой" (ϵ) и "левой" (ϵ) поляризаций.

В определенных условиях поляризация излучения вблизи земной поверхности оказывается левой, нетипичной для свистовых волн. Как видно из рис. 8a, 6, левая поляризация соответствует значениям горизонтального волнового вектора n_{\perp} , ненамного превышающим единицу. Величина магнитного поля при этих значениях резко уменьшается, а коэффициент отражения принимает минимальные значения. В некоторых случаях суммарный вклад таких "левополяризованных" компонент может оказаться преобладающим и изменить характер поляризации излучения вблизи Земли.

Изменение характера поляризации может быть связано с линейным взаимодействием мод в нижней ионосфере. Действительно, в плоскослоистых средах без пространственной дисперсии

волновые уравнения имеют четыре линейно независимых решения. В свистовом диапазоне два из четырех решений соответствуют распространяющимся волновым модам с правой поляризацией, а два других решения — сильно затухающим нераспространяющимся модам с левой поляризацией. На высотах порядка 100 км и ниже становится существенным линейное взаимодействие мод, усиливается затухание волн, а также происходит их трансформация в вакуумные электромагнитные. В результате энергия может "перекачиваться" из "правополяризованных" мод в "левопорязированные", определяя таким образом характер поляризации излучения вблизи поверхности Земли.

На рисунке 8a, a приведены примеры высотных зависимостей амплитуд A_i , j=1-4 четырех

мод волнового уравнения разложения (7), (15) в слое $0 \le z \le z_*$. Амплитуды нормированы на амплитуду падающей на границу сшивки решений z = 145 км. Случай (в) соответствует нормальному падению волны $(n_x = 0, n_y = 0)$, при этом амплитуды 3-й и 4-й мод остаются пренебрежимо малыми, а поляризация на земной поверхности правая круговая ($\phi = 90^{\circ}$). Коэффициент отражения по энергии в этом случае равен R = 0.3. Случай (г) практически соответствует границе возможного выхода волны на поверхность Земли $(n_x=0.64,\; n_y=0.83,\; n_\perp=1.05).$ При этом амплитуды 3-й и 4-й мод в направлении к Земле растут и при z = 0 превышают амплитуды 1-й и 2-й мод, а поляризация левая ($\phi = -150^{\circ}$). Коэффициент отражения по энергии в этом случае в два с лишним раза меньше и равен R = 0.13.

Отношения полных потоков (14) энергии отраженного и падающего излучений на границе $z=750~\mathrm{km}$ в рассмотренных случаях составляют от 0.13 до 0.44, наибольшее его значение соответствуют симметричному относительно вертикали излучению ($n_{0v}=0$).

5. ВЫВОДЫ

Рассмотрена задача о падении пучка свистового излучения на ночную ионосферу сверху. Для модели плоскослоистой среды получено решение волновых уравнений и найдена пространственная зависимость поля излучения на высотах от 0 до 750 км. Проанализированы зависимости свойств излучения на высотах 400 км и вблизи поверхности Земли при различных распределениях пучка падающего излучения. Область, занимаемая полем на высотах 400 км, имеет приблизительно те же горизонтальные масштабы, что и падающее излучение, и смещается в направлении к северу на несколько десятков километров. Величина поля практически не зависит от угла наклона падающего пучка по отношению к вертикали. Величина магнитного поля вблизи земной поверхности из конуса выхода чувствительна к наклону падающего излучения. Поляризация излучения вблизи поверхности Земли преимущественно правая, типичная для свистовых волн. Однако в некоторых случаях может отмечаться левая поляризация. Изменения характера поляризации может быть связано с вкладом волн вблизи конуса выхода $n_{\perp} \sim 1$ и объясняться эффектом линейного взаимодействия мод в нижней существенно неоднородной части ионосферы. В ночных условиях от верхней границы ионосферы отражается примерно от 15 до 45% энергии излучения.

Полученные результаты могут быть полезны для сопоставления свойств КНЧ/ОНЧ-излуче-

ний, распространяющихся от естественных магнитосферных источников и регистрируемых на спутниках и на Земле.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование В.Г. Мизоновой и П.А. Беспалова выполнено при поддержке Российского фонда фундаментальных исследований РФФИ, грант № 20-02-00206А. Численные расчеты выполнены в рамках Государственного задания № 0030-2021-0002.

СПИСОК ЛИТЕРАТУРЫ

- *Беспалов П.А., Мизонова В.Г.* Особенности распространения падающих на ночную ионосферу сверху электромагнитных волн свистового диапазона // Космич. исслед. Т. 56. № 1. С. 33—39. 2018.
- *Гуревич А.В., Шварцбург А.Б.* Нелинейная теория распространения радиоволн в ионосфере. М.: Наука. 272 с. 1973.
- *Мизонова В.Г.* Матричный алгоритм приближенного решения волновых уравнений в неоднородной магнитоактивной плазме // Физика плазмы. Т. 45. № 8. С. 745—754. 2019.
- *Мизонова В.Г., Беспалов П.А.* Особенности отражения свистовых электромагнитных волн, падающих на ионосферу сверху, в дневных и ночных условиях // Космич. исслед. Т. 59. № 1. С. 19—27. 2021.
- Титова Е.Е., Демехов А.Г., Мочалов А.А. и др. КНЧ/ОНЧ возмущения над передатчиком НААRP, регистрируемые в верхней ионосфере на спутнике DEMETER // Изв. вузов. Радиофизика. Т. 58. № 3. С. 167—186. 2015.
- Bespalov P., Mizonova V. Propagation of a whistler wave incident from above on the lower nighttime ionosphere // Ann. Geophysicae. V. 35. P. 671–675. 2017.
- Bespalov P.A., Mizonova V.G., Savina O.N. Reflection from and transmission through the ionosphere of VLF electromagnetic waves incident from the mid-latitude magnetosphere // J. Atmos. Solar-Terr. Phys. V. 175. P. 40–48. 2018.
- Bilitza D., Reinisch B. International Reference Ionosphere 2007: Improvements and new parameters // Adv. Space Res. V. 42. P. 599–609. 2008.
- Budden K.G. The propagation of radio waves: The theory of radio waves of low power in the ionosphere and magnetosphere. Cambridge: Cambridge Univ. Press. 669 p. 1985.
- Cooley James W., Tukey John W. An algorithm for the machine calculation of complex Fourier series // Math. Comp. V. 19. P. 297–301. Cambridge 301. 1965.
- *Kierzenka J., Shampine L.F.* A BVP solver based on Residual Control and the MATLAB PSE // ACM TOMS. V. 27. № 3. P. 299–316. 2001.
- *Kuzichev I.V., Shklyar D.R.* On full-wave solution for VLF waves in the near-Earth space // J. Atmos. Solar-Terr. Phys. V. 72. P. 1044–1056. 2010.
- Lehtinen N.G., Inan U.S. Radiation of ELF/VLF waves by harmonically varying currents into a stratified ionosphere with application to radiation by a modulated electrojet // J. Geophys. Res. Space Phisics. V.113. A06301. 2008.

- Manninen J., Kleimenova N.G., Kozyreva O.V. et al. Experimental evidence of the simultaneous occurrence of VLF chorus on the ground in the global azimuthal scale from pre-midnight to the late morning // Ann. Geophys. V. 30. P. 725—732. 2012.
- Manninen J., Kleimenova N.G., Kozyreva O.V. et al. Nontypical ground-basedquasi-periodic VLF emissions observed at L 5.3 under quiet geomagnetic conditions at night // J. Atmos. Solar-Terr. Phys. V. 99. P. 123–128. 2013.
- Nemec F., Santolik O., Parrot M. et al. Conjugate observations of quasi-periodic emissions by Cluster and DEME-

- TER spacecraft // J. Geophys Res. Space. V. 118. P. 198–208. 2013.
- Nygre'n T. A method of full wave analysis with improved stability // Planet. Space Sci. V. 30. № 4. P. 427–430. 1982.
- Payne J.A., Inan U.S., Foust F.R. et al. HF modulated ionospheric currents // Geophys. Res. Lett. V. 34. L23101. 2007.
- Titova E.E., Kozelov B.V., Demekhov A.G. et al. Identification of the source of quasiperiodic VLF emissions using ground-based and Van Allen Probes satellite observations // Geophys. Res. Lett. V. 42. P. 6137–6145. 2015.