УЛК 523-62.523.9

КОРРЕЛЯЦИЯ ЖЕСТКОСТИ ОБРЕЗАНИЯ КОСМИЧЕСКИХ ЛУЧЕЙ С ПАРАМЕТРАМИ ГЕЛИОСФЕРЫ И ГЕОМАГНИТНОЙ АКТИВНОСТИ НА РАЗНЫХ ФАЗАХ МАГНИТНОЙ БУРИ В НОЯБРЕ 2004 г.

© 2020 г. Н. Г. Птицына^{1, *}, О. А. Данилова¹, М. И. Тясто¹

¹Санкт-Петербургский филиал Института земного магнетизма, ионосферы и распространения радиоволн РАН (СПбФ ИЗМИРАН), г. Санкт-Петербург, Россия

*e-mail: nataliaptitsyna@ya.ru
Поступила в редакцию 06.07.2019 г.
После доработки 15.08.2019 г.
Принята к публикации 26.09.2019 г.

Рассчитана корреляция вариаций жесткостей геомагнитного обрезания космических лучей ΔR с параметрами межпланетной среды и индексами геомагнитной активности Dst и Kp во время разных фаз супербури 7—8 ноября 2004 г. Наиболее сильная корреляция на всех этапах развития бури наблюдалась между жесткостью обрезания и Dst (коэффициенты корреляции $k \approx 0.70-0.98$); можно отметить и некоторое стабильное влияние плотности солнечного ветра N ($k \approx 0.50-0.80$). В главной фазе бури наблюдается зависимость вариаций жесткостей обрезания от всех динамических параметров солнечного ветра, особенно сильная для плотности N и давления P. Корреляция ΔR с V на всех фазах отрицательная, а с N и P она положительна во время главной фазы и отрицательна в восстановительной. Вариации жесткости обрезания не проявляли чувствительности к Bz-компоненте $MM\Pi$, так же как к азимутальной компоненте By и модулю $MM\Pi$ B, ни перед началом бури, ни в ее главной фазе. Значительная корреляция/антикорреляция ΔR как с B, так и со всеми компонентами $MM\Pi$ наблюдается лишь в восстановительном периоде. Специфический отклик жесткости геомагнитного обрезания на параметры гелиосферы и магнитосферы на разных фазах магнитной бури, по-видимому, определяется различным относительным вкладом магнитосферных глобальных токовых систем в эти периоды.

DOI: 10.31857/S0016794020020145

1. ВВЕДЕНИЕ

Планетарное распределение жесткости геомагнитного обрезания (ЖГО) космических лучей (КЛ), т.е. самой низкой жесткости, которой должна обладать частица, чтобы проникнуть в заданную точку в магнитосфере, определяется пространственной структурой и интенсивностью магнитосферного магнитного поля, которое ее тормозит. Свойства геомагнитного экрана меняются во времени в зависимости от динамического взаимодействия магнитных и электрических полей солнечного ветра (СВ) с внутри-магнитосферными полями и токами. Особенно значительные изменения в токах, плазме и магнитном поле магнитосферы происходят во время геомагнитной бури [Leske et al., 2001]. Знание вариаций геомагнитных порогов в зависимости от параметров солнечного ветра и магнитосферы во время сильных возмущений становится все более актуальным для безопасности космических аппаратов и их экипажей, а также для авиаперевозок, например, работы [Iucci et al., 2005; Буров и др., 2005; Kress et al., 2015].

В ряде работ установлена интенсивная связь вариаций ЖГО и изменений геомагнитной активности. Так, авторы работы [Tyssoy and Stadsnes, 2014] обнаружили, что для бури 2006 г. вариации ЖГО достаточно хорошо коррелируют с *Dst* индексом геомагнитной активности. В работе [Птицына и др., 2019] обнаружена высокая корреляция ЖГО с *Dst* для семи бурь 23-го и 24-го солнечных циклов, при этом корреляция увеличивается с уменьшением Dst, т.е. с ростом интенсивности бури. Сильная корреляция широты обрезания КЛ с геомагнитным индексом Кр и несколько меньшая – с *Dst* получена в работе [Adriani et al., 2016]. При этом наиболее значительная корреляция с Dst наблюдается во время фазы восстановления бури. В работе [Тясто и др., 20111 найдено, что для бури в мае 2005 г. снижение геомагнитных порогов четко следует ходу вариации *Dst* в главной фазе, а максимум падения ЖГО наблюдается в минимуме *Dst* (максимуме бури). С другой стороны, в работе [Kress et al., 2010] получено, что наибольшее падение ЖГО во время бури в октябре 2003 г. наблюдается не в максимуме бури, а за 4 ч до ее наступления.

В ряде статей рассматривалась зависимость вариаций жесткостей обрезания КЛ от параметров СВ и межпланетного магнитного поля ММП на основе различных экспериментальных и теоретических подходов. При этом использовались как прямые наблюдения заряженных частиц на космических аппаратах, так и численное моделирование. На основе измерений на космическом аппарате (KA) SAMPEX было установлено, что вариации ЖГО высокоширотных энергичных частиц вызывались изменениями Bz-компоненты ММП и скорости V солнечного ветра [Kanekal et al., 1998]. Напротив, в работе [Shimazu, 2009] в рамках магнитогидродинамического подхода получено, что во время магнитной бури проникновение частиц на расстояние четырех земных радиусов Re обусловлено лишь ростом давления солнечного ветра P и не зависит от знака и интенсивности Вz ММП. Аналогично в работе [Tyssøy and Stadsnes, 2014] получено, что на широту обрезания в основном влияет динамическое давление солнечного ветра (P). Авторы работы [Adriani et al., 2016] в рамках эксперимента на KA PAMELA нашли, что широты обрезания (и ЖГО) во время бури 14 декабре 2006 г. лучше всего коррелировали с общим магнитным полем B, а также с Bz и скоростью V солнечного ветра. Ни динамическое давление P, ни плотность N не показали значимой корреляции на временном масштабе всей бури. И только для главной фазы бури получена высокая положительная корреляция широт обрезания с Р. В работе [Птицына и др., 2019] получено, что наиболее геоэффективным межпланетным параметром для четырех сильных бурь 24 цикла оказалась скорость солнечного ветра V, в то время как корреляция с Bz выражена слабо.

Таким образом, результаты исследования зависимости ЖГО от межпланетных параметров и геомагнитной активности достаточно противоречивы. При этом есть некоторые указания на то, что корреляция может быть различной для разных фаз бури. Однако контроль вариаций ЖГО параметрами гелио- и магнитосферы на разных фазах магнитной бури практически не изучен; можно указать лишь одно детальное исследование, где найдены соответствующие коэффициенты корреляции для разных фаз умеренной бури 14 декабря 2006 г. [Adriani et al., 2016]. Необходимы дальнейшие работы в этой области, которые смогут прояснить степень влияния различных параметров СВ и ММП на разных этапах эволюции магнитных бурь, в том числе очень сильных.

В конце октября—начале ноября 2004 г. наблюдалась повышенная солнечная активность, вспышки и эруптивные выбросы. Эта повышенная активность была связана с прохождением по диску Солнца двух групп пятен — активных областей 10691 и 10696 [Ермолаев и др., 2014]. Число и мощность вспышек были не очень высоки, тем не менее, магнитное возмущение 7-13 ноября 2004 г. было одним из самых сильных за весь период наблюдений Dst-индекса. Это сильнейшее магнитное возмущение состояло из двух бурь, следующих одна за другой, с минимумом Dst = -373 нТл для первой бури 7 ноября и Dst = -295 нТл для второй бури 10 ноября.

Целью нашей работы было проследить чувствительность ЖГО к динамике параметров межпланетной среды и магнитосферы во время эволюции первой из этих бурь. Эта статья является продолжением наших работ [Tyasto et al., 2013; Птицына и др., 2019], где исследовались вариации ЖГО во время обеих бурь в период 7-13 ноября 2004 г. Новым элементом данной работы является то, что мы провели анализ корреляций изменений ЖГО с межпланетными параметрами и индексами геомагнитной активности во время каждой из трех фаз развития анализируемой бури: на предварительном этапе (перед бурей), в главной и восстановительной фазах бури. Кроме того, добавлен расчет и анализ корреляций с общим межпланетным магнитным полем В и Кр-индексом геомагнитной активности.

2. МЕТОДЫ ИССЛЕДОВАНИЯ И ДАННЫЕ

Мы оценивали связь вариаций жесткости геомагнитного обрезания ЖГО с изменением параметров ММП, СВ и геомагнитной активности для бури 7—8 ноября 2004 г. Для этого были использованы вариации ЖГО, рассчитанные для этой бури ранее в работах [Туаsto et al., 2013; Птицына и др., 2019] двумя разными способами — методом спектрографической глобальной съемки (СГС) и методом прослеживания траекторий частиц космических лучей в модельном магнитном поле.

2.1. Методы

В основе метода СГС лежит рассмотрение процессов изменения энергии заряженных частиц в регулярных электромагнитных полях гелиосферы [Дворников и др., 2013]. Метод использует для анализа комплекс наземной регистрирующей аппаратуры (мировую сеть нейтронных мониторов, наземные и подземные мезонные телескопы и т.д.). Статистическая ошибка в определении ЖГО с учетом статистической точности измерений на станциях космических лучей мировой сети не превышает по абсолютной величине $0.05\ \Gamma B$. Вариации ЖГО, полученные этим методом ($\Delta R_{\rm crc}$), следуя [Птицына и др., 2019], будем считать "наблюдательными".

Для расчета геомагнитных порогов методом прослеживания траекторий частиц КЛ необходимо задать магнитное поле магнитосферы, которое обычно описывается какой-либо моделью [Мс-Cracken et al., 1962; Shea et al., 1965]. При этом точ-

ность определения геомагнитных порогов зависит от точности магнитосферной модели, используемой при расчетах. В работах [Tyasto et al., 2013; Птицына и др., 2019] была использована магнитосферная модель Ts01 [Tsyganenko, 2002a, b; Tsyganenko et al., 2003]. В модели *Ts*01 основными источниками магнитного поля магнитосферы являются: симметричный и частичный круговые токи, система токов хвоста магнитосферы, продольные токи Биркеланда регионов 1 и 2, токи на магнитопаузе. В качестве входных параметров, определяющих влияние межпланетных условий на магнитосферу, используются *Dst*-вариация, плотность и скорость СВ, а также компоненты ММП. Вариации ЖГО, полученные этим методом (ΔR_{ad}), следуя [Птицына и др., 2019], будем считать "модельными".

 $\Delta R_{\rm ad}$ и $\Delta R_{\rm crc}$ в работах [Tyasto et al., 2013; Птицына и др., 2019] определялись как разности между значениями ЖГО, рассчитанными для каждого часа в период бури, и жесткостями в спокойный период перед бурей. Коэффициенты корреляции k между $\Delta R_{\text{эф}}$ и $\Delta R_{\text{сгс}}$ и исследуемыми параметрами вычислялись для следующих станций: Токио (35.75° N, 139.72° E), Алматы (43.20° N, 76.94° E), Рим (41.90° N, 12.52° E), Иркутск (52.47° N, 104.03° E), Москва (55.47° N, 37.32° E) и Хобарт (42.90° S, 147.33° E). Станции выбирались на разных широтах таким образом, чтобы они в спокойное время охватывали большую полосу жесткостей обрезания *R*: Токио – 11.0 ГВ, Алма-Ата - 6.18 ГВ, Рим - 6.1 ГВ, Иркутск -3.25 ГВ, Москва — 2.12 ГВ, Хобарт — 1.76 ГВ. В данном случае за "спокойные" ($Dst \approx 0$) были взяты среднесуточные значения ЖГО 5 ноября 2004 года. Коэффициенты k и стандартные ошибки ѕ были получены из анализа регрессионных уравнений отдельно по выборкам наблюдений для периодов каждой из трех фаз — предварительной, главной и восстановительной, а также на масштабе всей бури.

2.2. Данные

Данные о параметрах солнечного ветра (плотность N, скорость V, давление P), ММП (полное поле B, компоненты Bz и By), индексах геомагнитной активности (Kp и Dst) взяты из базы OMNI на сайте https://omniweb.gsfc.nasa.gov/form/dx1.html. На рисунке 1 приведены эти параметры солнечного ветра и индексы геомагнитной активности во время бури 7-8 ноября 2004 г.; на верхней панели представлены значения $\Delta R_{\rm эф}$ и $\Delta R_{\rm crc}$ для станции Москва. Изменения ЖГО на других станциях качественно не отличаются от изменений ЖГО для Москвы (соответствующие кривые приведены в [Туаsto et al., 2013].

Магнитной буре 7-8 ноября 2004 г. предшествовали три всплеска SSC, зарегистрированные 7 ноября около 03 UT, 11 UT и 19 UT [Ермолаев и др., 2014; Tsurutani et al., 2008]. Эти SSC были вызваны ударными волнами, которые "накачали" полное магнитное поле B от 4 нTл до очень высоких значений 44 нТл. Это указывает на то, что соответствующее межпланетное возмущение было очень сложным, ему соответствовало возмущенное состояние геомагнитного поля на протяжении всего дня 7 ноября (рис. 1), что не позволяет однозначно соотнести начальную фазу бури лишь с последним SSC. Считается, что начальная фаза бури длится до появления южной компоненты ММП, после чего начинается главная фаза, сопровождающаяся падением Dst. 7 ноября отрицательная компонента ММП появилась в районе 20 UT [Ермолаев и др., 2014]. Падение Dst продолжалось до 06:00 UT 8 ноября, когда индекс достиг своего минимального значения -373 нТл. Затем началось восстановление параметров до предбуревого значения. Однако этот процесс был прерван началом второй бури с приходом очередного ударного фронта в утренние часы 9 ноября, в то время, когда Dst-вариация была еще достаточно сильной (~100 нТл).

С учетом вышеперечисленных особенностей мы разбили период магнитной бури 7-8 ноября на три фазы: предварительная фаза бури, т.е. период перед бурей с 03:00 UT по 19:00 UT 7 ноября, главная фаза с 20:00 UT 7 ноября по 06:00 UT 8 ноября, фаза восстановления с 07:00 UT по 24:00 UT 8 ноября.

3. РЕЗУЛЬТАТЫ

В таблицах 1-3 приведены коэффициенты корреляции $\Delta R_{\text{эф}}$ и ΔR_{crc} с *Dst*, *Kp*, *Bz*, *By*, *B*, *N*, *V* и *P* для разных фаз бури вместе со средним значением стандартной ошибки s. Числители/знаменатели в каждой ячейке табл. 1-3 представляют собой коэффициенты корреляции $\Delta R_{\rm crc}/\Delta R_{
m s\phi}$ с межпланетными параметрами и геомагнитными индексами. В последнем столбце приведены коэффициенты корреляции K между модельными $\Delta R_{
m ad}$ и наблюдательными $\Delta R_{\rm crc}$. В двух последних строках приведены значения k, усредненные по всем станциям, и соответствующие стандартные ошибки *s*, также усредненные по всем станциям. Станции в таблицах расположены в порядке снижения порогов в спокойное время от ст. Токио к ст. Хобарт, т.е. от 11.02 ГВ до 1.75 ГВ.

3.1. Предварительная фаза бури

Uз таблицы 1 видно, что перед бурей наблюдательные вариации жесткостей обрезания $\Delta R_{\rm crc}$ обнаруживают наибольшую корреляцию с Dst-ин-

Рис. 1. Вариации жесткостей обрезания, параметров солнечного ветра, межпланетного магнитного поля и геомагнитной активности 7—8 ноября 2004 г. $\Delta R_{\rm эф}$ (открытые кружки) и $\Delta R_{\rm crc}$ (крестики) для станции Москва; Bz — черные кружки, By — открытые треугольники.

дексом геомагнитной активности. Коэффициенты корреляции k превышают 0.70 практически для всех станций KЛ, кроме станции в Токио

 (0.50 ± 0.09) , достигая максимума 0.80 ± 0.04 в Иркутске. Корреляции модельных $\Delta R_{\rm sop}$ с *Dst* несколько меньше, что свидетельствует, по-види-

Таблица 1. Корреляция вариаций ЖГО ($\Delta R_{\rm crc}/\Delta R_{\rm 3 \Phi}$) с параметрами солнечного ветра и геомагнитного поля в предварительной фазе бури

Станция	Параметры								
	Dst	Кр	В	Bz	Ву	N	V	P	K
Токио	0.49/0.60	-0.01/0.10	-0.16/0.29	-0.33/0.63	-0.09/-0.09	0.45/0.41	-0.22/0.34	0.16/0.58	0.12
Алматы	0.77/0.64	0.13/-0.31	-0.07/-0.30	-0.19/0.15	-0.16/-0.66	0.69/0.46	-0.07/-0.23	0.42/0.26	0.41
Рим	0.78/0.67	0.14/-0.35	-0.06/-0.18	-0.19/0.37	-0.16/-0.60	0.69/0.61	-0.07/-0.13	0.43/0.43	0.40
Иркутск	0.81/0.54	0.25/-0.44	0.08/-0.31	0.05/0.20	-0.18/-0.65	0.72/0.23	0.12/-0.23	0.58/0.19	0.26
Москва	0.75/0.66	0.26/-0.39	0.12/-0.28	0.15/0.24	-0.18/-0.65	0.68/0.47	0.18/-0.18	0.59/0.32	0.51
Хобарт	0.74/0.63	0.26/-0.17	0.16/0.04	0.21/0.50	-0.19/-0.37	0.64/0.42	0.22/0.11	0.60/0.49	0.52
Средние	0.72/0.63	0.17/-0.26	0.01/-0.12	0.01/0.35	-0.16/-0.50	0.65/0.43	0.03/-0.05	0.46/0.38	0.37
s (±)	0.06/0.06	0.08/0.07	0.08/0.07	0.08/0.07	0.08/0.06	0.06/0.07	0.08/0.07	0.07/0.07	0.07

Таблица 2. Корреляция вариаций ЖГО ($\Delta R_{\rm crc}/\Delta R_{\rm sph}$) с параметрами солнечного ветра и геомагнитного поля во время главной фазы бури

Станция	Параметры									
	Dst	Кр	В	Bz	Ву	N	V	P	K	
Токио	0.53/0.98	-0.66/-0.78	-0.05/0.25	0.40/0.66	0.26/0.21	0.51/0.84	-0.11/-0.52	0.52/0.82	0.55	
Алматы	0.92/0.99	-0.75/-0.69	0.31/0.40	0.42/0.50	0.03/0.07	0.79/0.84	-0.53/-0.56	0.77/0.82	0.89	
Рим	0.93/0.99	-0.75/-0.66	0.31/0.41	0.43/0.51	0.03/0.09	0.80/0.80	-0.54/-0.62	0.77/0.77	0.91	
Иркутск	0.98/0.99	-0.67/-0.69	0.44/0.40	0.36/0.53	-0.01/0.09	0.80/0.84	-0.66/-0.61	0.76/0.81	0.96	
Москва	0.97/0.99	-0.66/-0.65	0.43/0.48	0.36/0.48	-0.13/0.02	0.80/0.81	-0.67/-0.70	0.76/0.77	0.94	
Хобарт	0.95/0.96	-0.73/-0.76	0.33/0.25	0.40/0.69	-0.15/0.27	0.84/0.85	-0.60/-0.50	0.81/0.84	0.89	
Средние	0.88/0.98	-0.70/-0.70	0.30/0.37	0.39/0.56	-0.01/0.13	0.78/0.83	-0.52/-0.59	0.73/0.80	0.86	
s (±)	0.09/0.07	0.18/0.28	0.24/0.36	0.24/0.32	0.25/0.39	0.16/0.22	0.21/0.31	0.17/0.23	0.17	

Таблица 3. Корреляция вариаций ЖГО ($\Delta R_{\rm crc}/\Delta R_{\rm sqh}$) с параметрами солнечного ветра и геомагнитного поля в восстановительной фазе бури

Станция	Параметры								
	Dst	Кр	В	Bz	Ву	N	V	P	K
Токио	0.05/0.98	-0.36/-0.88	-0.05/-0.97	0.50/0.82	0.03/-0.83	-0.34/-0.79	0.11/-0.82	-0.25/-0.88	0.17
Алматы	0.68/0.98	-0.68/-0.82	-0.65/-0.96	0.75/0.79	-0.53/-0.84	-0.63/-0.79	-0.53/-0.84	-0.66/-0.88	0.72
Рим	0.71/0.98	-0.68/-0.85	-0.68/-0.97	0.74/0.80	-0.56/-0.83	-0.64/-0.77	-0.57/-0.84	-0.67/-0.86	0.72
Иркутск	0.86/0.98	-0.66/-0.85	-0.83/-0.98	0.65/0.82	-0.72/-0.82	-0.62/-0.77	-0.77/-0.84	-0.71/-0.86	0.85
Москва	0.89/0.97	-0.63/-0.85	-0.86/-0.96	0.58/0.83	-0.76/-0.81	-0.55/-0.77	-0.83/-0.81	-0.67/-0.86	0.87
Хобарт	0.88/0.98	-0.64/-0.87	-0.87/-0.97	0.57/0.82	-0.75/-0.86	-0.51/-0.77	-0.82/-0.83	-0.64/-0.85	0.85
средние	0.80/0.98	-0.61/-0.86	-0.66/-0.97	0.63/0.81	-0.55/-0.83	-0.55/-0.78	-0.71/-0.83	-0.60/-0.87	0.67
s (±)	0.11/0.05	0.14/0.14	0.1/0.06	0.13/0.15	0.14/0.15	0.15/0.17	0.13/0.15	0.13/0.14	0.17

мому, о том, что модель Ts01 описывает состояние магнитосферы в период перед бурей недостаточно адекватно. Геомагнитная активность, выраженная Kp-индексом, мало влияла на ΔR : $k \sim 0.40-0.50 \pm 0.08$ на всех станциях.

Из всех динамических параметров солнечного ветра наиболее геоэффективным на предварительной фазе являлась плотность (среднее $k = 0.65 \pm 0.06$) и в несколько меньшей степени давление (табл. 1). Следует отметить, что корре-

ляция с плотностью наименьшая для ст. Токио (0.45 ± 0.09) , в то время как для станций Иркутск, Москва и Рим, для которых пороговые значения жесткостей в спокойное время значительно меньше, чем для Токио, коэффициент корреляции $k\sim0.70\pm0.06$. Ни скорость СВ, ни параметры ММП никоим образом не отражались в значениях $\Delta R_{\rm crc}$. Вариации модельных жесткостей $\Delta R_{\rm эф}$ показывают похожую, хотя и несколько менее выраженную картину для корреляции с параметрами СВ. Корреляция $\Delta R_{\rm эф}$ с ММП имеет одно отличие — k для By достаточно велико (>0.60) для среднеширотных станций в отличие от $\Delta R_{\rm crc}$.

3.2. Главная фаза бури

Из таблицы 2 видно, что во время главной фазы бури корреляция $\Delta R_{\rm crc}$ с геомагнитной активностью и динамическими параметрами СВ усилилась. На этой фазе наибольшая корреляция $\Delta R_{\rm crc}$ наблюдается с *Dst*-индексом. На всех станциях коэффициенты k были в пределах 0.91-0.98кроме Токио (0.53 \pm 0.14). Корреляция *Dst* с ΔR_{adv} на всех станциях была еще выше (0.98-0.99). Корреляция ΔR с геомагнитной активностью, выраженной Kp-индексом, была значительно меньше (среднее по всем станциям $k = 0.70 \pm 0.2$). Отметим, что коэффициент корреляции для Dst имеет максимум на станциях Москва и Иркутск, для которых пороговые значения жесткостей в спокойное время $\approx 2-3 \Gamma B$, а для *Кр* максимум наблюдается на станциях Алматы и Рим, где в спокойное время ЖГО ≈6 ГВ.

Во время главной фазы наблюдалась довольно существенная корреляция $\Delta R_{\rm crc}$ с динамическими параметрами СВ — плотностью и давлением. Коэффициенты k были наиболее высокими при корреляции с плотностью N, достигая ~ 0.80 для всех станций кроме Токио, где k, однако, тоже был сравнительно высок (0.50 ± 0.14) . Корреляция с динамическим давлением P достигала 0.81 ± 0.13 на ст. Хобарт и падала до 0.50 ± 0.14 для ст. Токио. Корреляция ΔR со скоростью V на этом этапе в среднем показала $k = -0.52 \pm 0.21$.

Корреляция ΔR с общим межпланетным магнитным полем B и его компонентой Bz во время главной фазы развития бури была незначительной ($k \le 0.40$). Корреляция с By практически отсутствовала. Кроме того, ошибки при определении k были высокими.

Корреляция $\Delta R_{\rm 3\phi}$ со всеми исследуемыми параметрами выглядит аналогично, хотя и с несколько более высокими k, но и с большими ошибками. Таким образом, для главной фазы модель Ts01 скорее всего переоценивает вклад Bz в вариации геомагнитных порогов.

На рисунке 1 видно, что общее ММП B и его компоненты в самом начале главной фазы бури

находятся в возмущенном состоянии. Чтобы обнаружить возможный вклад этих возмущений в вариации ЖГО, кроме расчета k в течение всей главной фазы бури (табл. 2) мы провели такие же расчеты для периода с 22:00 UT (результаты корреляций не показаны в статье). В этом случае расчет корреляций жесткостей с *Bz* и *Bv* не приводит к сколько-нибудь заметным изменениям k. Корреляционные соотношения для связи вариаций ΔR с динамическими параметрами CB также меняются несущественно. Однако корреляция $\Delta R_{\rm crc}$ с общим полем В показывает рост коэффициента корреляции: усредненный по всем станциям k = $= 0.54 \pm 0.17$, а для среднеширотных станций Москва и Иркутск $k > 0.70 \pm 0.2$. Коэффициенты $k \approx 0.70 \pm 0.27$ получаются и для расчетов корреляций B с ΔR_{ad} .

3.3. Восстановительная фаза бури

Из таблицы 3 видно, что на восстановительной фазе наблюдается некоторое падение корреляций ΔR с геомагнитными индексами, но, тем не менее, корреляция с Dst остается самой высокой по сравнению с другими параметрами. Отметим, что коэффициент корреляции $\Delta R_{\rm crc}$ с Dst достигает максимума (0.89 \pm 0.11) на ст. Хобарт, для которой в спокойное время ЖГО \approx 1.75 ГВ. Корреляция $\Delta R_{\rm crc}$ с Kp составляет в среднем $k=0.61\pm0.14$ с максимумом на станциях Рим и Алматы, пороговая жесткость которых \approx 6 ГВ. Корреляция $\Delta R_{\rm эф}$ с Kp достигает максимума 0.88 ± 0.14 на ст. Токио.

Видно, что на восстановительной фазе развития бури (табл. 3), в отличие от других фаз, компоненты Bz и By ММП и особенно его полное значение B вносят существенный вклад в вариации ЖГО. Корреляция ΔR с B и By отрицательная, а с Bz — положительная. Коэффициент корреляции k между $\Delta R_{\rm crc}$ и B менялся от 0.65 ± 0.13 на станциях Рим и Алматы (ЖГО ≈ 6 ГВ) до 0.87 ± 0.06 на станциях Москва и Хобарт (ЖГО ≈ 2 ГВ). Таким образом, прослеживается тенденция некоторого увеличения корреляция $\Delta R_{\rm crc}$ с B с уменьшением геомагнитных порогов станций. Для $\Delta R_{\rm 3ф}$ корреляция с B очень высокая, k=0.96 — 0.98 ± 0.06 для всех станций, включая Токио.

Корреляция ΔR с динамическими параметрами СВ показала, что все они достаточно сильно влияют на ЖГО, однако наиболее сильная связь прослеживается для P и V. Максимальный по абсолютной величине коэффициент корреляции $\Delta R_{\rm crc}$ с V достигается для Москвы (-0.83 ± 0.12), а минимальный для Токио (0.11 ± 0.14). Для P связь максимальна в Иркутске (-0.71 ± 0.13), а минимальна в Токио (-0.25 ± 0.14). Коэффициенты корреляции $\Delta R_{\rm эф}$ с V и P лежат в пределах от -0.81 до -0.87 для всех станций.

Следует подчеркнуть, что на восстановительной фазе корреляция ΔR со всеми параметрами СВ и ММП (N, V, P, B и By), кроме Bz, является отрицательной. Т.е. распад токовых систем на восстановительной фазе бури вызывает в вариациях ЖГО отклик, который находится в противофазе с поведением почти всех параметров как СВ, так и магнитного поля.

3.4. Геоэффективные параметры

В этом параграфе мы проанализировали глобальное поведение тех параметров, которые наиболее существенно влияют на вариации геомагнитных порогов, вне зависимости от широтных эффектов. Для этого на рисунке 2 приведены параметры, для которых усредненные по всем станциям значения коэффициента корреляции $|k| \ge$ ≥ 0.50 для обоих ΔR (наблюдательных и модельных) или хотя бы для одного из них. На рисунке 2 представлены наиболее значительные корреляции между ΔR и параметрами ММП, солнечного ветра и геомагнитной активности во время предварительной (a), главной (b), восстановительной (θ) фаз и на масштабе всей бури (ϵ). Кроме того, последний столбик К изображает коэффициент корреляции между $\Delta R_{\rm crc}$ и $\Delta R_{
m s}_{
m p}$. Эти рисунки показывают эволюцию отклика ЖГО на изменения наиболее геоэффективных параметров СВ, ММП и геомагнитной активности в процессе развития магнитной бури. Отметим, что до округления коэффициент для By k = -0.503, т.е. он превышает по модулю 0.5.

Из рисунка 2 видно, что наиболее сильная связь ΔR наблюдается с Dst, причем она прослеживается на всем протяжении бури, на всех ее фазах, достигая максимума в период главной фазы (среднее $k=0.88\pm0.09$ для $\Delta R_{\rm crc}$ и 0.98 ± 0.07 для $\Delta R_{\rm эф}$). В период восстановительной фазы значения k лишь слегка уступают по величине значениям k для главной фазы. Влияние Kp на ΔR несколько меньше, и оно начинается лишь на главной фазе: для $\Delta R_{\rm crc}/\Delta R_{\rm эф}$ на главной фазе $k=-0.70\pm0.18/-0.70\pm0.28$, на восстановительной фазе $k=-0.61/-0.86\pm0.14$.

Все динамические параметры СВ оказываются геоэффективными во время главной и восстановительной фаз, причем плотность ветра N показывает значительную связь с ΔR на всех трех фазах бури. На главной фазе (рис. 26) доминирует влияние N ($\Delta R_{\rm crc}/\Delta R_{\rm sp}$: $0.76 \pm 0.16/0.83 \pm 0.22$) и P ($0.73 \pm 0.17/0.80 \pm 0.23$), а на восстановительной (рис. 26) — V ($-0.71 \pm 0.13/-0.83 \pm 0.15$).

В то же время, как видно из рис. 2, ММП практически не влияет на геомагнитные пороги ни на предварительной, ни на главной фазе анализируемой бури. Только во время восстановительной фазы наблюдается существенная связь ΔR как с

Рис. 2. Корреляции изменений ЖГО (наблюдательных и модельных) с параметрами ММП, солнечного ветра и геомагнитного поля, а также коэффициент корреляция K между $\Delta R_{\rm CPC}$ и $\Delta R_{\rm 3}$ ф. Показаны коэффициенты корреляции $|k| \ge 0.50$ для фаз: (a) — предварительная, (b) — главная, (b) — восстановительная, (c) — вся буря.

общим полем B, так и с его компонентами. Причем, отклик ΔR на изменения компонент разнонаправленный. Наблюдается прямая корреляция ΔR с Bz и антикорреляция — с By.

Заметим, что во время главной и восстановительной фаз корреляция исследуемых параметров с модельными вариациями ЖГО практически всегда выше, чем корреляция с наблюдаемыми. А на предварительной фазе ситуация обратная. Это согласуется с тем фактом, что модель Ts01 развита для описания магнитосферы в условиях сильного возмущения, которое еще не достигается перед началом бури. Корреляция между $\Delta R_{\rm crc}$ и $\Delta R_{\rm эф}$ на восстановительной фазе 0.70 ± 0.17 , на главной 0.86 ± 0.17 , а на предварительной всего 0.37 ± 0.07 .

Можно заключить, что если рассматривать все три этапа развития анализируемой бури, то наиболее существенным образом на вариации геомагнитных порогов влияет Dst-индекс геомагнитной активности, также имеет место влияние плотности солнечного ветра N. Во время главной фазы геоэффективными были два динамических параметра солнечного ветра — N, P, несколько в меньшей степени V, но не магнитное поле. Ситуация на масштабе всей бури несколько иная. В этом случае сложная динамика отклика ЖГО на исследуемые параметры, включающая корреляцию/антикорреляцию одних и тех же факторов на разных фазах, приводит к значимости обоих геомагнитных индексов, а также Bz и динамических параметов. При этом наиболее существенным образом (k > 0.80) на $\Delta R_{\rm crc}$ и $\Delta R_{\rm ad}$ влияли *Dst* и *V*.

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Наши результаты (табл. 1-3, рис. 2) свидетельствуют о том, что зависимость изменений жесткостей обрезания КЛ от параметров межпланетной среды и геомагнитной активности существенным образом отличается на различных этапах развития магнитной бури 7—8 ноября 2004 г. Наиболее тесная связь обнаруживается между ΔR и *Dst* на всем протяжении бури. Чувствительность ΔR к Kp несколько меньше, а на предварительном этапе бури она практически отсутствует. На разных фазах бури наблюдаются противоположные тенденции зависимости этих корреляций от пороговых жесткостей станций в спокойное время. Разница в чувствительности ЖГО к *Dst* и *Kp* может объясняться тем, что эти индексы отражают поведение различных токовых систем. Dst onpeделяется по вариациям наземного магнитного поля на низкоширотных станциях и отражает эффект экваториального кольцевого тока. Кр определяется по среднеширотным станциям. Однако, во время сильного магнитного возмущения, когда авроральный овал смещается к югу, эти среднеширотные станции начинают фиксировать эффекты высокоширотных токов.

Еще более разительно отличаются на разных этапах бури зависимости ΔR от параметров СВ и ММП. На предварительном этапе бури эта зависимость выражена чрезвычайно слабо, связь ΔR как с ММП, так и с большинством динамических параметров СВ несущественна: некоторая корреляция заметна только с одним параметром плотностью СВ. В главной фазе зависимость вариаций ЖГО от всех динамических параметров СВ увеличивается, особенно от плотности N и давления Р. Однако на главном этапе развития бури нет связи с параметрами магнитного поля, включая Вз-компоненту. И только на восстановительной фазе бури присутствует сильная связь ΔR со всеми параметрами как CB, так и ММП. Возможно, этому способствовало то обстоятельство, что на большей части восстановительной фазы бури В имела южное направление, а скорость V сохраняла достаточно высокие значения ~700-600 км/с.

Во время бури в ответ на изменения динамики солнечного ветра и ММП развиваются глобальные токовые системы (кольцевой ток вокруг Земли, токи на магнитопаузе, в хвосте магнитосферы и высокоширотные токи), которые эволюционируют во времени. При этом формирование, интенсификация и дальнейший распад этих токовых систем происходит не одномоментно, а на различных временных масштабах, что приводит к сложной динамике магнитосферы, которая, в свою очередь, определяет сложную динамику ЖГО в процессе эволюции магнитной бури. Поэтому в зависимости от динамики токовых систем на разных этапах бури, по-видимому, реализуется различный сценарий контроля вариаций ЖГО параметрами межпланетной среды и геомагнитной активности. Например, увеличение давления СВ приводит к увеличению токов поперек хвоста магнитосферы и токов на магнитопаузе, которые имеют противоположное влияние на ЖГО. Для разных бурь и разных этапов развития одной бури соотношение глобальных токов может быть различным. Например, авторы работы [Fluekiger et al., 1990], исследуя вариации ЖГО во время бури 17 декабря 1971 г., нашли, что во время начальной фазы вклад в наблюдаемое значение Dst (20 нТл) токов на магнитопаузе был 80 нТл, а от кольцевого тока он был -60 нТл.

Считается, что основную роль в развитии магнитосферных возмущений играют два фактора: южная компонента Bz межпланетного магнитного поля, рост которой вызывает пересоединение магнитного поля солнечного ветра и поля магнитосферы, а также динамическое давление солнечного ветра P, ответственное за сжатие магнитосферы [Dungey, 1961; Akasofu, 1981; Russell, 2000].

Оба эти фактора ослабляют геомагнитный экран и облегчают проникновение плазмы солнечного ветра в магнитосферу и атмосферу Земли. С этой точки зрения довольно неожиданным является полученный нами результат о том, что перед началом бури корреляция ΔR как с Bz-компонентой ММП, так и со скоростью солнечного ветра V практически отсутствует, а корреляция ΔR с плотностью N превышает корреляцию с динамическим давлением (P). При этом N показывает достаточно высокую корреляцию с ΔR на всех фазах бури.

Плотность (N) солнечного ветра долгое время при исследованиях магнитных бурь рассматривалось лишь как одна из составляющих давления. Однако в работах [Fenrich and Luhman, 1998: Crooker, 2000] была высказана точка зрения, что плотность является самостоятельным параметром, действующим независимо. Эта точка зрения возникла в связи с появившимся пониманием того, что ответ магнитосферы на изменение плотности СВ является ответом на изменение плотности плазменного слоя; для этого процесса временная шкала (~5 ч) много больше, чем для ответа на Bz (<1 ч) [Smith et al., 1999, и ссылки там]. При этом увеличение плотности приводит к увеличению давления только в том случае, если в это время наблюдается южная компонента ММП [Fenrich and Luhman, 1998]. Статистическая обработка спутниковых данных [Khabarova and Rudenchik, 2003; Khabarova, 2007] показала, что плотность солнечного ветра N перед началом бури является важным независимым параметром, она определяет начальный момент магнитной бури, что расширяет возможности прогноза возмущений магнитного поля Земли. Согласно [Khabarova and Rudenchik, 2003; Khabarova, 2007] возрастание N совместно с поворотом Bz к югу приводит к появлению магнитных бурь. В нашем случае был реализован именно такой вариант – в период времени 19-20 UT произошел скачок N do 54 см^{-3} и поворот к югу *Bz*-компоненты (рис. 1), что и вызвало очень сильную бурю. Характерно, что корреляция ΔR с амплитудой Bz не наблюдается ни в предварительной, ни в главной фазе анализируемой бури. Более того, в главной фазе не наблюдается связи ΔR ни с By, ни с полным полем В. Во время главной фазы бури 7-8 ноября 2004 г. существенной оказалась корреляция вариаций ЖГО с динамическим давлением. Возможно, этот результат можно соотнести с выводами авторов работы [Калегаев и др., 2015], которые используя модель магнитосферного магнитного поля, показали, что развитие бури контролируется как межпланетным магнитным полем, так и давлением солнечного ветра, однако вклад этих параметров для разных бурь может быть различным. Например, согласно результатам работы [Калегаев и др., 2015] главную роль в развитии магнитной бури 21—22 января 2005 г. сыграл мощный импульс давления солнечного ветра в отличие от бури 14—15 декабря 2006 г., инициированной изменением ориентации межпланетного магнитного поля. Как следствие, *Dst*-вариация геомагнитного поля во время бури 2005 г. определялась, в основном, развитием кольцевого тока, а для бури 2006 г. — сравнимыми по величине вкладами кольцевого тока и токов хвоста магнитосферы [Калегаев и др., 2015].

Мы уделили специальное внимание исследованию связи ΔR с общим межпланетным магнитным полем B, так как в недавней работе [Adriani et al., 2016] по результатам прямых измерений геомагнитных порогов на KA PAMELA была найдена высокая корреляция геомагнитных порогов с этим параметром. Ранее была найдена связь B с геомагнитной активностью, в частности с Ар-индексом [Bieber et al., 1993]. Статистическими исследованиями установлено, что когда значения Bz высоки, то значения B тоже высоки, они на 30% превышают средние значения [Kane, 2005]. Заметим, что обратное может быть неверно: есть много случаев, когда Bz близка к нулю или даже положительна, а В велико за счет вклада Вх-и Ву- компонент ММП [Капе, 2005]. В недавней работе [Rathore et al., 2013] на основе статистического анализа бурь 23 солнечного цикла указывалось на преимущественную корреляцию интенсивности бурь с полным полем B по сравнению с Вz. В работе [Adriani et al., 2016] была найдена высокая корреляция между ΔR и B на главной и восстановительной фазах, а также на масштабе всей бури 14 декабря 2006 г. При этом высокая корреляция ΔR с B наблюдалась как для случая сильной корреляции с Bz и Bv, так и при ее отсутствии. Результаты, полученные в нашей работе указывают на то, что корреляция ΔR с B на масштабе всей бури 7-8 ноября 2004 г. была мала, так же как и на масштабе всей главной фазы. Однако через два часа после начала главной фазы корреляция ΔR с В начинает расти, достигая высоких значений на фазе восстановления: между $\Delta R_{\rm crc}$ и B k = 0.86и $0.87(\pm0.1)$ для Москвы и Хобарта соответственно, а k между $\Delta R_{\rm s ф}$ и B доходит до $\approx 0.96 0.98(\pm 0.06)$ для всех станций. Заметим, что такие высокие значения k наблюдаются только на восстановительной фазе, когда была велика корреляция ΔR также с обеими компонентами Bz и By(табл. 3). Таким образом, сравнение наших результатов с работой [Adriani et al., 2016] указывает на возможность существенного вклада общего магнитного поля B в динамику вариаций ЖГО в процессе развития бури и на своеобразие этого вклада для разных бурь.

Следует отметить систематические отличия полученных коэффициентов корреляции для ст. Токио от значений для других станций, кото-

рые выходят за пределы ошибок. Станция Токио является низкоширотной станцией и часто используется в исследованиях о КЛ как типичный представитель станции с высокой жесткостью геомагнитного обрезания R (высокие энергии частиц) для спокойного времени в противовес станциям с более низкими R [например, Tiwari et al., 2004; Mishra and Agarwal, 2011]. Найденные характеристики КЛ для Токио часто значительно отличаются от характеристик КЛ для станций с меньшей жесткостью обрезания. В частности, в работе [Tyasto et al., 2013] получено, что во время бури 8 ноября 2004 г. максимальное понижение жесткости обрезания $\Delta R_{\rm sp}$ в Токио составило 6.9% по сравнению с 67.9% в Москве и 78.6% в Хобарте; для $\Delta R_{\rm cro}$ понижение составило 5% на ст. Токио по сравнению с 42% в Москве и 38.2% в Хобарте. Таким образом, жесткости обрезания Rна ст. Токио во время исследуемой бури намного менее чувствительны к возмущениям в магнитосфере, чем на среднеширотных станциях. Соответственно вычисленные нами коэффициенты корреляции ΔR с различными параметрами солнечного ветра и ММП в Токио, как правило, значительно ниже. Отличия полученных k для Токио от значений k для других станций отражают неравномерность, нелинейность глобального распределения ΔR по поверхности Земли во время больших геомагнитных бурь, как продемонстрировано на примере супербурь в октябре и ноябре 2003 г. в работах [Kress et al., 2010; Danilova et al., 2018].

Наш анализ показал, что временные вариации модельных и наблюдательных геомагнитных порогов, полученные двумя разными методами, в целом согласуются между собой. Тем не менее разница в чувствительности $\Delta R_{
m crc}$ и $\Delta R_{
m s \phi}$ к параметрам межпланетной среды для отдельных станций и для разных фаз бури может достаточно сильно отличаться. Возможно, разница в отклике модельных и наблюдательных порогов связана с тем, что модель Ts01, которая использовалась при расчете ΔR_{ad} , не в полной мере учитывает некоторые токовые системы, которые, как выяснилось в последнее время, могут иметь большое значение при описании очень сильных бурь. В частности, в работе [Левитин и др., 2014] указывалось, что для развития гигантских геомагнитных бурь существенное значение может иметь система токов DP, развивающихся в высокоширотных областях магнитосферы. Кроме того, модель *Ts*01описывает возмущенное магнитное поле внутренней и околоземной магнитосферы в области $R \leq 15R_{\rho}$. Поэтому в модели Ts01 недостаточно точно представлено поле дальнего хвоста. В то же время, для определения наблюдательных $\Delta R_{\rm crc}$ использовались данные регистрации наземными приборами

заряженных частиц, которые испытывают влияние всех областей магнитосферы.

5. ВЫВОДЫ

В работе проведен анализ корреляций изменений ЖГО с параметрами СВ, ММП и геомагнитной активности на всех этапах развития магнитной бури 7—8 ноября 2004 г. — перед началом бури, в ее главной и восстановительной фазах. Получены следующие результаты:

- 1. Зависимость ΔR от геомагнитной активности. Наиболее тесная связь на всем протяжении бури обнаруживается между ΔR и Dst, достигая максимума во время главной фазы $\Delta R_{\rm crc}/\Delta R_{\rm adv}~k=0.88/0.98$). Чувствительность ΔR к Kp несколько меньше, чем к Dst, а на предварительной фазе она практически отсутствует. Наблюдаются противоположные тенденции зависимости этих корреляций от пороговых жесткостей станций в спокойное время. На главной фазе коэффициент корреляции ΔR с Dst максимален на станциях с более низкими порогами, а с Kp на станциях с более высокими. На восстановительной фазе k между ΔR и Dst максимален на станциях с более высокими порогами, а между ΔR и Кр — на станциях с более низкими порогами.
- 2. Зависимость ΔR от ММП. Во время предварительной и главной фаз бури зависимость ΔR от Bz и By практически отсутствует. Корреляция с B начинает расти через два часа после начала главной фазы. В восстановительном периоде наблюдается сильная корреляция/антикорреляция ΔR как с B, так и со всеми его компонентами.
- 3. Зависимость ΔR от динамических параметров CB. Во время главной фазы бури наблюдается сильная зависимость вариаций ЖГО от плотности N и давления P. Для восстановительной фазы наблюдается существенная зависимость ΔR от всех трех динамических параметров CB. Корреляция ΔR с V на всех фазах отрицательная, а с N и P она положительна во время главной фазы и отрицательна в восстановительной.

Таким образом, можно заключить, что параметром, наиболее сильно влияющим на вариации геомагнитных порогов на всех этапах развития бури 7-8 ноября 2004 г., являлся Dst индекс; можно отметить и некоторое стабильное влияние N. Во время главной фазы наиболее значимыми факторами были оба геомагнитных индекса и все три динамических параметра солнечного ветра -N, P и V. В то же время вариации ЖГО не проявляли чувствительности к Bz-компоненте ММП ни перед началом бури, ни в главной фазе. Влияние Bz, так же как By и B, сказывалось существенным образом лишь на восстановительной фазе, на стадии распада всех токовых систем.

Различная чувствительность ΔR к параметрам СВ, ММП и геомагнитной активности на разных этапах магнитной бури связана с тем, что во время бури в ответ на изменения параметров СВ и ММП развиваются глобальные токовые системы (кольцевой ток вокруг Земли, токи на магнитопаузе, токи хвоста магнитосферы, токи в высоких широтах), которые эволюционируют во времени. При этом формирование, интенсификация и дальнейший распад этих токовых систем происходит не одномоментно, а на различных временных масштабах. Это приводит к различному относительному вкладу токовых систем в изменения ЖГО в процессе эволюции геомагнитного возмущения, что определяет специфический отклик ЖГО на параметры гелиосферы и магнитосферы на разных фазах анализируемой бури.

Авторы выражают благодарность рецензенту за полезную дискуссию и ценные замечания.

СПИСОК ЛИТЕРАТУРЫ

- Буров В.А., Мелешков Ю.С., Очелков Ю.П. Методика оперативной оценки уровня радиационной опасности, обусловленной возмушениями космической погоды, при авиаперевозках // Гелиогеофизические исслед. Вып. 7. С. 1—41. 2005.
- Данилова О.А., Демина И.А., Птицына Н.Г., Тясто М.И. Картирование жесткости обрезания космических лучей во время главной фазы магнитной бури 20 ноября 2003 г. // Геомагнетизм и аэрономия. Т. 59. № 2. С. 160-167. 2019.
- Дворников В.М., Кравцова М.В., Сдобнов В.Е. Диагностика электромагнитных характеристик межпланетной среды по эффектам в космических лучах // Геомагнетизм и аэрономия. Т. 33. № 4. С. 457—468. 2013.
- Ермолаев Ю.И., Зеленый Л.М., Застенкер Г.Н. и др. Солнечные и гелиосферные и магнитосферные возмущения в ноябре 2004 г. // Геомагнетизм и аэрономия. Т. 45. № 6. С. 324-332. 2014.
- *Калегаев В.В., Власова Н.А., Пенг Ж.* Динамика магнитосферы во время геомагнитных бурь // Космич. исслед. Т. 53. № 2. С. 105—117. 2015.
- Левитин А.Е., Дремухина Л.А., Громова Л.И., Птицына Н.Г. Генерация магнитного возмущения в период исторической магнитной бури в сентябре 1859 г. // Геомагнетизм и аэрономия. Т. 54. № 3. С. 324—332.
- Птицына Н.Г., Данилова О.А., Тясто М.И., Сдобнов В.Е. Влияние параметров солнечного ветра и геомагнитной активности на вариации жесткости обрезания космических лучей во время сильных магнитных бурь// Геомагнетизм и аэрономия. Т. 59. № 5. С. 1—10. 2019.
- Тясто М.И., Данилова О.А., Сдобнов В.Е. Вариации жесткости геомагнитного обрезания космических лучей в период магнитосферных возмущений в мае 2005 г.: связь с межпланетными параметрами // Изв. РАН. Сер. физ. Т. 75. № 6. С. 857—859. 2011.
- Adriani O., Barbarino G.C., Bazilevskaya G.N. et al. PAMELA's measurements of geomagnetic cutoff varia-

tions during the 14 December 2006 storm// Space weather. V. 14. № 3. 2016.

https://doi.org/10.1002/2016SW001364

 Akasofu S.I. Energy coupling between the solar wind and the magnetosphere // Space Sci. Rev. V. 28. P. 121–190. 1981.

https://doi.org/10.1007/BF00218810

- Bieber J.W., Chen J., Mathaeus W.H., Smith C.W., Pomerantz M.A. Long-term variations of interplanetary magnetic field spectra with implications for cosmic ray modulation // JGR. V. 98. P. 3585–3603. 1993. https://doi.org/10.1029/92JA02566
- *Crooker N.U.* Solar and geliospheric geoeffective disturbances // J. Atmos. Solar-Terr. Phys. V. 62. P. 1071–1085. 2000
- *Dungey J. W.* Interplanetary magnetic field and the auroral zones // Phys. Rev. Lett. V. 6. P. 47–48. 1961. https://doi.org/10.1103/PhysRevLett.6.47
- *Iucci N., Levitin A.E., Belov A.V. et al.* Space weather conditions and spacecraft anomalies in different orbits // Space weather. V. 3. S01001. doi:. 2005. https://doi.org/10.1029/2003SW000056
- Fenrich F.R., Luhman J.D. Geomagnetic responses to magnetic clouds of different polarity// Geophys. Res. Lett. V. 25. P. 2999–3002. 1998.
- Flueckiger E.O., Smart D.F., Shea M.A. Determining the strength of the ring and the magnetopause currents during the initial phase of a geomagnetic storm using cosmic ray data// J. Geophys. Res. V. 95. A2. P. 1113–1118. 1990.
- -Kane R.P. How good is the relationships of solar and interplanetary plasma parameters with geomagnetic storms? // J. Geophys. Res. V. 110. A2. 2005. https://doi.org/10.1029/2004JA010799
- Kanekal S., Baker D., Blake J., Klecker B., Cummings J., Mewaldt R., Mason G., Mazur J. High-latitude energetic particle boundaries and the polar cap: A statistical study // J. Geophys. Res. Space. V. 103. P. 9367–9372. 1998.
- *Khabarova O.V.* Current problems of magnetic storm prediction and possible ways of their solving // Sun and Geosphere. V. B2. № 1. P. 32–37. 2007.
- *Khabarova O.V., Rudenchik E.A.* Peculiarities of solar wind and IMF oscillatory regime's changes before geomagnetic storms. Wavelet analysis results//Her. Rus. Acad. Sci. № 1. P. 1–28. 2003.
- Kress B.T., Mertens C.J., Wiltberger M. Solar energetic particle cutoff variations during the 29–31 October 2003 geomagnetic storm // Space Weather. V. 8. S05001. 2010.
- Kress B.T., Hudson M.K., Selesnick R.S., Mertens C.J., Engel M. Modeling geomagnetic cutoffs for space weather applications // J. Geophys. Res. Space Physics. V. 120. № 7. P. 5694–5702. 2015.

https://doi.org/10.1002/2014JA020899

- Leske R.A., Mewaldt R.A., Stone E.C., von Rosenvinge T.T. Observations of geomagnetic cutoff variations during solar energetic particle events and implications for the radiation environment at the space station// J. Geophys. Res. V. 106. P. 30011–30022. 2001.

https://doi.org/10.1029/2000JA000212

- McCracken K.G., Rao U.R., Shea M.A. The trajectories of cosmic rays in a high degree simulation of the geomagnetic field. M.I.T. Tech. Rep. 77. Lab. for Nucl. Sci. and Eng., Mass. Inst. of Technol. Cambridge. 146 p. 1962.

- *Mishra R.K., Agarwal R.* Cosmic ray modulation at low/high cut off rigidity/ Proc. 32nd Int. Cosmic Ray Conf. Beijing. Jan. 2011. V. 11. P. 89—91. Beijing. 2011.
- Rathore B., Gupta D.C., Parashar K.K. Relation between Solar Wind Parameter and Geomagnetic Storm Condition during Cycle-23// Int. J. Geosci. V. 13. № 5. P. 1602–1608. 2013.
- Russell C.T. The solar wind interaction with the Earth's magnetosphere: A tutorial // IEEE Trans. Plasma Sci. V. 28. № 6. P. 1818–1830. 2000. https://doi.org/10.1109/27.902211
- Shea M.A., Smart D.F., McCracken K.G. A study of vertical cutoff rigidities using sixth degree simulations of the geomagnetic field // J. Geophys. Res. V. 70. P. 4117–4130. 1965.
- Shimazu H. Solar proton event and proton propagation in the earth's magnetosphere // J. NICT. V. 1. P. 191–199. 2009.
- Smith J.P., Thomsen M.F., Borovsky J.E., Collier M. Solar wind density as a driver for the ring current in mild storms // Geoph. Res. Lett. V. 26. P. 1797–1800. 1999.
- Tiwari C.M., Tiwari D.P., Agrawal S.P. Relationship of first two harmonics of cosmic ray daily variation with solar activity // Ind. J. Radio & Space Phys. V. 33. P. 95–98. 2004.

- Tsyganenko N.A. A model of the near magnetosphere with a dawn-dusk asymmetry: 1. Mathematical structure // J. Geophys. Res. V. 107. A8. 1179. 2002a. https://doi.org/10.1029/2001JA000219
- Tsyganenko N.A. A model of the near magnetosphere with a dawn-dusk asymmetry: 2. Parametrization and fitting to observation // J. Geophys. Res. V. 107. A8. 1176. 2002b. https://doi.org/10.1029/2001JA000220
- Tsyganenko N.A., Singer H.J., Kasper J.C. Storm-time distortion of the inner magnetosphere: How severe can it get? // J. Geophys. Res. V. 108. A5. 1209. 2003. https://doi.org/10.1029/2002JA009808
- Tsurutani B.T., Echer E., Guarnieri F.L., Kozyra J.U. CAWSES November 7–8, 2004, superstorm: Complex solar and interplanetary features in the post-solar maximum phase // Geophys. Res. Lett. V. 35. № 6. P. 1–6. 2008. https://doi.org/10.1029/2007GL031473
- Tyasto M.I., Danilova O.A., Ptitsyna N.G., Sdobnov V.E. Variations in cosmic ray cutoff rigidities during the great geomagnetic storm of November 2004 // Adv. Space Res. V. 51. № 7. P. 1230–1237. 2013.
- Tyssøy H.N., Stadsnes J. Cutoff latitude variation during solar proton events: Causes and consequences // J. Geophys. Res. Space Physics. V. 120. P. 553–563. 2014. https://doi.org/10.1002/2014JA0200508