УЛК 551.590.21

ОЦЕНКА ВЛИЯНИЯ СОЛНЕЧНОЙ АКТИВНОСТИ НА УХОДЯЩИЙ ПОТОК ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ

© 2020 г. С. И. Молодых^{1, *}, Г. А. Жеребцов^{1, **}, А. А. Караханян^{1, ***}

¹Институт солнечно-земной физики СО РАН, г. Иркутск, Россия
*e-mail: sim@iszf.irk.ru
**e-mail: gaz@iszf.irk.ru

***e-mail: asha@iszf.irk.ru

Поступила в редакцию 26.04.2019 г.
После доработки 20.06.2019 г.
Принята к публикации 26.09.2019 г.

Для модели длинноволновой уходящей радиации, основанной на интегральной функции пропускания, предложена параметризация механизма влияния солнечной активности на тропосферу Земли, разрабатываемого авторами. В качестве индикатора солнечной активности использовался *PC*-индекс геомагнитной активности, который разработан для контроля магнитной активности в полярной шапке и отражает влияние межпланетного электрического поля на магнитосферу. На основе данных реанализа NCEP/NCAR проведены расчеты интегральной функции пропускания и уходящего длинноволнового потока для периодов повышенной и пониженной солнечной активности. Корреляционный анализ рассчитанных радиационных характеристик с температурой в слое 925—700 гПа показал, что учет солнечной активности приводит к усилению связи между радиационными характеристиками и температурой. Сравнение результатов расчетов с изменением температуры подтвердило, что предложенная параметризация может быть применена для учета влияния солнечной активности в численных моделях, использующих интегральную функцию пропускания, для расчета длинноволновой уходящей радиации.

DOI: 10.31857/S0016794020020108

1. ВВЕДЕНИЕ

Вопрос о влиянии солнечной активности на состояние климатической системы Земли активно обсуждается исследователями в связи с дискуссией о природе современного потепления климата. По данным инструментальных наблюдений особенностью климатических условий последних трех десятилетий является увеличение скорости повышения приповерхностной температуры в высокоширотных регионах [Mokhov, 2017]. Для оценки будущих изменений климата необходимо, наряду с антропогенными факторами, включать в климатические модели новые параметризации, описывающие взаимосвязи естественных факторов (солнечная и вулканическая активность) с процессами в нижней атмосфере. Во время активных процессов на Солнце происходит увеличение интенсивности коротковолновой радиации (рентгеновский и ультрафиолетовый диапазоны длин волн) и корпускулярного излучения (вариации солнечного ветра и межпланетного магнитного поля (ММП), изменение потоков космических лучей). Кроме того, влияние рассматриваемых факторов на атмосферу не

одинаково как по величине, так и по характеру изменений атмосферных процессов. По модельным расчетам прямое энергетическое воздействие вариаций потока солнечного излучения на приповерхностную температуру существенно меньше влияния углекислого газа [Mokhov, 2012], поэтому идут поиски параметрических механизмов, в которых небольшие воздействия на параметры, влияющие на радиационный баланс климатической системы, могут приводить к существенным изменениям в системе, величина которых связана с амплитудой воздействия. К таким механизмам можно отнести воздействие на радиационный баланс в тропосфере, обусловленное изменениями в глобальной электрической цепи вследствие вариаций солнечного ветра и ММП [Жеребцов и др., 2005; Tinsley, 2000; Kniveton et al., 2008]. Отметим, что в триггерных механизмах, в отличие от параметрических, предполагается скачкообразный переход климатической системы из одного устойчивого состояния в другое, который происходит при слабом воздействии, превышающем пороговое значение. В ряде работ проводится анализ воздействия галактических космических лучей (ГКЛ) на аэрозольный и малый газовый состав атмосферы [Пудовкин и Распопов, 1992; Svensmark and Friis-Christensen, 1997; Mironova et al., 2015]. Исследования проведенные в рамках международного проекта "CLOUD" показали, что вариации ГКЛ не могут существенно влиять на климат, несмотря на то, что ионы оказывают значительное влияние на процессы образования и роста аэрозолей в атмосфере [Dunne et al., 2016, (http://cloud.web.cern.ch/cloud/)].

Радиационный баланс системы Земля-атмосфера состоит из приходящего потока солнечной радиации и уходящего из нее в околоземное пространство. Благодаря наличию в климатической системе обратных связей многолетние изменения радиационного баланса не отличаются существенно от нуля. Результаты модельных расчетов свидетельствуют о сравнительно малой роли вариаций солнечного излучения в изменениях глобальной среднегодовой приповерхностной температуры по сравнению с влиянием углекислого газа [Мохов и др., 2006]. В связи с этим в механизме воздействия солнечной активности (СА) на климатическую систему [Жеребцов и др., 2005], разрабатываемом в ИСЗФ СО РАН, предполагается, что СА влияет на поглощение длинноволновой части спектра ($\lambda > 4$ мкм). Простая линейная параметризация рассматриваемого механизма предложена в работе [Karakhanyan and Molodykh, 2018].

Целью данной работы является анализ изменений уходящего потока длинноволнового излучения, рассчитанного на основе интегральной функции пропускания для длинноволновой радиации в атмосфере, связанных с гелиогеофизическими возмущениями.

2. ДАННЫЕ И МЕТОДИКА АНАЛИЗА

При решении задачи о влиянии отдельного фактора на радиационные характеристики атмосферы удобно использовать простые полуэмпирические радиационные модели. Эти модели, в отличие от спектральных радиационных моделей [Розанов и Фролькис, 1993], содержат минимальное число эмпирически задаваемых параметров атмосферы с явным включением основных факторов, оказывающих влияние на изменения составляющих климатической системы. Кроме того, простые модели однородной (для безоблачной атмосферы) или двух-трехслойной атмосферы (для учета горизонтально-однородной облачности) позволяют проводить многочисленные ансамблевые расчеты с высокой вычислительной эффективностью.

В данной работе использована параметризация длинноволновой уходящей радиации для климатических моделей [Мохов и Петухов, 1978] с учетом механизма воздействия солнечной активности (СА) на климатическую систему Земли, приведенного в работе [Жеребцов и др., 2005]. Согласно данному физическому механизму воздействия СА на тропосферу предполагается, что вариации СА через изменения параметров солнечного ветра и межпланетного магнитного поля (ММП) влияют на магнитосферную конвекцию, которая, в свою очередь, влияет на распределение разности электрического потенциала между ионосферой и Землей. Отметим, что вариации параметров солнечного ветра и ММП могут вызывать изменения геомагнитной активности, именно поэтому характеризующие ее индексы, можно использовать в качестве индикатора СА. Далее, изменения разности электрических потенциалов ионосфера-Земля приводят к перестройке вертикального профиля объемного электрического заряда, который влияет на состояние водяного пара (основного парникового газа) и, следовательно, на радиационный баланс, в частности, на уходящий длинноволновой поток. Отметим, что значительная роль ионов в процессе образования кластеров в атмосфере подтверждается результатами экспериментальных исследований проведенных в рамках международного проекта "CLOUD" [Wagner et al., 2017].

В качестве индикатора СА нами выбран PC-индекс геомагнитной активности (http:// www.geophys.aari.ru/pc_about.html). *PC*-индекс разработан для контроля магнитной активности в полярной шапке (PCN - в северной, а PCS - вв южной полярной шапке), обусловленной геоэффективным солнечным ветром, и отражает межпланетное электрическое поле, влияющее на магнитосферу [Troshichev et al., 1988]. Вариации PCN-индекса хорошо согласуются с вариациями AL-индекса. [Troshichev and Janzhura, 2009]. Поскольку РС-индекс характеризует степень магнитной возмущенности в полярной шапке в целом, в формулу введен дополнительный множитель $\exp(-(\phi - \phi_0)^2/d\phi^2)$, учитывающий широтную зависимость. Кроме того, вместо самого PC-индекса мы используем $\lg |PC|$, что обусловлено большим диапазоном его изменений. Таким образом, учитывая вышеизложенное, в качестве характеристики воздействия гелиогеофизических возмущений на состояние водяного пара можно использовать следующее выражение:

$$(1 + a \lg |PC| \exp(-(\varphi - \varphi_0)^2 / d\varphi^2)).$$

Простая модель длинноволновой уходящей радиации основана на использовании интегральной функции пропускания для длинноволновой радиации в атмосфере. Полуэмпирическое выражение [Мохов и Петухов, 1978] для расчета интегральной функции пропускания преобразовано с включением солнечного фактора. Согласно механизму влияния СА на тропосферу, развиваемому в ИСЗФ СО РАН, под воздействием гелиогеофизических возмущений изменяется как фазовое состояние водяного пара (усиливается образование вторичных частиц в атмосфере), так и кластерный состав (увеличивается количество димеров и более крупных кластеров). Сечение поглощения длинноволнового излучения у кластеров воды существенно больше, чем у молекул воды [Дубов и Востриков, 2010]. Поэтому воздействие гелиогеофизических возмущений на интегральную функцию пропускания можно параметризовать с помощью множителя $(1 + a \lg | PC | \exp(-(\varphi - \varphi)))$ $-\phi_0)^2/d\phi^2$)) в выражении для эффективной массы водяного пара. В этом случае формула для расчета интегральной функции пропускания будет иметь вид

$$D(M_1, M_2) = \frac{1}{A_0 (\beta_0 M_1^*)^{\beta_1} + 1} \frac{1 + A_2 A_2 (\beta_0 M_2)^{\beta_2}}{1 + A_2 (\beta_0 M_2)^{\beta_2}}, \quad (1)$$

где: $M_1^* = M_1(1 + a \lg |PC| \exp(-(\phi - \phi_0)^2/d\phi^2)) - эффективная масса водяного пара с учетом параметризации СА; <math>a = 0.2$; PC - индекс геомагнитной активности; $\phi -$ географическая широта; $\phi_0 -$ географическая широта максимума воздействия $(\phi_0 = 60^\circ)$; $d\phi -$ коэффициент, характеризующий полуширину области воздействия $(d\phi = 20^\circ)$.

 M_1 и M_2 — соответственно эффективные массы водяного пара и CO_2 . В данной работе мы не учитываем изменения эффективной массы углекислого газа во время гелиогеофизических возмущений, так как они малы по сравнению с вариациями эффективной массы водяного пара, поэтому в наших расчетах считаем, что M_2 = const для каждого возмущения.

 $A_0 = 1.716$, $\beta_0 = 1.66$, $\beta_1 = 0.409$ — параметры, полученные на основе экспериментальных данных [Мохов и Петухов, 1978].

Используя интегральную функцию пропускания, рассчитана интегральная функция поглощения длинноволновой уходящей радиации в атмосфере:

$$P(M_1) = 1 - D(M_1). (2)$$

На основе рассматриваемой простой модели длинноволновой уходящей радиации рассчитан поток длинноволнового излучения для безоблачной атмосферы:

$$F(z_h) = \sigma T^4(z_0) D(M_1^*(z_h)) + \sigma \int_{z_0}^{z_h} T^4(z) \frac{dD(M_1^*(z_h) - M_1^*(z))}{dz} dz,$$
(3)

где: $\sigma = 5.67 \times 10^{-8}$ Вт/(м² К³) — постоянная Стефана—Больцмана; T — температура; z_0 — 925 гПа; z_h — 300 гПа.

Облачность играет важную роль в процессе переноса энергии в длинноволновой части спектра. При расчетах балла облачности мы следовали эмпирической формуле, приведенной в работе [Мохов и Петухов, 1978], но при этом учитывали влияние СА, в соответствии с механизмом, предложенным в работе [Жеребцов и др., 2005]. Поскольку, согласно данному механизму, гелиогеофизические возмущения влияют не только на кластерный состав, но и на фазовое состояние водяного пара, можно предложить линейную параметризацию влияния гелиогеофизических возмущений на облачность, используя в качестве "ргоху" *РС*-индекс:

$$n_e = 1.68(f - 0.5) \times \times \left(1 + \beta \lg |PC| \exp(-(\varphi - \varphi_0)^2 / d\varphi^2)\right), \tag{4}$$

где: n_e — эффективный балл облачности. Следуя работе [Мохов и Петухов, 1978], мы предполагаем, что высота эффективного слоя облачности $z_{cl} = z_h/2$; f — относительная влажность; $\beta = 0.05$ — свободный параметр модели.

Поток уходящего длинноволнового излучения над облаками рассчитывался согласно формуле

$$F_{cl}(z_h) = \sigma T^4(z_{cl}) D(M_1^*(z_h) - M_1^*(z_{cl})) +$$

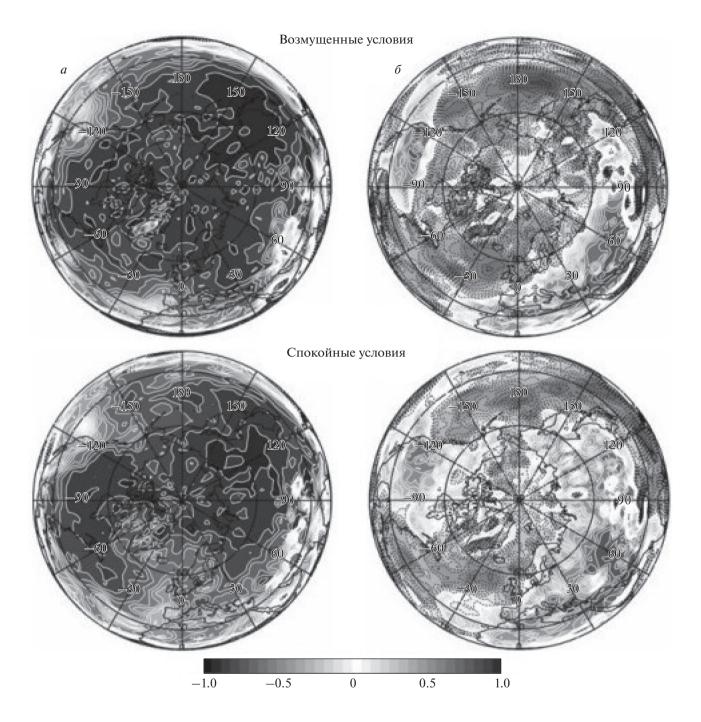
$$+ \sigma \int_{z_{cl}}^{Zh} T^4(z) \frac{dD(M_1^*(z_h) - M_1^*(z))}{dz} dz.$$
(5)

Таким образом, поток уходящего длинноволнового излучения, с учетом облачности, можно представить следующим образом:

$$F(z_h) = F_0(z_h)(1 - n_e) + F_{cl}(z_h)n_e.$$
 (6)

На основе данных реанализа NCEP/NCAR [Kalnay et al., 1996], которые представлены на сайте (https://www.esrl.noaa.gov/psd), рассчитаны

среднесуточные карты интегральной функции поглощения длинноволновой радиации, уходящего длинноволнового потока и карты аномалий температуры слоя тропосферы 925-700 гПа. В качестве нормы для расчета аномалий температуры использовался рекомендованный в климатологии период 1961—1990 гг. Для анализа связи интегральной функции поглощения длинноволновой радиации и уходящего потока длинноволнового излучения с температурой рассчитывались коэффициенты корреляции между радиационными характеристиками и температурой. Далее строились карты распределения полученных коэффициентов корреляции рассматриваемых параметров для периодов с различным уровнем активности.


3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Основные характеристики 23-го цикла солнечной активности (СА) соответствуют характеристикам солнечных циклов средней величины. Развитие 23-го цикла полностью укладывается в схему хода эволюции ему подобных по темпу развития и высоте более ранних солнечных циклов, для которых числа Вольфа изменяются в пределах 80 < W < 130. Фаза его минимума, начавшаяся в мае 2005 г., продлилась 4.5 года, захватив начало развития текущего 24-го цикла СА [Ishkov, 2010]. Поскольку 23-й солнечный цикл развивался по сценарию, типичному для нормальных циклов СА, был проведен анализ радиационных характеристик атмосферы в течение максимума (2000 г.) и минимума (2009 г.) 23-го цикла СА.

Сопоставление карт интегральной функции поглощения и температуры, рассчитанных для гелиогеофизических возмущений как в периоды повышенной СА (2000 г.), так и в периоды пониженной СА (2009 г.) показало, что пространственное распределение интегральной функции поглощения хорошо соответствует пространственной структуре аномалий температуры в обоих полушариях. Для анализа связи интегральной функции поглощения с аномалиями температуры нами построены карты коэффициентов корреляции между рассматриваемыми характеристиками для геомагнитных возмущений 2000 г., во время которых среднесуточные значения PC-индекса > 2.0, отдельно для каждого полушария (рис. 1a, рис. 2a). Результаты анализа рассчитанных карт показали, что вариации температуры хорошо коррелируют с вариациями интегральной функции поглощения, в возмущенные периоды, на средних и в высоких широтах, как в северном, так и в южном полушариях. Пространственное распределение коэффициентов корреляции между интегральной функцией поглощения и аномалиями температуры в спокойных геомагнитных условиях (2009 г., PC-индекс < 0.2) представлено на рис. 1a, рис. 2a. Сравнительный анализ данных, приведенных на рис. 1a и рис. 2a, показал, что в возмущенные периоды вариации температуры более тесно связаны с изменениями интегральной функции поглощения, чем в спокойные периоды, что согласуется с механизмом влияния CA на тропосферу, предложенным в работе [Жеребцов и др., 2005].

Проведенный анализ пространственного распределения коэффициента корреляции между уходящим потоком длинноволнового излучения и аномалиями температуры показал, что во время возмущений поток антикоррелирует с температурой нижнего слоя тропосферы (рис. 16). Полученная особенность лучше проявляется в южном полушарии, за исключением центральной части Антарктиды (рис. 26). Данные, приведенные на рис. 16, рис. 26, показывают, что в условиях с низким уровнем геомагнитной активности поток длинноволнового излучения коррелирует с температурой над континентами и антикоррелирует над океанами, особенно в северном полушарии (рис. 16). Следовательно, над континентами вклад температуры является преобладающим, по сравнению с наличием водяного пара в тропосфере, над океанами – наоборот. Следует отметить, что в спокойных геомагнитных условиях для северного полушария из-за того, что площадь, занятая материками, больше, чем поверхность океана, рассчитанный уходящий длинноволновый поток, осредненный по долготе, пропорционален температуре, что согласуется с результатами, представленными в работе [Будыко, 1974].

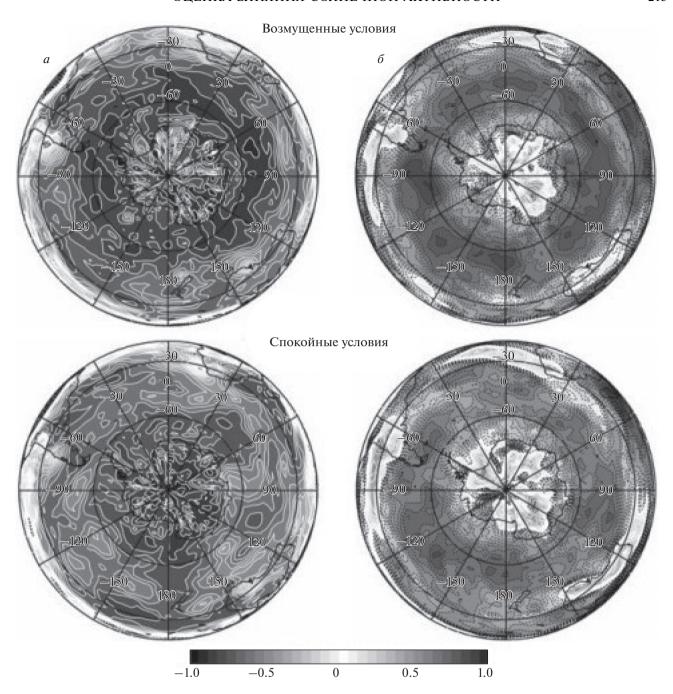
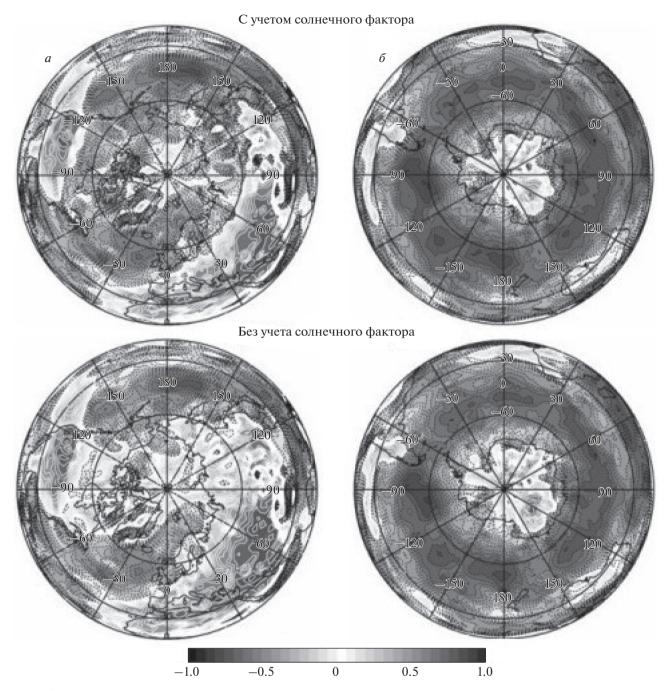

Для определения вклада СА, с помощью предложенной параметризации механизма влияния СА на тропосферу, были проведены расчеты уходящего длинноволнового потока для периода повышенной СА как с учетом предложенной параметризации, так и без него. Результаты корреляционного анализа связи рассчитанных потоков с температурой приведены на рис. 3. Сравнение карт распределения коэффициентов корреляции между уходящим длинноволновым потоком и температурой рассчитанных с учетом параметризации и без учета, показало, что учет параметризации приводит к увеличению площади областей, в которых уходящий поток длинноволнового излучения антикоррелирует с температурой. В северном полушарии на широтах выше 60° площади областей антикорреляции изменились с 40 до 80%, а в южном полушарии — с 40 до 50%. Величина коэффициента корреляции, для областей максимальной связи, возрастает в северном полушарии с 0.5 ± 0.09 до 0.8 ± 0.05 , а в южном – с 0.7 ± 0.06 до 0.8 ± 0.05 . При этом уменьшение

Рис. 1. Пространственное распределение коэффициентов корреляции между интегральной функцией поглощения длинноволновой радиации и температурой (*a*), уходящим потоком длинноволнового излучения и температурой (*б*) для северного полушария. Области корреляции — сплошная светлая линия, области антикорреляции — штриховая черная линия.

площади областей, в которых уходящий длинноволновый поток коррелирует с температурой, сопровождается понижением коэффициента корреляции. Отмеченная выше закономерность наблюдается как в северном, так и в южном полушариях. Таким образом, учет предложенной

параметризации влияния СА на тропосферу, при расчетах уходящего длинноволнового потока, приводит к усилению антикорреляции между уходящим потоком длинноволнового излучения и температурой слоя тропосферы 925—700 гПа примерно на 10%.

Рис. 2. Пространственное распределение коэффициентов корреляции между интегральной функцией поглощения длинноволновой радиации и температурой (*a*), уходящим потоком длинноволнового излучения и температурой (*б*) для южного полушария. Области корреляции — сплошная светлая линия, области антикорреляции — штриховая черная линия.


4. ВЫВОДЫ

Результаты проведенного в данной работе исследования позволяют сделать следующие выводы.

1. Представлена параметризация физического механизма влияния СА на радиационный баланс климатической системы, в частности, на уходящий длинноволновой поток. С учетом предложенной параметризации проведены расчеты ин-

тегральной функции поглощения и уходящего длинноволнового потока для периодов повышенной и пониженной CA.

2. Анализ корреляционной связи интегральной функции поглощения длинноволновой радиации и уходящего потока длинноволнового излучения с температурой слоя тропосферы 925—700 гПа показал, что в периоды с повышенным

Рис. 3. Пространственное распределение коэффициентов корреляции между уходящим длинноволновым потоком и температурой: (a) — для северного полушария, δ — для южного полушария во время гелиогеофизических возмущений. Области корреляции — сплошная светлая линия, области антикорреляции — штриховая черная линия.

уровнем активности корреляция между рассчитанными радиационными характеристиками и температурой существенно выше, чем в периоды с низким уровнем активности.

3. Во время гелиогеофизических возмущений учет параметризации приводит к увеличению корреляционной связи между уходящим длинноволновым потоком и температурой приблизительно на 10%. Следовательно, предложенная па-

раметризация может быть использована для учета влияния СА при расчетах уходящего длинноволнового потока на основе интегральной функции пропускания.

5. БЛАГОДАРНОСТИ

Авторы выражают благодарность рецензенту за полезные замечания.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках базового финансирования программы ФНИ II.16 и при частичной поддержке Программы РАН "Изменения климата: причины, риски, последствия, проблемы адаптации и регулирования".

СПИСОК ЛИТЕРАТУРЫ

- Будыко М.И. Изменения климата / Л.: Гидрометеоиздат. 280 с. 1974.
- Дубов Д.Ю., Востриков А.А. Сечение поглощения дальнего инфракрасного излучения кластеризованным водяным паром // Письма в ЖТФ. Т. 36. № 4. С. 54–60. 2010.
- Жеребцов Г.А., Коваленко В.А., Молодых С.И., Рубцова О.А. Модель воздействия солнечной активности на климатические характеристики тропосферы Земли // Оптика атмосферы и океана. Т. 18. № 12. С. 1042-1050. 2005.
- *Мохов И.И.*, *Петухов В.К.* Параметризация уходящей длинноволновой радиации для климатических моделей / Препринт. М.: ИФА РАН, 34 с. 1978.
- Мохов И.И., Безверхний В.А., Елисеев А.В., Карпенко А.А. Модельные оценки глобальных климатических изменений в XXI веке с учетом различных сценариев вариаций солнечной активности // ДАН. Т. 411. № 2. С. 250—254. 2006.
- Пудовкин М.И., Располов О.М. Механизм воздействия солнечной активности на состояние нижней атмосферы и метеопараметры (обзор) // Геомагнетизм и аэрономия. Т. 32. № 5. С. 1—22. 1992.
- Розанов Е.В., Фролькие В.А. Оценка влияния температурной зависимости функции пропускания в ИК-диапазоне на чувствительность энергобалансовой климатической модели // Изв. РАН. Физика атмосферы и океана. Т. 29. № 4. С. 509—514.1993.
- Dunne E.M., Gordon H., Kürten A. et al. Global atmospheric particle formation from CERN CLOUD measurements // Science. V. 354. № 6316. P. 1119—1124. 2016. https://doi.org/10.1126/science.aaf2649
- Ishkov V.N. Properties and surprises of solar activity XXIII cycle // Sun and Geosphere. V. 5. № 2. P. 43–46. 2010.
- Kalnay E., Kanamitsu M., Kistler R. et al. The NCEP/NCAR 40-Year Reanalysis Project // Bull. Amer. Meteor. Soc. V. 77. № 3. P. 437—470. 1996.

- https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP> 2.0.CO;2
- *Karakhanyan A.A, Molodykh S.I.* Spatial distribution of temperature during geomagnetic disturbances // Solar-Terrestrial Physics. V. 4. № 4. P. 59–62. 2018. https://doi.org/10.12737/stp-44201808
- Kniveton D.R., Tinsley B.A., Burns G.B., Bering E.A., Troshichev O.A. Variations in global cloud cover and the fairweather vertical electric field // J. Atmos. Solar-Terr. Phys. V. 70. № 13. P. 1633–1642. 2008. https://doi.org/10.1016/j.jastp.2008.07.001
- Mironova I.A., Aplin K.L., Arnold F., Bazilevskaya G.A., Harrison R. G., Krivolutsky A.A., Nicoll K.A., Rozanov E.V., Turunen E., Usoskin I.G. Energetic particle influence on the Earth's atmosphere // Space Sci. Rev. V. 194. № 1–4. P. 1–96. 2015.
- https://doi.org/10.1007/s11214-015-0185-4
- Mokhov I.I. Russian climate studies in 2011–2014 //
 Izv. Atmos. Ocean Phy. V. 53. № 5. P. 550–563. 2017.
 https://doi.org/10.1134/S0001433817050097
- Mokhov I.I., Smirnov D.A., Karpenko A.A. Assessments of the relationship of changes of the global surface air temperature with different natural and anthropogenic factors based on observations // Dokl. Earth Sci. V. 443. № 1. P. 381–387. 2012.
- https://doi.org/10.1134/S1028334X12030178
- Svensmark H., Friis-Christensen E. Variation of cosmic ray flux and global cloud coverage a missing link in solar-climate relationships // J. Atmos. Solar-Terr. Phys. V. 59. № 11. P. 1225-1232. 1997.
- https://doi.org/10.1016/S1364-6826(97)00001-1
- Tinsley B.A. Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature, and dynamics in the troposphere // Space Sci. Rev. V. 94. № 1–2. P. 231–258, 2000.
- Troshichev O.A., Andrezen V.G., Vennerstrom S., Friis-Christensen E. Magnetic activity in the polar cap A new index // Planet. Space Sci. V. 36. № 11. P. 1095—1102. 1988. https://doi.org/10.1016/0032-0633(88)90063-3
- *Troshichev O.A., Janzhura A.* Relationship between the PC and AL indices during repetitive bay-like magnetic disturbances in the auroral zone // J. Atmos. Solar-Terr. Phys. V. 71. № 12. P. 1340—1352. 2009.
- https://doi.org/10.1016/j.jastp.2009.05.017
- Wagner R., Yan C., Lehtipalo K. et al. The role of ions in new particle formation in the CLOUD chamber // Atmos. Chem. Phys. V. 17. № 24. P. 15181–15197. 2017. https://doi.org/10.5194/acp-17-15181-2017