УДК 550.385.37

ТРЕХЧАСОВЫЕ ИНДЕКСЫ ИОНОСФЕРНОЙ АКТИВНОСТИ

© 2021 г. Т. Л. Гуляева^{1, *}, Х. Хараламбус^{2, **}

¹Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН (ИЗМИРАН), г. Москва, г. Троицк, Россия

²Фредериск Исследовательский Центр, Никосия, Кипр

*e-mail: gulyaeva@izmiran.ru

**e-mail: eng.hh@frederick.ac.cy
Поступила в редакцию 24.02.2021 г.
После доработки 12.04.2021 г.
Принята к публикации 27.05.2021 г.

Предложена система локальных и глобальных 3-часовых индексов ионосферной активности, представляющих собой средневзвешенное значение положительных ионосферных возмущений W-индекса, отрицательных возмущений W-индекса и диапазон возмущений. Выполнен анализ глобальных 3-часовых индексов положительных возмущений ионосферы WU, отрицательных WL, и их диапазона WE = WU - WL с 1994 по 2020 гг. по глобальным картам полного электронного содержания JPL GIM-TEC. По глобальным картам получена высокая корреляция между ионосферной и солнечной активностью ($r2 \cong 0.85$), в то время как геомагнитная возмущенность по kp-индексу показывает слабую корреляцию ($r2 \cong 0.47$) с солнечной и ионосферной активностью. Проведено ретроспективное исследование 3-часовых индексов локальной ионосферной возмущенности DU, DLи DE по критической частоте foF2 (максимальной плотности электронов NmF2) на станциях Москва, Слау-Чилтон, Канберра и Порт Стэнли с 1945 по 2020 гг. Наблюдается асимметрия трендов ионосферной активности в северном и южном полушариях: убывание 3-часовых индексов в Москве и Слау-Чилтон и рост ионосферной возмущенности в Канберре и Порт Стэнли. В то же время геомагнитная активность (kp-индекс) убывает в течение последних солнечных циклов, что может быть связано с расчетом планетарного кр-индекса по ограниченному числу станций, расположенных в основном в северном полушарии.

DOI: 10.31857/S0016794021060079

1. ВВЕДЕНИЕ

Традиционно принято изучать ионосферные возмущения как следствие возмущений в межпланетном пространстве и магнитосфере. Такой подход подтверждается многочисленными установленными зависимостями ионосферной реакции на геомагнитные бури [Danilov, 2013, и ссылки там]. Однако в ряде работ было показано, что положительные ионосферные возмущения с увеличением плотности электронов в максимуме слоя F2, NmF2, пропорциональной критической частоте foF2, и полного электронного содержания ТЕС наблюдаются во многих случаях ранее геомагнитных возмущений, т.е. ионосферные возмущения в этих случаях могут служить предвестником возмущений магнитного поля Земли [Ітmel and Mannucci, 2013; Gulyaeva and Mannucci, 2020]. Кроме того, специальная область литосферно-атмосферно-ионосферных связей рассматривает ионосферные возмущения в связи с землетрясениями, независимо от геомагнитных

возмущений [Пулинец и др., 2021; Oikonomou et al., 2021].

Для операторов космической связи и навигации важно знать, показывают ли ионосферные параметры ее обычное спокойное состояние, характерное для данного уровня солнечной активности, или они указывают на краткосрочные возмущения в ионосфере в связи с возмущениями на Солнце и в магнитосфере Земли [Hapgood et al., 2021]. С этой целью в различных исследованиях, моделях космической среды и в операционных системах применяются на практике геомагнитные и ионосферные индексы [Mayaud, 1980; Perrone and De Franceschi, 1998; Гуляева, 1996; Jakowski, 2012; Перевалова и др., 2016; Gulyaeva, 2017; Nishioka et al., 2017; Gulyaeva et al., 2008, 2018, 2021; Brown et al., 2018; Wilken et al., 2018; Borries et al., 2020; Matzka et al., 2021]. В этих работах приводятся характеристики известных солнечных, геомагнитных и ионосферных индексов, включая их период наблюдений, размерность, географические координаты обсерваторий, поставляющих данные наблюдений, интервалы времени наблюдений. В то время как общедоступность известных геомагнитных индексов находит им широкое применение в научных исследованиях и на практике, ионосферные индексы находятся в процессе разработки [Borries et al., 2020, и ссылки там].

Ионосферные индексы, основанные на наблюдениях полного электронного содержания, ТЕС, применимы к текущим данным наблюдений и исследованиям, начиная с 1990 г. [Jakowski, 2012; Перевалова и др., 2016; Gulyaeva, 2017; Nishioka et al., 2017; Wilken et al., 2018; Borries et al., 2020]. Для характеристики долговременных изменений в ионосфере более пригодны индексы, основанные на данных измерений ионозондов, доступных начиная с 1940 г. [Perrone and De Franceschi, 1998; Гуляева, 1996; Nishioka et al., 2017; Gulyaeva et al., 2008, 2018, 2021; Brown et al., 2018]. Для успешного применения разработанных ионосферных индексов в ионосферных моделях и практике космической связи и навигации является их доступность в сети Интернет, подобно имеющимся геомагнитным индексам [Perrone and De Franceschi, 1998; Gulyaeva, 2017; Gulyaeva et al., 2008, 2018; Matzka et al., 2021].

В данной работе в рассмотрение впервые введены 3-часовые индексы ионосферной активности, которые могут обозначать локальные, региональные или глобальные условия в ионосфере. Целью работы является ретроспективное исследование ионосферной изменчивости с помощью 3-часовых ионосферных индексов и сравнение их с солнечной и геомагнитной активностью.

2. СПЕЦИФИКАЦИЯ ИНДЕКСОВ ИОНОСФЕРНОЙ АКТИВНОСТИ

Мониторинг ионосферы мировой сетью ионозондов и глобальной сетью приемников сигналов навигационных спутников GPS и ГЛОНАСС включает наблюдения ионосферных характеристик, их последующий анализ и прогноз космической погоды для радиосвязи и навигации. Для операторов космической связи и навигации важно знать, показывают ли ионосферные параметры ее обычное спокойное состояние, характерное для данного уровня солнечной активности, или они указывают на краткосрочные возмущения в ионосфере в связи с возмущениями на Солнце и в магнитосфере Земли [Hapgood et al., 2021]. Подобно геомагнитным индексам, локальные изменения ионосферной погоды предложено градуировать W-индексом по четырем уровням для положительных и отрицательных логарифмических отклонений foF2 (NmF2) или полного электронного содержания ТЕС от спокойного медианного значения [Gulyaeva et al., 2008, 2013; Гуляева и Станиславска, 2011]:

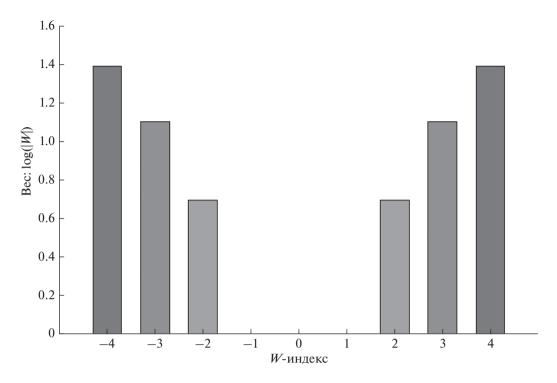
W = 0 отсутствие отклонений

 $W = \pm 1$ спокойное состояние

 $W = \pm 2$ умеренное возмущение

 $W = \pm 3$ умеренная ионосферная буря или суббуря,

 $W = \pm 4$ сильная ионосферная буря.

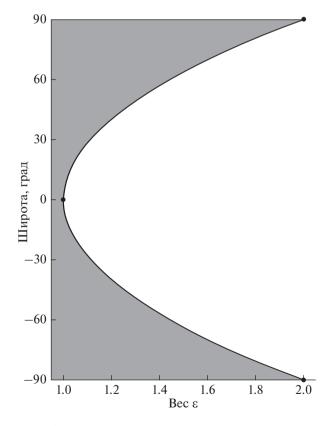

Положительный знак *W*-индекса относится к положительным ионосферным возмущениям, показывающим прирост электронной плотности *NmF2* или *TEC* по сравнению со спокойной медианой в фиксированный момент времени в указанном месте, а знак минус означает отрицательное ионосферное возмущение, т.е. падение плотности или содержания электронов в ионосфере по сравнению со спокойным уровнем. Нулевое значение индекса означает равенство измеренного значения спокойной медиане.

В отличие от 1-часовых индексов, 3-часовые индексы ионосферной активности позволяют отметить устойчивые изменения в ионосфере, длительностью 3 ч и более. Локальный или глобальный 3-часовой индекс ионосферной активности представляет собой средневзвешенное за каждые 3 часа мирового времени значение локального положительного ионосферного возмущения DU (глобальный индекс WU), отрицательного ионосферного возмущения DL (WL) и "диапазон возмущения" DE = DU - DL (WE = WU - WL), обозначенных подобно индексам авроральной электроструи AU, AL и AE [Davis and Sugiura, 1966].

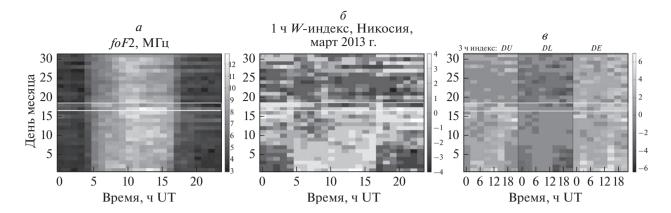
При переходе от 1-часовых ионосферных W-индексов к 3-часовым индексам необходимо учесть вклад каждого W-индекса в зависимости от его величины и расположения на глобусе. Для этого введены весовые коэффициенты, выраженные аналитически в работе [Gulvaeva et al., 2021]. Выбранные весовые коэффициенты, равные натуральному логарифму от абсолютной величины W, представлены на рис. 1. Отметим, что 3-часовые индексы за счет принятых весовых коэффициентов полностью относятся к возмущенным условиям в ионосфере, а спокойные условия (W = 0и $W = \pm 1$) исключаются при их подсчете, поскольку $ln(|\pm 1|) = 0$. Вес каждого последующего уровня *W*-индекса возрастает: $ln(|\pm 2|) = 0.69$, $ln(|\pm 3|) = 1.10, ln(|\pm 4|) = 1.39.$

На рисунке 2 представлено изменение второго типа введенных весовых коэффициентов, которые меняются от 1 до 2 по мере изменения широты от экватора к полюсам. Эти изменения отражают известное распространение ионосферных возмущений от полюсов к экватору, таким образом, учтен наибольший вклад ионосферной возмущенности в высоких широтах в 3-часовые индексы.

Термин "локальный индекс" вводится для обозначения 3-часовых индексов, вычисленных по трем последовательным часовым значениям W-индекса из наблюдений критической частоты


Рис. 1. Весовые коэффициенты, равные натуральному логарифму от абсолютной величины ионосферного W-индекса, используемые при расчете 3-часовых индексов.

foF2 для фиксированных координат (широты и долготы) выбранной ионосферной станции или приемника сигналов навигационных спутников, используемых для измерений ТЕС. "Глобальный индекс" представляет собой осреднение с указанными весовыми коэффициентами (рисунки 1 и 2) значений W-индекса ($W = \pm 2, \pm 3, \pm 4$) за 3 последовательных часа, наблюдаемых в узлах ежечасных глобальных карт GIM-TEC. Глобальные карты GIM-TEC, построенные начиная с 1994 г., и соответствующие им карты GIM-W-индекса представлены в формате IONEX [Schaer et al., 2015] на широтах от 87.5° S до 87.5° N с шагом 2.5°, долготах от 180° W до 180° E с шагом 5°. "Региональные индексы" могут быть отнесены к любому региону в ионосфере, и алгоритм их вычисления подобен расчету "глобальных индексов" с ограничением по числу узлов в выбранном регионе. Результаты анализа 3-часовых локальных и глобальных ионосферных индексов представлены ниже.

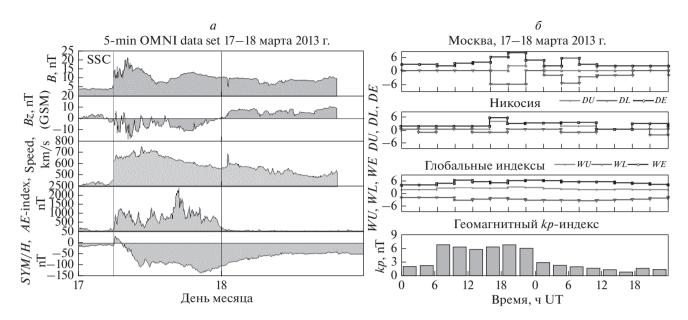

3. РЕЗУЛЬТАТЫ АНАЛИЗА ИОНОСФЕРНОЙ АКТИВНОСТИ

3.1. Ионосферные индексы в спокойных и возмущенных условиях

Пример наблюдаемой критической частоты foF2 и вычисленных по ней 1-часовых и 3-часовых ионосферных индексов приведен на рис. 3,

Рис. 2. Весовые коэффициенты, характеризующие вклад *W*-индекса в зависимости от широты, используемые при расчете 3-часовых индексов ионосферной активности.

Рис. 3. Диаграмма суточных изменений наблюдаемой критической частоты foF2 в Никосии и вычисленных по ней 1-часовых и 3-часовых ионосферных индексов в марте 2013 г. (a) Критическая частота foF2 для каждого часа мирового времени; (б) 1-часовые значения W-индекса; (c) 3-часовые ионосферные индексы: DU (левая часть), DL (центральная часть) и DE (правая часть).


в котором представлены данные, полученные по наблюдениям дигизонда в Никосии (географическая широта 35.0° N. долгота 33.2° E) в течение марта 2013 г. Критическая частота foF2 показана ежедневно в течение месяца для каждого часа мирового времени на рис. За. Видно увеличение значений foF2 в дневные часы, в соответствии с ростом плотности электронов в ионосфере под действием солнечной радиации. 1-часовые значения W-индекса, представленные на рис. 36, показывают картину чередования индексов от часа к часу и ото дня ко дню. Видно преобладание положительных возмущений в дневные часы в первой половине месяца, заметные периоды отрицательных возмущений ночью с 1 по 6 марта и аналогичные явления отрицательной возмущенности в основном днем с 20 по 25 марта. Более сглаженная картина ионосферной возмущенности видна на рис. 3e в 3-часовых ионосферных индексах: DU(левая часть), DL (центральная часть) и DE (правая часть). Здесь эффекты положительных возмущений DU, отрицательных возмущений DL и диапазонных возмущений DE могут быть видны в конкретные дни и конкретные 3-часовые интервалы, начинающиеся в 0, 3, 6, 9, 12, 15, 18 и 21 ч мирового времени. Белыми линиями выделен двухдневный интервал 17—18 марта 2013 г., более подробно рассмотренный в проявлениях космической бури на рис. 4a, δ .

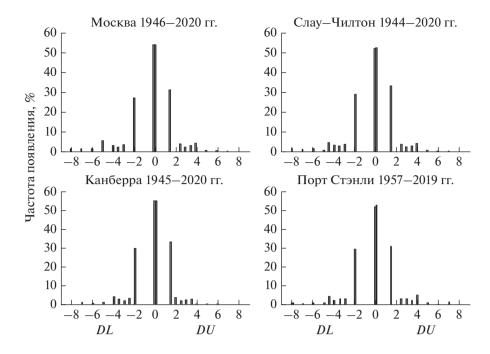
На рисунке 4a изображены параметры геомагнитно-ионосферной бури 17-18 марта 2013 г. (сверху вниз): напряженность B межпланетного магнитного поля ММП, Bz-компонента ММП, скорость солнечного ветра Vsw, геомагнитные индексы авроральной электроструи AE и долготно-симметричный SYM/H- индекс по регистрации H-компоненты геомагнитного поля, эквивалентный Dst-индексу, предоставленные OMNI (https://omniweb.gsfc.nasa.gov/html/omni_min_data.

html). Момент внезапного начала геомагнитной бури отмечен линией SSC (Storm Sudden Commencement), наблюдавшейся 17 марта 2013 г. в 6 ч мирового времени (http://www.obsebre.es/en/rapid). На рисунке 46 представлены 3-часовые ионосферные и геомагнитные индексы (сверху вниз): локальные DU, DL и DE-индексы в Москве и Никосии, глобальные ионосферные WU, WL и WE-индексы, и геомагнитный kp-индекс (https:// www.gfz-potsdam.de/kp-index/). Видно внезапное начало геомагнитной бури в момент SSC (6 ч UT), при котором достигнут максимум kp = 6.7. В ионосфере наблюдается постепенное возрастание ионосферной возмущенности в Москве, начиная с 6 ч UT, достигшее максимума DE = 8.0в 21 ч UT, и более умеренная реакция ионосферы на низкоширотной стации Никосия с максимумом DE = 5.4 в 15 ч UT. Отклик глобальной ионосферы также начинается с момента SSC и достигает пика WE = 6.1 в 9 ч UT. Таким образом, семейство 3-часовых ионосферных индексов отражает особенности отклика локальной и глобальной ионосферы на бурю в межпланетном пространстве.

3.2. Долговременные изменения локальных 3-часовых индексов

Рассмотрим изменение локальных 3-часовых ионосферных индексов по долговременным рядам наблюдений ионозондов на 4 станциях, координаты которых приводятся в табл. 1. Для анализа выбраны станции Слау-Чилтон, Канберра и Москва с многолетними рядами наблюдений в течение 17—25 циклов солнечной активности (СА). Станции Слау-Чилтон и Москва находятся в северном полушарии, а Канберра в южном полушарии. В список станций включена также станция Порт Стэнли в южном полушарии,

Рис. 4. Параметры геомагнитно-ионосферной бури 17—18 марта 2013 г. (a) сверху вниз: напряженность B межпланетного магнитного поля ММП, Bz-компонента ММП, скорость солнечного ветра Vsw, геомагнитные индексы авроральной электроструи AE и долготно-симметричный SYM/H-индекс; SSC — момент внезапного начала геомагнитной бури; (δ) сверху вниз: 3-часовые локальные ионосферные индексы DU, DL и DE в Москве, индексы DU, DL и DE в Никосии, 3-часовые глобальные ионосферные индексы WU, WL и WE, геомагнитный kp-индекс.


которая наряду со станциями Слау-Чилтон и Канберра является одной из базовых станций для вычисления ионосферного IG-индекса, соответствующего солнечной активности [Brown et al., 2018].

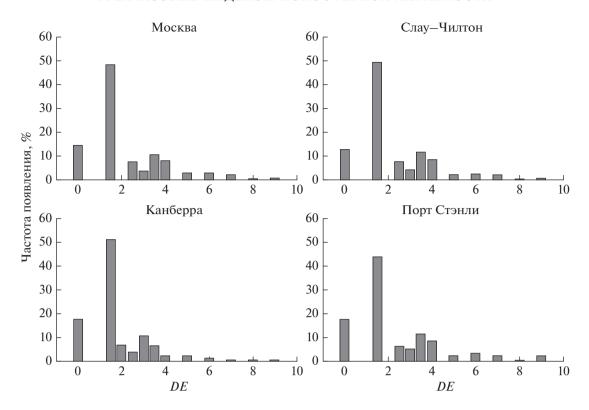
На рисунке 5 для выбранных четырех ионосферных станций показана частота появления отрицательных DL-индексов, спокойных условий (ноль на горизонтальной шкале) и положительных DU-индексов. Видно, что спокойные условия наблюдаются более чем в 50% случаев, а распределение возмущенных условий мало отличается на всех станциях. Ранее при долговременном анализе критических частот в Слау-Чилтон, Канберре и Москве было показано, что характер положительных ионосферных возмущений в области повышенной сейсмической активности отличается от изменений геомагнитной активности [Gulyaeva et al., 2017]. Соответствующее распределение частоты появления индексов диапазона DE показано на рис. 6 для тех же четырех станций за все годы их наблюдения. В данном случае спокойные условия наблюдаются менее чем в 20% случаев на всех станциях, что связано с несовпадением времени появления спокойных условий в DL- и DU-индексах. В то же время распределение возмущенных условий для индекса DE подобно для всех станций.

Рассмотрим многолетние тренды изменения среднегодовых значений диапазонных индексов DE и сравним их со среднегодовыми значениями 3-часового геомагнитного kp- индекса. На рисунке 7a показаны результаты такого сравнения для двух станций в северном полушарии (Москва и Слау-Чилтон). На рисунке 7b показаны результаты сравнения для двух станций в южном полушарии (Канберра и Порт Стэнли). Из рисунка 7a следует, что в северном полушарии наблюдается оди-

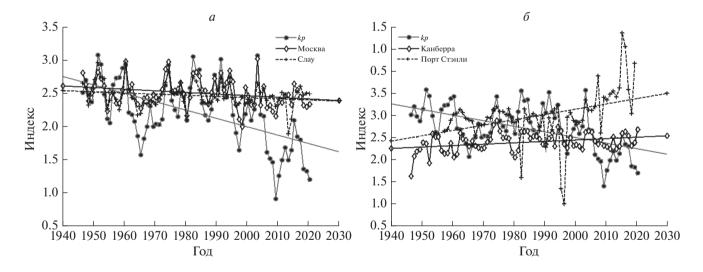
Таблица 1. Географические и геомагнитные координаты ионосферных станций и период наблюдений, использованные при анализе долговременных изменений в ионосфере

Станция	Код URSI	Географические		Геомагнитные		Период
		Lati °N	Long °E	Mlat °N	Mlong °E	наблюдений, гг.
Москва	MO155	55.5	37.3	50.4	123.2	1946-2020
Слау-Чилтон	SL051-RL052	51.6	-1.3	54.1	83.2	1944-2020
Канберра	CB53N	-35.3	149.0	-43.7	-134.3	1945-2020
Порт Стэнли	PSJ5J	-51.7	-57.8	-40.6	10.3	1957-2019

Рис. 5. Частота (в процентах) появления 3-часовых отрицательных DL-индексов и положительных DU-индексов ионосферной активности по многолетним наблюдениям критической частоты foF2 в Москве, Слау-Чилтон, Канберре и Порт Стэнли.


наковая направленность постепенного убывания геомагнитной и ионосферной активности, хотя наклон аппроксимирующей прямой линии убывания для геомагнитного kp-индекса значительно превосходит наклон отрицательного тренда ионосферных возмущений. Однако в южном полушарии наблюдаются разнонаправленные тренды изменения геомагнитной и ионосферной активности. В то время как геомагнитный kp-индекс убывает, ионосферная возмущенность возрастает на станциях Канберра и Порт Стэнли.

Отметим, что рост ионосферной возмущенности в южном полушарии наблюдается на фоне долговременных трендов убывания измеренных значений критической частоты foF2 в южном полушарии [Sharan and Kumar, 2021]. Тренд убывания геомагнитного kp-индекса подобен трендам убывания других геомагнитных индексов на фоне убывания солнечной активности [Gulyaeva et al., 20211. Он может быть также связан с преобладающим расположением магнитометров в северном полушарии, измерения которых используются для вычисления планетарного *kp*-индекса [Bartels, 1949; Matzka et al., 2021]. Преимущество использования глобальной сети станций Интермагнет, расположенных в 113 обсерваториях по всему земному шару, для сопоставлений с поведением ионосферы во время геомагнитных бурь, было недавно показано в работе [Pei et al., 2021]. Однако для исследований долговременных трендов геомагнитной и ионосферной активности использование сети Интермагнет не применимо, так как она функционирует недавно, с 2008 г.


Что касается асимметрии поведения ионосферной возмущенности в северном и южном полушариях, то она неоднократно отмечалась в литературе как по отношению к ионосфере, так и магнитосфере [Gulyaeva et al., 2014; Weygand et al., 2014; Laundal et al., 2017; Brown et al., 2018; Lockwood et al., 2018]. В обзоре Laundal et al. [2017] связывают эту асимметрию с различием ориентации географического и геомагнитного полюсов и разницей в магнитном поле двух полусфер, которые сказываются в асимметрии конвекции плазмы, нейтральных ветров, полного электронного содержания, исходящих потоков ионов, ионосферных токов и авроральных высыпаний. Подобная асимметрия в долговременных трендах ионосферной активности подтверждена в настоящей работе.

3.3. Глобальные ионосферные индексы в цикле солнечной активности

При анализе глобальных 3-часовых индексов ионосферной активности WU, WL, WE по картам GIM-W-индекса, полученным по картам GIM-TEC [Gulyaeva et al., 2013], была вычислена частота появления спокойного состояния (ниже уровня введенных пороговых значений ионосферной возмущенности) за период с 1994 по 2020 гг. В соответствии с описанием схемы расчета "глобаль-

Рис. 6. Частота (в процентах) появления 3-часовых диапазонных DE-индексов ионосферной активности по многолетним наблюдениям критической частоты foF2 в Москве, Слау-Чилтон, Канберре и Порт Стэнли.

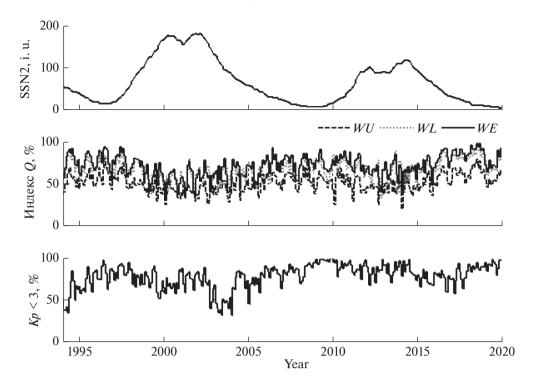


Рис. 7. Многолетние тренды среднегодовых значений диапазонных индексов DE и 3x-часового геомагнитного kp-индекса: (a) индекс kp и индекс DE для двух станций в северном полушарии (Москва и Слау-Чилтон); (б) индекс kp и индекс DE для двух станций в южном полушарии (Канберра и Порт Стэнли).

ного индекса" в Разделе 2, в 3-часовые индексы включены только значения $W=\pm 2,\pm 3,\pm 4$, при этом спокойное состояние из расчета исключено. Для оценки спокойного состояния обозначим символом Q параметр, представляющий процент появления "спокойных" индексов W=0 и $W=\pm 1$ на трех последовательных часовых картах, ис-

пользуемых при подсчете глобальных WU-, WL- и WE- индексов.

Результаты приведены на рис. 8. В верхней панели показано изменение солнечной активности по 12-месячному сглаженному рекалиброванному числу солнечных пятен SSN2 (http://sidc.oma.be/

Рис. 8. Сравнение ионосферных и геомагнитных спокойных условий с солнечной активностью в 23-24 циклах: сглаженное 12-месячное число солнечных пятен SSN2 (верхняя панель); частота появления (в процентах) спокойных условий в ионосфере по глобальным 3-часовым индексам ионосферной активности WU, WL, WE (средняя панель); спокойные 3-часовые геомагнитные kp-индексы, kp < 3, (нижняя панель).

silso/). Результаты расчета индекса Q показаны на средней панели. Сравнение со спокойными 3-часовыми индексами геомагнитной активности kp (kp < 3, нижняя панель) показало, что ионосфера находится в спокойном состоянии (ниже уровня введенных пороговых значений ионосферной возмущенности) в 50-70% времени положительных возмущений WU и от 50 до 90% времени отрицательных WL и диапазонных возмущений WE. Численные оценки изменений глобальных 3-часовых индексов ионосферной возмущенности в сравнении с солнечной и геомагнитной активностью приводятся в табл. 2.

В отличие от рис. 8, где представлено сопоставление спокойных ионосферных и геомагнитных условий с солнечной активностью, в табл. 2

Таблица 2. Коэффициенты корреляции между годовыми индексами ионосферной, геомагнитной и солнечной активности за период с 1994 по 2020 гг.

Индекс	SSN2	kp	WU	WL	WE
SSN2	1.0	0.47	0.86	0.82	0.85
kp		1.0	0.47	0.48	0.51
WU			1.0	0.94	0.99
WL				1.0	0.97
WE					1.0

представлены результаты корреляции между годовыми индексами числа солнечных пятен с годовой частотой появления возмущенных условий по 3-часовым ионосферным индексам и геомагнитному кр-индексу для всего диапазона возмущений ($kp \ge 3$). Отметим, что наилучшая корреляция наблюдается внутри семейства индексов ионосферной возмущенности (коэффициент корреляции 0.94 между WU и WL, 0.97 между WLи WE и 0.99 между WU и WE), что характеризует баланс между положительными WU и отрицательными ионосферными WL возмущениями и их диапазоном WE при подсчете глобальных показателей. Следующий уровень корреляции наблюдается между солнечной активностью и ионосферными возмущениями (коэффициент корреляции от 0.82 до 0.85), что свидетельствует о доминирующем влиянии солнечной активности на ионосферные возмущения. И, наконец, отметим слабую корреляцию геомагнитного кр-индекса с солнечной и ионосферной активностью (коэффициент корреляции от 0.47 до 0.51). При расчете коэффициента корреляции между солнечной и геомагнитной активностью не был учтен сдвиг максимума геомагнитной активности к фазе спада солнечного цикла, когда возмущения обусловлены высокоскоростными потоками солнечного ветра [Matzka et al., 2021]. Этим отчасти объясняется слабая корреляция кр-индекса с солнечной активностью. Кроме того, она обусловлена трендом уменьшения геомагнитной активности в 23—24 солнечном цикле (рис. 7), в то время как в изменения солнечной и ионосферной активности наибольший вклад вносит периодическая 11-летняя цикличность (см. рис. 8, где видна антикорреляция спокойных ионосферных условий с формой солнечных циклов).

4. ВЫВОДЫ

В работе предложена система локальных и глобальных 3-часовых индексов ионосферной активности, представляющих собой средневзвешенное значение положительных ионосферных возмущений *W*-индекса, отрицательных возмущений *W*-индекса и диапазон этих возмущений. При подсчете 3-часовых индексов введены весовые коэффициенты для учета вклада умеренных возмущений, умеренных бурь и интенсивных ионосферных бурь и учета широтной зависимости ионосферных возмущений.

Выполнен анализ глобальных 3-часовых индексов положительных возмущений ионосферы WU, отрицательных возмущений WL, и их диапазона WE = WU - WL с 1994 по 2020 гг. по глобальным картам полного электронного содержания JPL GIM-TEC. Получена высокая корреляция между ионосферной и солнечной активностью $(r2 \cong 0.85)$, в то время как геомагнитная возмущенность по kp-индексу показывает слабую корреляцию $(r2 \cong 0.47)$ с солнечной и ионосферной активностью.

Проведено ретроспективное исследование 3-часовых индексов локальной ионосферной возмущенности DU, DL и DE по критической частоте foF2 (максимальной плотности электронов NmF2) на станциях Москва, Слау, Канберра и Порт Стэнли с 1945 г. по 2020 г. Наблюдается асимметрия трендов ионосферной активности в северном и южном полушариях: убывание 3-часовых индексов в Москве и Слау-Чилтон и рост ионосферной возмущенности в Канберре и Порт Стэнли. В то же время геомагнитная активность kp-индекса убывает в течение последних солнечных циклов, что может быть связано с определением планетарного kp-индекса по ограниченной сети станций в основном северного полушария.

Таким образом, получены первые результаты анализа трендов ионосферной активности за несколько солнечных циклов по ионосферным наблюдениям критической частоты foF2 в течение 75 лет. Полученные результаты подтверждают полезность введенных 3-часовых ионосферных индексов для ретроспективных исследований ионосферной активности.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при поддержке совместного проекта Российского фонда фундаментальных исследований, грант № 19-52-250001_Кипр_а, и Национального исследовательского фонда Кипра RPF_Bilateral/Russia(RFBR)1118/0004 "Ретроспективное моделирование и прогноз ионосферной погоды" (RENAM).

БЛАГОДАРНОСТИ

Авторы выражают глубокую признательность редактору журнала и уважаемым рецензентам статьи за уделенное время и внимание, а также за ценные замечания и предложения, которые позволили существенно улучшить содержательную часть и структуру нашей статьи.

СПИСОК ЛИТЕРАТУРЫ

- Гуляева Т.Л. Логарифмическая шкала ионосферной возмущенности // Геомагнетизм и аэрономия. Т. 36.
 № 1. С. 160–163. 1996.
- *Гуляева Т.Л., Станиславска И.* Классификация ионосферной активности: от локальных индексов к списку ионосферно-плазмосферных бурь // Физика окружающей среды. Томск: ТГУ. С. 81—84. 2011.
- Перевалова Н.П., Едемский И.К., Тимофеева О.В. и др. Динамика возмущенности полного электронного содержания в высоких и средних широтах по данным GPS // Солнечно-земная физика. Т. 2. № 1. С. 36—43. 2016

https://doi.org/10.12737/13831

- *Пулинец С.А., Давиденко Д.В., Будников П.А.* Метод когнитивной идентификации ионосферных предвестников землетрясений // Геомагнетизм и аэрономия. Т. 61. № 1. С. 103-114. 2021.
- https://doi.org/10.31857/S0016794021010132
- Bartels J. The standardized index Ks and the planetary index Kp // IATME Bull № 12b. P. 97. 1949.
- Borries C., Wilken V., Jacobsen K.S. et al. Assessment of the capabilities and applicability of ionospheric perturbation indices provided in Europe // Adv. Space Res. V. 66. № 3. P. 546–562. 2020.

https://doi.org/10.1016/j.asr.2020.04.013

- Brown S., Bilitza D., Yigit E. Ionosonde-based indices for improved representation of solar cycle variation in the International Reference Ionosphere model // J. Atmos. Solar-Terr. Phys. V. 171. P. 137–146. 2018. https://doi.org/10.1016/j.jastp.2017.08.022
- Danilov A.D. Ionospheric F-region response to geomagnetic disturbances // Adv. Space Res. V. 52. № 3. P. 343—366. 2013.

https://doi.org/10.1016/j.asr.2013.04.019

- Davis T.N., Sugiura M. Auroral electrojet activity index AE and its universal time variations. J. Geophys. Res. V. 71. P. 785–801. 1966.
- https://doi.org/10.1029/JZ071i003p00785
- Gulyaeva T.L., Stanislawska I., Tomasik M. Ionospheric weather: Cloning missed foF2 observations for derivation of variability index // Ann. Geophysicae. V. 26. № 2. P. 315—321. http://www.ann-geophys.net/26/315/2008/. 2008.

- Gulyaeva T.L., Arikan F., Hernandez-Pajares M., Stanislawska I. GIM-TEC adaptive ionospheric weather assessment and forecast system // J. Atmos. Solar-Terr. Phys. V. 102. P. 329–340. 2013.

https://doi.org/10.1016/j.jastp.2013.06.011

— Gulyaeva T.L., Arikan F., Hernandez-Pajares M., Veselovsky I.S. North-south components of the annual asymmetry in the ionosphere // Radio Sci. V. 49. № 7. P. 485–496. 2014.

https://doi.org/10.1002/2014RS005401

- Gulyaeva T.L. Ranking ICME's efficiency for geomagnetic and ionospheric storms and risk of false alarms // J. Atmos. Solar-Terr. Phys. V. 164. P. 39–47. 2017. https://doi.org/10.1016/j.jastp.2017.07.021
- Gulyaeva T., Arikan F., Stanislawska I. Persistent long-term (1944–2015) ionosphere-magnetosphere associations at the area of intense seismic activity and beyond // Adv. Space. Res. V. 59. N 4. P. 1033–1040. 2017. https://doi.org/10.1016/j.asr.2016.11.022
- Gulyaeva T.L., Arikan F., Sezen U., Poustovalova L.V. Eight proxy indices of solar activity for the International Reference Ionosphere and Plasmasphere model // J. Atmos. Solar-Terr. Phys. V. 172. P. 122–128. 2018. https://doi.org/10.1016/j.jastp.2018.03.025
- Gulyaeva T.L., Mannucci A.J. Echo of ring current storms in the ionosphere // J. Atmos. Solar-Terr Phys. V. 205. 2020.

https://doi.org/10.1016/j.jastp.2020.105300

- Gulyaeva T.L., Haralambous H., Stanislawska I. Persistent perturbations of ionosphere at diminution of solar and geomagnetic activity during 21–24 solar cycles // J. Atmos. Solar-Terr. Phys. V. 221. 2021. https://doi.org/10.1016/j.iastp.2021.105706
- Hapgood M., Angling M.J., Attrill G. et al. Development of space weather reasonable worst-case scenarios for the UK National Risk Assessment // Space Weather. V. 19. № 4. 2021.

https://doi.org/10.1029/2020SW002593

— *Immel T.J., Mannucci A.J.* Ionospheric redistribution during geomagnetic storm // J. Geophys. Res. Space. V. 118. P. 1–12, 2013.

https://doi.org/10.1002/2013JA018919

- Jakowski N., Borries C., Wilken V. Introducing a disturbance ionosphere index // Radio Sci. V. 47. RS0L14. 2012. https://doi.org/10.1029/2011RS004939
- Laundal K.M., Cnossen I., Milan S.E. et al. North-South asymmetries in Earth's magnetic field. effects on high-latitude geospace // Space Sci. Rev. V. 206. № 1–4. P. 225–

257. 2017.

https://doi.org/10.1007/s11214-016-0273-0

- Lockwood M., Finch I.D., Chambodut A., Barnard L.A., Owens M.J., Clarke E. A homogeneous as index: 2. Hemispheric asymmetries and the equinoctial variation // J. Space Weather Space Clim. V. 8. A58. 2018. https://doi.org/10.1051/swsc/2018044
- Matzka J., Stolle C., Yamazaki Y., Bronkalla O., Morschhauser A. The geomagnetic Kp index and derived indices of geomagnetic activity // Space Weather. V. 19. 2021. https://doi.org/10.1029/2020sw002641
- *Mayaud P.N.* Derivation, meaning and use of geomagnetic indices // Geophys. Monogr. Ser. 22. Washington D.C.: AGU. 1980.
- Nishioka M., Tsugawa T., Jin H., Ishii M. A new ionospheric storm scale based on TEC and foF2 statistics // Space Weather. V. 15. P. 228–239. 2017. https://doi.org/10.1002/2016SW001536
- Oikonomou C., Haralambous H., Pulinets S. et al. Investigation of pre-earthquake ionospheric and atmospheric disturbances for three large earthquakes in Mexico // Geosciences. V. 11. P. 16.

https://doi.org/10.3390/geosciences11010016,2021

- *Pei N., Wu Y., Su R., Li J., Wang Y., Li X., Wu Z.* Global-scale coupling characteristics between geomagnetic storms and ionospheric disturbances // Geomagn. Aeron. V. 61. № 4. P. 632–647. 2021.

https://doi.org/10.1134/S0016793221040101

- Perrone L., De Franceschi G. Solar, ionospheric and geomagnetic indices // Ann. Geophys. V. 41. P. 843–855. 1998. https://doi.org/10.4401/ag-3824
- Schaer S., Gurtner W., Feltens J. IONEX: The IONosphere Map Exchange Format: Version 1.1.: Darmstadt Germany: ESA/ESOC. ftp.aiub.unibe.ch/ionex/draft/ionex11.pdf. 2015.
- Sharan A., Kumar S. Long-term trends of the F2-region at mid-latitudes in the Southern Hemisphere // J. Atmos. Solar-Terr. Phys. V. 220. 2021.

https://doi.org/10.1016/j.jastp.2021.105683

— Weygand J.M., Zesta E., Troshichev O. Auroral electrojet indices in the Northern and Southern Hemispheres: A statistical comparison // J. Geophys. Res. Space. V. 119. № 6. P. 4819—4840. 2014.

https://doi.org/10.1002/2013JA019377

— Wilken V., Kriegel M., Jakowski N., Berdermann J. An ionospheric index suitable for estimating the degree of ionospheric perturbations // J. Space Weather Space Clim. V. 8. A19. 2018.

https://doi.org/10.1051/swsc/2018008