УДК 550.338.2

ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ПЕРЕМЕЩАЮЩИХСЯ ИОНОСФЕРНЫХ ВОЗМУЩЕНИЙ ПО ИОНОГРАММАМ ВЕРТИКАЛЬНОГО ЗОНДИРОВАНИЯ С ДОПОЛНИТЕЛЬНЫМИ U-ОБРАЗНЫМИ ТРЕКАМИ

© 2021 г. О. А. Ларюнин*

Институт солнечно-земной физики СО РАН, г. Иркутск, Россия *e-mail: laroleg@iszf.irk.ru Поступила в редакцию 25.02.2021 г. После доработки 18.05.2021 г. Принята к публикации 27.05.2021 г.

Рассмотрен случай, когда в результате перемещения дополнительного U-образного трека на ионограммах вертикального зондирования фиксируется повышенная критическая частота. Это соответствует появлению над точкой зондирования области с повышенной электронной концентрацией. Представлена методика исследования характеристик перемещающихся ионосферных возмущений по ионограммам в рамках двумерной модели возмущения. Исследованы изменения формы дополнительного трека ионограммы, к которым приводит варьирование параметров возмущения. Показаны возможности определения таких характеристик перемещающихся ионосферных возмущений, как интенсивность, масштаб локализации, горизонтальная скорость дрейфа.

DOI: 10.31857/S0016794021060109

1. ВВЕДЕНИЕ

На ионограммах вертикального и слабонаклонного зондирования можно часто наблюдать дополнительный U-образный трек, свидетельствующий о наличии перемещающегося ионосферного возмущения (ПИВ).

Еще в середине прошлого века было установлено [Munro and Heisler, 1956], что появление серпообразных особенностей на ионограммах связано с прохождением ПИВ, которые приводят к образованию горизонтальных градиентов электронной концентрации ионосферы и, соответственно, к невертикальным отражениям лучей при радиозондировании.

Дополнительные треки на ионограммах вертикального зондирования разнообразны как по форме, так и по динамическим проявлениям [Akchurin et al., 2011; Moskaleva and Zaalov, 2013; Lou et al., 2020; Zaalov and Moskaleva, 2020]. Помимо наиболее распространенных U-образных структур (серпов) можно встретить треки с более сложными формами, которые с трудом поддаются имитационному моделированию.

Моделирование серпов в условиях неслоистой среды было начато во второй половине XX века [Munro and Heisler, 1956; Lobb and Titheridge, 1977; Cooper and Cummack, 1986] и было продолжено в последующих работах [James and MacDougall, 1997; Cervera and Harris, 2014]. Тем не менее, корректное моделирование, например, переходного процесса слияния простого U-образного серпа с основным треком ионограммы до сих пор остается трудной задачей [Lou et al., 2020]. Тем более открытым остается вопрос об обратной задаче восстановления горизонтально-неоднородной структуры ионосферы по ионограммам с дополнительными треками.

В работах [Emmons et al., 2020; Ratovsky et al., 2008] представлены методики исследования динамики ПИВ по временным вариациям действующих высот на ионограммах. Истинные высоты там восстанавливаются из ионограмм методом Хуанга-Райниша в предположении плоско-слоистой среды. Указанные методики представляются эффективными в случаях, когда ПИВ не приводят к ярко выраженным боковым отражениям. Иная ситуация имеет место при ПИВ с бо́льшими амплитудами, которые приводят к значительным горизонтальным градиентам электронной концентрации. В этом случае на ионограммах могут возникать характерные U-образные треки, для изучения которых уже становится необходимым траекторный синтез.

Таким образом, целью настоящей работы является модельное описание дополнительных U-образных треков на ионограммах вертикального

ЛАРЮНИН

Рис. 1. Ионограммы вертикального зондирования перед, во время и после появления серпа.

зондирования, реконструкция ионосферных возмущений с помощью имитационного моделирования, а также исследование динамики перемещающихся ионосферных возмущений по последовательности ионограмм.

Представленные в работе ионограммы были получены в ежеминутном режиме в п. Торы $(51^{\circ}48' \text{ N}, 103^{\circ}5' \text{ E})$ в 100 км от Иркутска [Bern-gardt et al., 2017].

2. ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ

Траекторный синтез ионограмм выполнялся на основе алгоритма двумерной пристрелки лучей в приближении геометрической оптики. Так, для каждой заданной рабочей частоты алгоритм позволяет рассчитывать набор траекторий, соответствующих углам излучения в выбранном интервале (от -1° до 45°) с определенным шагом (0.1°). Отметим, что отрицательные углы здесь не дают возвратных траекторий и не представляют интереса, однако важно, чтобы вертикальная траектория (0°) попала внутрь интервала. Полученный набор траекторий позволяет, использую сплайнинтерполяцию, построить дальностно-угловую характеристику $D(\phi)$. Далее численно решается уравнение $D(\phi) = 0$: при вертикальном зондировании дальность трассы равна нулю. Наконец, для найденного угла излучения (или углов в случае многолучевости) синтезируется траектория и фиксируется групповая задержка, которая впоследствии отображается в виде точки на ионограмме. Описанная процедура повторяется для других рабочих частот, при этом шаг по частоте составляет 0.025 МГн.

Рассмотрим часто наблюдаемый на ионограммах случай, когда в результате прохождения U-образной структуры устанавливается повышенная критическая частота. Такого рода событие проиллюстрировано на рисунках 1 и 2. Длительность события, т.е. временной интервал между спокойными ионограммами до и после появления серпа, составляет 12 мин, что подчеркивает недостаточность типичной для ионозондов скважности наблюдений в 15 мин для исследования динамических процессов в ионосфере. Так как на ионограммах устанавливается повышенная критическая частота, то будет обоснованным предположить появление области с повышенной электронной концентрацией над точкой зондирования. Траектории, образующие серп на ионограмме, формируются в переходный период за счет боковых (невертикальных) отражений на горизонтальных градиентах электронной концентрации.

Как показывает моделирование, плавность перехода от фоновой к повышенной электронной концентрации (т.е. величина горизонтального градиента) влияет на вид траектории луча и, следовательно, на групповой путь. Другими словами, форма возмущения задает форму серпа на ионограмме. Возникающая в этой связи обратная задача восстановления параметров возмущения будет решена путем многократного решения соответствующей прямой задачи с последующим фитированием.

Модель возмущения вида (1) представляется в данном контексте вполне адекватной, хотя данный выбор не носит принципиального характера.

$$\begin{cases} f_{p}(x,z) = f_{po}(z) \left(1 + \delta \exp\left(-\frac{(x-x_{0})^{4}}{b^{4}}\right) \right), & x \leq x_{0} \\ f_{p}(z) = f_{po}(z)(1+\delta), & x > x_{0}. \end{cases}$$
(1)

Здесь *х* и *z* соответственно — горизонтальная и вертикальная координаты; $f_{p0}(z)$ — фоновая плазменная частота; δ — интенсивность возмущения; x_0 — центр возмущения; *b* — масштаб возмущения. Отметим, что электронная концентрация

Рис. 2. Эволюция серпа на ионограммах.

N и плазменная частота связаны соотношением $f_p^2 = \frac{Ne^2}{4\pi^2 \epsilon_0 m}$, где *е* и *m* – заряд и масса электрона;

 ϵ_0 – диэлектрическая постоянная.

3. ПОДБОР ПАРАМЕТРОВ МОДЕЛИ

Интенсивность возмущения $\delta = \frac{f_{cl} - f_{c0}}{f_{c0}}$ определяется приращением критической частоты в результате прохождения серповидной структуры и составляет в данном случае 7%, $f_{c1} = 1.07 f_{c0}$. При расчете за последнюю спокойную ионограмму перед событием взят момент времени 12:01 LT. По этой ионогорамме методом Хуанга–Райниша [Reinisch and Huang, 1983] определен фоновый профиль $f_{p0}(z)$ (рис. 3).

Первая спокойная ионограмма после события наблюдается в 12:13 LT. Параметр x₀ задает положение возмущения относительно приемника/передатчика так, что уменьшение x_0 приводит к сползанию серпа вниз и влево вдоль основного трека ионограммы. Действительно, приближение возмущения ведет к "укорачиванию" боковых траекторий и соответственно к уменьшению группового пути. Наконец, масштаб b в выражении (1) является фактором формы возмущения и варьирует горизонтальный градиент электронной концентрации (рис. 4), задавая плавность перехода от фоновых значений к возмущенному состоянию. Фактически, дальнейшая задача сводится к поиску значения b, наиболее точно отвечающему экспериментальной ионограмме. В качестве эталонной на данном этапе выбрана серповидная структура в 12:05 LT.

Если первым критерием соответствия модели и эксперимента служит совпадение правой

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 61 № 6 2021

асимптоты серпа — фактической критической частоты на возмущенной ионограмме, то за второй критерий целесообразно взять совпадение точек минимума серпа. Соответствующее фитирование представляет собой наиболее затратную часть с точки зрения компьютерного времени. Данная процедура сводится к перебору параметров b и x_0 с фиксацией ближайших к экспериментальному положений точек минимума и последующей интерполяцией.

Рис. 3. Фоновый высотный профиль электронной концентрации.

Рис. 4. Горизонтально-неоднородная структура ионосферы и лучевые траектории при f = 10.3 МГц. b = 105 км (левая панель), b = 75 км (средняя панель) и b = 45 км (правая панель). Жирная кривая на средней панели соответствует возвратному лучу. Вертикальная линия соответствует центру возмущения, $x_0 = 150$ км. При $x \ge x_0$ среда слоистая.

На рисунке 5 показан случай b = 75 км: синтезированный серп сползает вниз по мере уменьшения x_0 . Точка (10.3 МГц, 439 км) соответствует эксперименту и является искомой при фитировании.

Рисунок 6 представляет собой аналог рис. 5e увеличенном масштабе для b = 90 км и b = 60 км соответственно.

Процедура фитирования проиллюстрирована на рисунках 5, 6, 7 и заключается в следующем. Для каждого значения *b* варьируется параметр x_0 , т.е. заданное возмущение приближается к точке наблюдения. При этом соответствующий серп сползает вниз, и его минимум в какой-то момент проходит уровень h' = 439 км. Фиксируется частота, на которой произошло пересечение данного уровня. Последующее варьирование масштаба *b*

Рис. 5. Серия синтезированных серпов, наложенных на экспериментальную ионограмму 12:05 LT, для b = 75 км. Жирными точками показаны минимумы серпов.

позволяет найти пересечение уровня 439 км, максимально близкое к 10.3 МГц.

Можно видеть на рис. 6, что в первом случае (левая панель) пересечение уровня h' = 439 км происходит слева, при f = 10.24 МГц, тогда как во втором случае (правая панель) – справа, при f = 10.34 МГц. Далее аналогичным образом определяются точки пересечения для других значений b (рис. 7a). Можно видеть, что интерполяция прогнозирует наилучшее совпадение при b = 70 км, что и подтверждает рис. 76.

Следует отметить визуальное расхождение данных модели и эксперимента в области левой асимптоты серпа. Очевидно, это связано с погрешностью модели (1). Вероятно, введение дополнительных параметров в модель (например, наклон возмущения или его локализация по высоте) приведет к лучшему соответствию. Однако соответствующее увеличение времени расчета в практических целях не представляется целесообразным.

4. ОЦЕНКА ГОРИЗОНТАЛЬНОЙ СКОРОСТИ ВОЗМУЩЕНИЯ

Представляет интерес исследование динамики ПИВ по последовательности экспериментальных ионограмм. Сползание серпа на ионограммах связано с движением ПИВ, и чем быстрее движется серп, тем быстрее перемещается соответствующее возмущение. Не составляет труда по набору ионограмм определить горизонтальную скорость возмущения. Для возмущения вида (1), где параметры $\delta = 7\%$ и b = 70 км уже найдены в ходе фитирования, будем варьировать значение x_0 . Возмущение при этом будет удаляться (с ростом x_0) или приближаться (по мере уменьшения x_0) к точке излучения, а синтезированный серп соответственно подниматься или опускаться подобно

Рис. 6. Увеличенные фрагменты синтезированных ионограмм, наложенных на экспериментальную 12:05 LT. (*a*) b = 90 км; (*б*) b = 60 км. Горизонтальная кривая задает уровень 439 км, соответствующий минимуму эталонного экспериментального серпа. В ходе фитирования мы добиваемся того, чтобы кривая, которую описывают минимумы синтезированного серпа, прошла через минимум экспериментального серпа.

Рис. 7. При значении b = 70 км (a) – интерполяция прогнозирует прохождение синтезированного серпа через искомую точку (10.3 МГц, 439 км) на ионограмме, что подтверждает панель (δ).

изображенному на рис. 4. Будем фиксировать действующую высоту h', соответствующую точке минимума каждого синтезированного серпа, получая таким образом зависимость $\dot{h_{\min}}(x_0)$ (см. рис. 8, кружки). С другой стороны, временная зависимость $\dot{h_{\min}}(t)$ устанавливается экспериментально: на рис. 8 она показана треугольниками.

Верхняя и нижняя горизонтальные оси на рис. 8 масштабированы так, чтобы результаты линейной регрессии для экспериментальной и модельной зависимостей отображались на одной кривой. Так, например, видно, что серп на экспериментальной ионограмме $t_1 = 12:08$ соответствует локализации возмущения $x_{01} = 135.5$ км, а момент времени $t_2 = 12:04$ отвечает значению $x_{02} = 158$ км. Тогда горизонтальная скорость пе-

Рис. 8. Определение горизонтальной скорости перемещения возмущения.

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 61 № 6 2021

ремещения возмущения по направлению к точке

наблюдения
$$V_x = \frac{x_{02} - x_{01}}{|t_2 - t_1|} \approx 94$$
 м/с.

5. ЗАКЛЮЧЕНИЕ

Описанная методика позволяет восстанавливать электронную концентрацию в горизонтальнонеоднородной ионосфере (двумерный случай) по ряду экспериментальных ионограмм вертикального зондирования, содержащих дополнительные серповидные треки на основе траекторного синтеза с последующим фитированием.

Использованная гауссоподобная модель перехода от фоновой ионосферы к возмущенной показала свою состоятельность для воспроизведения наблюдаемых серпов при моделировании. В качестве примера, для выбранного набора ионограмм были определены такие характеристики возмущения, как интенсивность, пространственный масштаб, горизонтальная скорость перемещения.

При рассмотрении динамики возмущения оказалось, что экспериментальные ионограммы демонстрируют квазилинейное нисхождение серпа в рассматриваемом временном интервале. В то же время линейная зависимость положения серпа на ионограмме от горизонтальной координаты возмущения имеет место и при моделировании. В этой связи оказывается нетрудным определить горизонтальную скорость перемещения ионосферного возмущения, добиваясь совпадения экспериментальных и синтезированных серпов путем соответствующего масштабирования временной и координатной осей.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Министерства науки и высшего образования РФ (Минобрнауки России), субсидия № 075-ГЗ/Ц3569/278.

БЛАГОДАРНОСТИ

Результаты получены с использованием оборудования Центра коллективного пользования "Ангара" (http://ckp-rf.ru/ckp/3056/).

СПИСОК ЛИТЕРАТУРЫ

- Akchurin A.D., Bochkarev V.V., Ildiryakov V.R., Usupov K.M. TID selection and research of its characteristics on ionograms / Proc. 30th URSI General Assembly and Scientific Symposium. Istanbul, Turkey, 13–20 August 2011. GP1.23. 2011.

- Berngardt O.I., Perevalova N.P., Podlesnyi A.V., Kurkin V.I., Zherebtsov G.A. Vertical midscale ionospheric disturbances caused by surface seismic waves based on Irkutsk chirp ionosonde data in 2011–2016 // J. Geophys. Res. Space. V. 122. № 4. P. 4736–4754. 2017.

- Cervera M.A., Harris T.J. Modeling ionospheric disturbance features in quasi-vertically incident ionograms using 3-D magnetoionic ray tracing and atmospheric gravity waves // J. Geophys. Res. Space. V. 119. № 1. P. 431–440. 2014.

Cooper J., Cummack C.H. The analysis of travelling ionospheric disturbance with nonlinear ionospheric response // J. Atmos. Solar Terr. Phys. V. 48. № 1. P. 61–64. 1986.

– Emmons D.J., Dao E.V., Knippling K.K., McNamara L.F., Nava O.A., Obenberger K.S., Colman J.J. Estimating horizontal phase speeds of a traveling ionospheric disturbance from digisonde single site vertical ionograms // Radio Sci. V. 55. № 8. e2020RS007089. 2020.

 James H.G., MacDougall J.W. Signatures of polar cap patches in ground ionosonde data // Radio Sci. V. 32. № 2.
P. 497–513. 1997.

- Lobb R.J., Titheridge J.E. The effects of travelling ionospheric disturbances on ionograms // J. Atmos. Terr. Phys. V. 39. № 2. P. 129–134. 1977.

- Lou P., Wei N., Guo L., Feng J., Li X., Yang L. Numerical study of traveling ionosphere disturbances with vertical incidence data // Adv. Space Res. V. 65. № 4. P. 1306–1320. 2020.

– Moskaleva E.V., Zaalov N.Y. Signature of polar cap inhomogeneities in vertical sounding data // Radio Sci. V. 48. № 5. P. 547–563. 2013.

– Munro G.H., Heisler L.H. Cusp type anomalies in variable frequency ionospheric records // Aust. J. Phys. V. 9. P. 343–357. 1956.

- Ratovsky K.G., Medvedev A.V., Tolstikov M.V., Kushnarev D.S. Case studies of height structure of TID propagation characteristics using cross-correlation analysis of incoherent scatter radar and DPS-4 ionosonde data // Adv. Space Res. V. 41. № 9. P. 1454–1458. 2008.

- *Reinisch B.W., Huang X.* Automatic calculation of electron density profiles from digital ionograms. 3. Processing of bottomside ionograms // Radio Sci. V. 18. № 3. P. 477–492. 1983.

- Zaalov N.Y., Moskaleva E.V. Oblique and vertical incidence ionogram simulations with the presence of Es layer // Adv. Space Res. V. 66. \mathbb{N} 7. P. 1713–1723. 2020.