УДК 550.388.2

ДЕТЕКТИРОВАНИЕ ИОНОСФЕРНЫХ ВОЗМУЩЕНИЙ НАД РЕГИОНОМ О-ВА ГАИТИ В ПЕРИОД 01—15 ЯНВАРЯ 2010 г. ПО ДАННЫМ GPS В СПОКОЙНЫХ ГЕОМАГНИТНЫХ УСЛОВИЯХ

© 2019 г. М. А. Титова^{1, *}, В. И. Захаров^{2, 3}, С. А. Пулинец¹

¹Институт космических исследований РАН (ИКИ РАН), г. Москва, Россия ²Физический факультет Московского государственного университета им. М.В. Ломоносова, г. Москва, Россия ³Институт физики атмосферы им. А.М. Обухова РАН (ИФА РАН), г. Москва, Россия *e-mail: marititova@yandex.ru Поступила в редакцию 23.04.2019 г. После доработки 15.05.2019 г. Принята к публикации 23.05.2019 г.

Рассмотрены проявления ионосферных возмущений, детектируемых в период крупного землетрясения над регионом о-ва Гаити 12.01.2010 г. при анализе данных GPS-наблюдений. Проведен комплексный региональный анализ данных станций наземного базирования, объединенных в глобальные (IGS и UNAVCO) сети. За период 01–15 января 2010 г. нами использовались данные от 67 наземных станций. Обработано свыше 7.5 тыс. ч индивидуальных наблюдений. Осуществлено определение локализации конкретных источников сейсмических событий, которые рассматриваются как возможные источники выявленных неоднородных волновых структур ионосферы. Получено, что отклик ионосферы на сейсмособытие может в ряде случаев интерпретироваться как суперпозиция различных процессов, причем в сейсмических областях возможно параметрическое "раскачивание" ионосферы циклом слабых землетрясений. Анализ параметра спадания волнового спектра ионосферных неоднородностей показывает наличие локального экстремума в период 05– 06 ч 13.01.2010 г., что, вероятно, связано с развитием дополнительной турбулизации плазмы после землетрясения и афтершоков. Сейсмособытия развивались в спокойных геомагнитных условиях, что позволило рассмотреть ионосферные проявления атмосферно-литосферных связей в исследуемый период.

DOI: 10.1134/S0016794019060130

1. ВВЕДЕНИЕ

Ионосфера Земли тесно взаимосвязана с другими геосферами. Состояние ионосферы характеризуется высокой степенью изменчивости и наличием неоднородных структур, что связано не только с гелиомагнитной активностью, но и со многими геофизическими процессами и явлениями (сейсмическая активность, ураганы, циклоны, песчаные бури и др.) [Афраймович и Перевалова, 2006]. Диагностика состояния ионосферы дает сведения об условиях распространения радиоволн в околоземном пространстве, позволяет следить за состоянием и процессами перестройки внешних областей земной атмосферы, а также за многими процессами в нижних слоях, в системе литосфера—атмосфера.

В связи с этим данная работа сосредоточена на исследовании землетрясения, которое является источником атмосферных и ионосферных возмущений.

Масштабное землетрясение магнитудой М 7.0 произошло на о-ве Гаити 12 января 2010 г. в 21:53:10 UTC, координаты эпицентра 18.443° N. 72.571° W, глубина залегания очага составила 13 км, по данным USGS (U.S. Geological Survey). Мощность землетрясения привлекает к нему пристальное внимание со стороны геофизиков [Пулинец и Цыбуля, 2010; Akhoondzadeh and Saradjian, 2011; Намгаладзе и др., 2013], поскольку, по мысли авторов, это позволяет детально рассмотреть взаимодействие различных геосфер. Сейсмическая активность оказалась наиболее ярко выражена в период 12-15 января 2010 г. В указанный период зарегистрированы более 50 землетрясений с магнитудой M > 4 и 14 землетрясений с магнитудой M > 5 (см. табл. 1). В период с 01 по 10 января такой яркой активности не отмечено. Геомагнитная обстановка в указанный период была в целом невозмущенной по данным WDC, Kyoto (http://wdc.kugi.kuoto-u.ac.jp/dstae), до 20 нТл. Поэтому изменения в структуре ионосферы, зарегистрированные в рассматриваемый период, не могут объясняться только вариациями магнитно-го поля Земли и солнечной активностью.

2. АТМОСФЕРНАЯ И ИОНОСФЕРНАЯ ТУРБУЛЕНТНОСТЬ

Значительную роль в теоретических и экспериментальных исследованиях атмосферы и ионосферы имеют спектральные характеристики, которые позволяют выделить неоднородности различных масштабов.

Теория, описывающая распространение электромагнитных волн в атмосфере, базируется на законе Колмогорова-Обухова [Обухов и Яглом, 1951; Монин и Яглом, 1967, 1996.]. Так, удобным является представление турбулентных потоков в атмосфере в виде совокупности вихрей с масштабами от l до L, получивших названия внутреннего и внешнего масштаба турбулентности соответственно. Внутренний масштаб турбулентности *l* был оценен А.М. Обуховым на основании формулы, предложенной А.Н. Колмогоровым, [Татарский, 1959]. Оценка дала значение внутреннего масштаба l = 2 мм. При этом внутренний масштаб зависит от коэффициента трансформации солнечной энергии в кинетическую, получившего название турбулентная вязкость,

$$\varepsilon = j \frac{I_0 g}{4P_0},\tag{1}$$

где j – доля солнечной энергии, трансформирующейся в кинетическую энергию воздушных масс, принимаемая равной 0.02; I_0 – солнечная постоянная, равная 1.38 кВт/м²; g – ускорение свободного падения, равное 9.81 м/с²; P_0 – среднее значение давления на поверхности Земли, равное 1013 гПа. С ростом высоты вязкость возрастает [Колмогоров, 1941; Татарский, 1959], что приводит к увеличению *l*.

Вторая гипотеза подобия Колмогорова применима к спектральной плотности распределения энергии турбулентности. Согласно предположению, при достаточно больших числах Рейнольдса должен существовать продолжительный промежуточный (инерционный) интервал волновых чисел, в котором энергия не продуцируется и не диссипирует, а только передается по спектру [Колмогоров, 1941]. Для спектра в инерционном интервале справедливо выражение:

$$E(k) \sim C_1 \varepsilon^{2/3} k^{-5/3}, \quad L \ll k \ll l,$$
 (2)

или при $k = \frac{\omega}{2}$

$$E(\omega) \sim C_1(u\varepsilon)^{2/3} \omega^{-5/3}, \quad \frac{u}{L} \ll \omega \ll \frac{u}{l},$$
 (3)

где *l*, *L* – это внутренний и внешний масштабы турбулентности; C_1 – универсальная числовая постоянная; є – скорости диссипации турбулентной энергии; *k* – волновое число; *u* – средний поток скорости. Эти выражения принято называть "законом 5/3" для спектра турбулентности в инерционном интервале. Закон пяти третей применим для случая атмосферной двумерной изотропной турбулентности при исследованиях влияния атмосферы на флуктуации параметров радиоволн. Однако необходимо учитывать влияние анизотропных неоднородностей больших размеров, в том числе мезомасштабных [Татарский, 1959, 1967]. В практике исследований влияния неоднородностей на распространение радиоволн наиболее широко используется спектральный метод [Татарский, 1959, 1967]. При измерении спектров надо учитывать, что в измеряемый сигнал входит суперпозиция влияния неоднородностей всех размеров различного происхождения. Экспериментальные частотные спектры хорошо аппроксимировать степенной функцией вида f^{-m} , и показатель степени близок к 5/3, что хорошо согласуется с теорией турбулентности Колмогорова-Обухова, полученного для показателя преломления электромагнитных волн – В.И. Татарским [Татарский, 1959, 1967]. Показано, что частотные спектры и их степенная аппроксимация является количественной характеристикой неоднородной структуры атмосферы. Величина флуктуаций степенного показателя говорит о том, что растет вклад мезомасштабных неоднородностей в атмосферную задержку радиосигналов дециметрового диапазона [Татарский, 1959].

Связь между атмосферой и ионосферой могут осуществлять акустико-гравитационные волны, они также представляют собой собственные колебания среды, имеют вертикальную компоненту, т.е. они существенно трехмерны. Скорость распространения АГВ составляет от 300 до 1200 м/с [Криволуцкий и Куницын, 2007]. Сейсмические колебания земной коры представляют собой сложный нестационарный процесс, в котором сильнее всего проявляются низшие (до 10-50 Гц) собственные частоты [Береза и др., 1954; Трухин и др., 2005]. Накопленные данные об ионосфере для описания ее изменчивости позволяют сформулировать гипотезу о механизмах возможного инициирования сериями малых сейсмособытий триггерных эффектов в геосферах за счет воздействия акустико-гравитационных и внутренних гравитационных волн. Диссипация этих волн на ионосферных высотах является не только дополнительным источником энергии, приводящим к нагреванию, но и приводит к турбулизации среды [Криволуцкий и Куницын, 2007]. Триггерный эффект подразумевает под собой геофизическое явление, механизм которого состоит в инициировании путем внешнего слабого физического воз-

регионе	монитори
Регион	события

Дата	Время	Широта	Долгота	Глубина	Магнитуда	Регион события
15.01.2010 г.	21:04:46	18.01° N	72.33° W	10	4.7	Haiti region
15.01.2010 г.	20:04:11	18.47° N	72.82° W	10	4.6	Haiti region
15.01.2010 г.	13:41:43	18.40° N	72.81° W	10	4.6	Haiti region
15.01.2010 г.	8:56:05	18.40° N	72.95° W	10	4.6	Haiti region
14.01.2010 г.	12:39:04	18.41° N	72.78° W	10	4.8	Haiti region
14.01.2010 г.	10:32:29	18.48° N	72.61° W	10	4.5	Haiti region
14.01.2010 г.	5:03:06	18.47° N	72.87° W	10	4.4	Haiti region
13.01.2010 г.	22:21:14	18.35° N	72.51° W	10	4.9	Haiti region
13.01.2010 г.	21:26:17	18.51° N	72.45° W	10	4.8	Haiti region
13.01.2010 г.	18:54:16	18.44° N	72.60° W	10	4.6	Haiti region
13.01.2010 г.	14:43:44	18.45° N	72.92° W	10	5.3	Haiti region
13.01.2010 г.	12:41:44	18.37° N	72.82° W	10	4.7	Haiti region
13.01.2010 г.	12:28:25	18.40° N	72.79° W	10	4.5	Haiti region
13.01.2010 г.	7:23:04	18.35° N	72.88° W	10	5.0	Haiti region
13.01.2010 г.	6:58:27	18.34° N	73.06° W	10	4.5	Haiti region
13.01.2010 г.	6:48:03	18.37° N	72.87° W	10	4.5	Haiti region
13.01.2010 г.	6:24:17	18.33° N	73.05° W	10	4.6	Haiti region
13.01.2010 г.	5:49:24	18.43° N	73.00° W	10	4.7	Haiti region
13.01.2010 г.	5:24:02	18.43° N	72.83° W	10	4.9	Haiti region
13.01.2010 г.	5:18:02	18.33° N	72.91° W	10	5.2	Haiti region
13.01.2010 г.	5:02:57	18.36° N	72.93° W	10	5.8	Haiti region
13.01.2010 г.	3:31:57	18.25° N	72.92° W	10	4.7	Haiti region
13.01.2010 г.	3:17:12	18.39° N	72.99° W	10	4.6	Haiti region
13.01.2010 г.	2:54:19	18.42° N	72.94° W	10	4.5	Haiti region
13.01.2010 г.	2:43:47	18.46° N	72.98° W	10	4.7	Haiti region
13.01.2010 г.	2:26:33	18.46° N	72.82° W	10	4.7	Haiti region
13.01.2010 г.	2:17:56	18.52° N	72.94° W	10	4.6	Haiti region
13.01.2010 г.	2:11:30	18.42° N	73.00° W	10	5.0	Haiti region
13.01.2010 г.	1:57:34	18.41° N	72.90° W	10	5.4	Haiti region
13.01.2010 г.	1:55:16	18.35° N	72.85° W	10	4.9	Haiti region
13.01.2010 г.	1:36:31	18.41° N	72.83° W	10	5.4	Haiti region
13.01.2010 г.	1:32:44	18.37° N	72.94° W	10	5.3	Haiti region
13.01.2010 г.	1:24:31	18.46° N	72.83° W	10	4.6	Haiti region
13.01.2010 г.	1:16:51	18.42° N	72.85° W	10	5.1	Haiti region
13.01.2010 г.	1:05:48	18.53° N	72.64° W	10	4.6	Haiti region
13.01.2010 г.	0:59:05	18.34° N	72.85° W	10	5.2	Haiti region
13.01.2010 г.	0:43:27	18.47° N	72.48° W	10	5.0	Haiti region
13.01.2010 г.	0:23:55	18.39° N	72.66° W	10	4.2	Haiti region
12.01.2010 г.	23:47:38	18.42° N	72.86° W	10	4.5	Haiti region
12.01.2010 г.	23:35:39	18.38° N	72.86° W	10	4.9	Haiti region
12.01.2010 г.	23:27:36	18.54° N	72.76° W	10	4.7	Haiti region
12.01.2010 г.	23:12:03	18.39° N	72.52° W	10	5.3	Haiti region
12.01.2010 г.	23:07:03	18.52° N	72.58° W	10	4.6	Haiti region
12.01.2010 г.	22:12:04	18.45° N	72.51° W	10	5.5	Haiti region

Таблица 1. Сейсмособытия в исследуемый период 01-15 января 2010 г. в выбранном (http://www.usgs.gov) нга

Дата	Время	Широта	Долгота	Глубина	Магнитуда	Регион события
12.01.2010 г.	22:00:41	18.38° N	72.78° W	10	5.9	Haiti region
12.01.2010 г.	21:53:10	18.44° N	72.54° W	13	7.0	Haiti region
11.01.2010 г.	23:30:44	15.44° N	88.76° W	10	5.1	Guatemala
08.01.2010 г.	23:38:37	19.44° N	66.18° W	37	3.4	Puerto Rico region
08.01.2010 г.	21:43:18	19.57° N	66.30° W	39	3.7	Puerto Rico region
08.01.2010 г.	9:31:35	10.44° N	69.74° W	5	4.8	Lara, Venezuela
08.01.2010 г.	9:21:16	10.45° N	69.77° W	5	4.7	Lara, Venezuela
08.01.2010 г.	7:00:25	13.25° N	90.25° W	89	4.3	Offshore El Salvador
07.01.2010 г.	2:31:52	19.08° N	66.58° W	16	3.4	Puerto Rico region
07.01.2010 г.	2:27:09	19.09° N	66.57° W	20	2.9	Puerto Rico region
07.01.2010 г.	0:49:43	14.05° N	92.26° W	35	4.1	Offshore Guatemala
06.01.2010 г.	0:28:34	14.22° N	91.88° W	68	5.2	Offshore Guatemala
05.01.2010 г.	20:58:04	18.27° N	64.27° W	68	3.5	Virgin Islands region
05.01.2010 г.	5:36:21	14.01° N	91.88° W	48	5	Offshore Guatemala
05.01.2010 г.	3:36:16	10.86° N	62.43° W	106	4.8	Offshore Sucre, Venezuela
04.01.2010 г.	1:08:48	18.32° N	68.86° W	169	4.6	Mona Passage
02.01.2010 г.	20:00:49	12.59° N	87.67° W	66	4.2	Near the coast of Nicaragua

Таблица 1. Окончание

действия лавинообразно развивающегося катастрофического процесса (землетрясения, урагана, цунами и т.д.) [Клюшников, 2014]. Данный механизм может быть описан в виде следующей причинно-следственной цепочки: генерация низкочастотных вибраций земной коры в сейсмической зоне, деструктивные следствия этих вибраций – вибрологические эффекты, в частности, изменение эффективной вязкости при переходе от ламинарного к турбулентному режиму течения [Чиков, 2003]. Наличие предварительно накопленного тектонического напряжения земной коры в области подготовки землетрясения является дополнительным необходимым условием срабатывания триггерного механизма инициирования сейсмическими событиями процесса раскачки ионосферы.

Цель этой работы: детектирование литосферно-ионосферных проявлений, напрямую не связанный с гелио- и геомагнитной активностью, в период 01–15 января 2010 г. перед и после землетрясения на о-ве Гаити, с использованием возможностей спутниковой радионавигационной системы GPS.

3. ИССЛЕДОВАНИЕ ИОНОСФЕРЫ С ПОМОЩЬЮ ГНСС

Для исследования изменчивости ионосферы используются глобальные навигационные спутниковые системы (ГНСС), которые позволяют определить электронную концентрацию выше главного ионосферного максимума. Различные неоднородности ионосферы вызывают групповую задержку и фазовый сдвиг радионавигационных сигналов. Эти параметры используются в методе измерения полного электронного содержания – ПЭС (англ. total electron content – TEC), вдоль пути распространения от спутника до приемника на двух когерентных рабочих частотах [Hofmann-Wellenhof et al., 1997; Афраймович и Перевалова, 2006; Pi et al., 1997]. Для спутников GPS данные частоты равны: $f_1 = 1575.42 \text{ M}\Gamma\mu$, $f_2 =$ = 1227.60 МГц. Первичными данными, соответствующими этим частотам, являются ряды значений L_1, L_2 , которые представляют собой фазовые пути радиосигналов, измеряемые в длинах зондирующих волн. Также первичными данными являются значения псевдодальностей P₁ и P₂ (групповые пути сигналов), измеренные на тех же частотах. Информация об измерениях записывается в стандартном формате RINEX-Receiver INdependence EXchange form и доступна в публичном доступе.

Поскольку данные по псевдодальности P_1 и P_2 довольно сильно зашумлены, погрешность определения абсолютного ПЭС может составлять до 30–50% [Куницын и др., 2007], использование фазовых данных L_1 , L_2 является предпочтительным. Фазовые данные позволяют вычислять значения наклонного ПЭС – количество свободных электронов в столбце единичного сечения, вдоль пути распространения от спутника до приемника, измеряемого в единицах ПЭС (TEC units, 1TECU = 10^{16} электрон/м²):

$$\text{TEC} = \frac{1}{40.308} \frac{f_1^2 f_2^2}{f_1^2 - f_2^2} [(L_1 \lambda_1 - L_2 \lambda_2) + K + nL], \ (4)$$

где f_1 и f_2 — соответствующие рабочие частоты GPS; $L_1\lambda_1$, $L_2\lambda_2$ — дополнительные пути радиосигналов, обусловленные фазовым запаздыванием в ионосфере, м; L_1 и L_2 — число полных оборотов фазы на соответствующих рабочих частотах GPS; λ_1 и λ_2 — длины волн, м; K — константа неоднозначности определения фазы; nL — погрешности определения фазового пути.

Погрешность в определении вариаций ПЭС от фазовых измерений по формуле (4) составляет менее 0.1% относительно фоновой концентрации [Hofmann-Wellenhof et al., 1997; Куницын и др., 2007]; однако абсолютное значение ПЭС в этом случае неизвестно.

Ряды значений наклонного ПЭС приводятся к эквивалентным вертикальным значениям с целью нормировки амплитуды возмущения и определения координат подионосферных точек с использованием известной методики [Klobuchar, 1986]:

VTEC = TEC cos
$$\left[\arcsin \left(\frac{R_E}{R_E + h_{\text{max}}} \cos \theta_S \right) \right]$$
, (5)

где R_E — радиус Земли; h_{max} — высота максимума *F*2 слоя ионосферы; θ_s — угол места луча на НИСЗ, отсчитываемый от поверхности Земли.

Метод комбинации фазовых измерений для определения ПЭС в соответствии с формулой (4), при использовании данных глобальных специализированных сетей станций IGS (International Geohpysical Survey) и UNAVCO (University Navstar Consortium), расположенных по всему миру, позволяет получать достаточное разрешение по пространству. Временное разрешение данных, представленных в свободном доступе в формате RINEX, составляет 30 с.

4. МЕТОД GPS-ИНТЕРФЕРОМЕТРИИ ДЛЯ ИССЛЕДОВАНИЯ ИОНОСФЕРЫ

Для методов трансионосферного зондирования хорошо применимы методики изучения перемещающихся ионосферных возмущений [Гусев и др., 1958], разработанные и опробованные в период МГГ-МГСС, с последующей их модификацией, непосредственно адаптированные к сигналам системы GPS [Афраймович и Перевалова, 2006]. Технология многоспутниковой радиоинтерферометрии основана на измерении вариаций ПЭС в трех пространственно разнесенных пунктах – такая конфигурация GPS-приемников получила название "GPS-интерферометр" [Афраймович и Перевалова, 2004].

Метод GPS-интерферометрии основывается на выделении корреляционным способом отклика в навигационном сигнале на динамику изменения по времени неоднородных структур в средах (направление и вектор скорости).

В работе использовалась идея метода комбинации регистрируемых фаз на рабочих частотах L_1 и L_2 , далее с применением фильтрации высокочастотного шума (с периодиками менее 3-5 мин) и оценка скорости изменения параметра ПЭС по времени, т.е. производной, а не сами значения ПЭС для исключения в (4) неопределенности начальной фазы регистрируемых сигналов [Hofmann-Wellenhof et al., 1997; Афраймович и Перевалова, 2006; Захаров и др., 2008]. Ряды значений ПЭС подвергаются фильтрации, чтобы получить флуктуационную компоненту, т.е. отклонения от равновесных значений. Построение оценки флуктуаций ПЭС по комбинациям регистрируемых фазовых параметров, связанной с производной по времени наклонного ПЭС, осуществляется в виде:

$$\delta L_{I} \equiv L_{I}(\tau) - 0.5(L_{I}(t+\tau) + L_{I}(t-\tau)) \approx -\tau \frac{dL_{I}}{dt}\Big|_{t}, (6)$$

где т – величина окна фильтра.

Критерий для определения времени наблюдения учитывает в себе, что GPS-данные представлены с временным шагом 30 с, что ограничивает анализируемый период вариаций ПЭС снизу величиной порядка 1 мин, а также, чтобы статистика исследуемого процесса содержала достаточное количество отчетов, по возможности без сбоев и пропусков данных. Получается оценка для времени наблюдения 2–4 ч (240–480 отсчетов).

Выделенные вариации на каждой станции, в рассматриваемом регионе, используются для корреляционной обработки при детектировании ионосферных неоднородностей. Метод имеет ракурсную зависимость амплитуды исследуемого сигнала от направления визирования на навигационный ИСЗ [Мегсіег, 1986; Афраймович и Перевалова, 2004]. Максимум амплитуды наблюдается для перемещающихся ионосферных возмущений (ПИВ), волновой вектор **k**, которых перпендикулярен направлению луча **г** между передатчиком и приемником, иными словами, когда выполнено условие:

$$tg\theta = -\frac{\cos(\alpha_s - \alpha)}{tg\theta_s},$$
(7)

где α – азимут и θ – угол места волнового вектора **k**; α_s – азимут, и θ_s – угол места направления луча **r** "приемник–спутник".

После выделения волновой структуры, для ее идентификации мы используем кластерный анализ, применяемый в геофизике для структуризации данных по определенным признакам [Gvishiani and Dubois, 2002; Захаров и Зиенко, 2007; Захаров и др., 2008].

5. СПЕКТРАЛЬНЫЙ МЕТОД ИССЛЕДОВАНИЯ АТМОСФЕРНЫХ ФЛУКТУАЦИЙ СПЕКТР МОЩНОСТИ ВАРИАЦИЙ ПЭС

Для всех видимых спутников GPS, на выбранных для анализа станциях при применении соответствующей обработки вариаций ПЭС по формулам (4)–(6) и алгоритмов-преобразования Фурье вычисляется оценка спектра выделенных флуктуаций ПЭС по волновому числу, т.е. S(k)[Колмолгоров, 1941]. Поскольку ожидается, что спектры обладают степенным характером спадания $S(k) \sim k^{\alpha}$, то тангенс угла наклона логарифма спектра α в анализируемом диапазоне частот является наиболее информативным параметром, и его оценки приводятся в различных публикациях [Fridman, 1990; Afraimovich et al., 1994; Yakovets et al., 1999; Афраймович и др., 2001].

Для определения степени турбулизации среды принято использовать степенные оценки волнового спектра $S(k) \sim k^{\alpha}, k = 2\pi/\lambda, \lambda -$ характерный размер волнового возмущения [Татарский, 1967; Гершман и др., 1984; Афраймович и Перевалова, 2006], подробнее – см. раздел 2. В литературе имеется большой разброс оценок наклона α от -1до -100. К основной причине этого разброса можно отнести различные геофизические условия отдельных измерений и большим разбросом широты, долготы и местного времени при проведении экспериментов [Афраймович и Перевалова, 2006]. Для турбулентности верхней атмосферы характерны спектры с максимумами в диапазоне частот Брента-Вяйсяля 0.2-2 мГц и степенным спаданием между такими зонами. Частота Брента-Вяйсяля N определяет масштаб, пропорциональный собственному волновому масштабу $\lambda_c =$ $= 2\pi/K_c = \pi/N.$

Параметр степенного спадания волнового спектра варьируется при изменении условий среды, и его отклонения от среднего значения могут служить индикатором возмущенности данной среды.

6. ИСПОЛЬЗУЕМЫЕ ДАННЫЕ И МЕТОДИКА ОБРАБОТКИ

6.1. Данные

За период 01–15 января 2010 г. для проведения анализа нами использовались данные от станций, входящих в состав, прежде всего, сети IGS и сети UNAVCO. Совместное расположение наземных приемных станций, (кружки серых и черных цветов) и сейсмособытий в регионе (квадраты) приведены на рис. 1. Выбранные для работы станции приведены черным цветом. Видно, что собственно в регионе мониторинга плотность станций достаточно мала, в основном, они расположены на побережье Мексиканского залива. В рассматриваемый период использовались данные от 67 наземных станций. Данные по каждой станции получены из стандартных для системы GPS-файлов наблюдений в формате RINEX и местоположений в формате *sp3* [Gunter and Estey, 2007]. Сформированы были 27 измерительных ячеек. Обработано свыше 7.5 тыс. ч индивидуальных наблюдений, около 4.3 млн отсчетов фазы.

Следует отметить, что в работе используется производная только фазы L_1 , потому что амплитуда излучаемого сигнала этой GPS-частоты больше, чем у L_2 , это приводит к большему числу случаев успешной регистрации сигнала, и, в конечном счете, для вычисления ПЭС.

Для характеристики геомагнитных вариаций в исследуемый период нами использовались индексы *Dst* и *Kp*. Данные получены в часовом разрешении индекс *Dst* и планетарный индекс *Kp* в трехчасовом интервале времени, графики совместно приведены на рис. 2. Период с 01 по 15 января 2010 г. был магнитоспокойным, величина *Dst* лежит в пределах ± 20 нТл, соответственно величина *Kp* не превышает 3.

6.2. Обработка

В программном пакете CRASS GPS, созданном на кафедре физики атмосферы физического факультета МГУ им. М.В. Ломоносова, реализован комплексный алгоритм для обработки массивов данных, заключающийся в следующем: из общего количества наземных станций GPS, расположенных в одном географическом регионе, формируются ячейки подсети, состоящие из троек приемных станций. Объединение трех выбранных станций в единую ячейку подсети, удовлетворяет двум основным критериям. Во-первых, расстояния между станциями должны быть менее заданного ~50-100 км, что позволяет использовать приближение плоского фронта волнового возмущения при обработке данных. Во-вторых, на каждой из станций данные не должны иметь длительных пропусков и сбоев [Захаров и Зиенко, 2007; Захаров и др., 2008]. Выбранные в соответствии с этими критериями три станции называются "измерительной ячейкой региональной подсети" или просто "ячейкой подсети". Расположение приемников GPS в ячейке подсети представляет собой решетку с минимально необходимым количеством элементов. Первичными данными являются ряды значений наклонного ПЭС, определенные для каждой станции в ячейке подсети, а также соответствующие им ряды значений угла места и азимута направления на спутник.

Базовые элементы обработки GPS-сигналов интерферометрическим способом для производной по времени ПЭС и фазы L_1 на одной измерительной ячейке представлены на рис. 3. Длитель-

Рис. 1. Совместное расположение станций сети IGS, и сети UNAVCO (кружки серых и черных цветов) и сейсмособытий в регионе (квадраты).

Рис. 2. Dst-индекс геомагнитной активности и планетарный индекс Кр.

ность экспериментальной записи 2 ч. Приведенные рисунки автоматически создаются модулем визуализации результатов в комплексе CRASS GPS. На рисунке 3a показан анализируемый сигнал dTEC(t)/dt (аналогично строится график для фазы $dL_1(t)/dt$) для станции *abmf* из сети *IGS*, являющейся центром топоцентрической системы координат. В эту измерительную ячейку также входят станция *lmmf* (IGS) и станция *P*780 (UNAVCO). На рисунке 36 приведены функции взаимной

Рис. 3. Базовые элементы обработки GPS-сигналов интерферометрическим способом для одной измерительной ячейки представлены на: (*a*) – анализируемый сигнал dTEC(t)/dt; (*b*) – функции взаимной корреляции сигналов на парных станциях;(*в*) – амплитудный спектр dTEC(t)/dt и $dL_1(t)/dt$.

корреляции сигналов на парных станциях, кодировка пар приведена в легенде. Видно большое подобие поведения регистраций на станциях — коэффициент корреляции для производной dTEC(t)/dt достигает 0.88. Характерный период переколебаний корреляционной функции дает оценку наличия периода волнового возмущения. По поведению dTEC(t)/dt (или по производной фазы $dL_1(t)/dt$) выделяются максимумы спектральной плотности, имеющие одинаковые частоты, рис. 3*в*.

Рис. 4. Параметр волновой активности на о-ве Гаити в период 09.01.2010–13.01.2010 г.

7. ОБСУЖДЕНИЕ

Методами GPS-интерферометрии получены для вариаций ПЭС значения диапазона параметра спадания $\alpha = (-2)-(-4)$ для среднеширотной и тропической ионосферы [Афраймович и Перевалова, 2006]. Проведенный анализ спектров выделенных волновых структур, сгруппированных в кластеры, имеющих скорости, соответствующие АГВ (от 300 до 1200 м/с), показывает, что именно в период после значительных сейсмических событий изменяется параметр спадания α волнового спектра.

Следующий рис. 4 демонстрирует временную зависимость параметра спадания α волнового спектра в период 09-16 января 2010 г. Анализ показывает наличие трех экстремумов до основного события и локального экстремума 13 января в интервале 05-06 ч, что соответствует отклику ионосферы непосредственно на землетрясение в исследуемом регионе. На рисунке 4 тонкие горизонтальные прямые задают положение величины выборочной дисперсии. за указанный период наблюдений, равной -0.17, относительно среднего значения -0.98, отмеченного жирной горизонтальной прямой на графике, минимум составляет -1.47. Локальный минимум обозначен достаточно уверенно и превосходит среднее на величину почти трех дисперсий. Видно, что самое крупное событие, конечно, провоцирует значимый отклик на ионосферных высотах. Однако процесс взаимодействия геосфер не сводится к простой причинно-следственной реакции на факт события. Отклик ионосферы представляет собой суперпозицию различных процессов, причем в сейсмически активных областях возможна дополнительная турбулизация ионосферы сериями более слабых толчков землетрясений.

Разные сейсмические события и процессы порождают сходные волновые возмущения, расходящиеся от источника со скоростями, соответствующими АГВ, и проявляющиеся на ионосферных высотах. Данное обстоятельство затрудняет в ряде случаев однозначную интерполяцию результатов.

8. ВЫВОДЫ

Основное землетрясение 12 января 2010 г. дает значимый отклик на ионосферных высотах, который, вероятно, нелинеен, представляет собой суперпозицию различных процессов. Проведенный анализ характеристик спектров выделенных ионосферных волновых структур, сгруппированных в кластеры, в период 09-13 января 2010 г. показывает наличие локального экстремума в период 05-06 ч 13 января, что соответствует отклику ионосферы непосредственно на землетрясение. Причем в сейсмически активных областях возможна дополнительная турбулизация плазмы ионосферы циклом более слабых землетрясений, что приводит к изменению параметра степенного спадания спектра ионосферных неоднородностей для спектров выделенных волновых структур, имеющих скорости, соответствующие АГВ (от 300 до 1200 м/с).

Над сейсмически активными районами происходят интенсивные изменения параметров ионосферы относительно показателей их регулярной изменчивости, не только во время основного события, но также в период подготовки землетрясений и после его активной фазы. Причем источником неоднородных структур является не только будущий эпицентр, но и вся область подготовки землетрясения — например, активный разлом.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при частичной поддержке Российского научного форда, грант № 18-12-00441.

СПИСОК ЛИТЕРАТУРЫ

– Афраймович Э.Л., Косогоров Е.А., Лесюта О.С., Ушаков И.И. Спектр перемещающихся ионосферных возмущений по данным глобальной сети GPS // Изв. вузов. Радиофизика. Т. 44. № 10. С. 828–839. 2001.

— Афраймович Э.Л., Перевалова Н.П. Моделирование измерений полного электронного содержания на

GPS-радиоинтерферометре // Солнечно-земная физика. Вып. 4. С. 71-78. 2004.

– Афраймович Э.Л., Перевалова Н.П. GPS-мониторинг верхней атмосферы Земли. Иркутск: Изд-во ГУНЦ РВХ ВСНЦ СО РАМН, 480 с. 2006.

– Береза Г.В., Слуцковский Л.И., Полшков М.К. Частотный анализ сейсмических колебаний // Прикладная геофизика. № 11. С. 92–123. 1954.

— Гериман Б.Н., Ерухимов Л.М., Яшин Ю.Я. Волновые явления в ионосфере и космической плазме. М.: Нау-ка, 1984.

– Гусев В.Д., Драчев Л.А., Миркотан С.Ф., Березин Ю.В., Кияновский М.П., Виноградова М.Б. Гайлит Т.А. Структура и движения крупномасштабных неоднородностей в ионосферном слое F2 // ДАН СССР. Т. 128. № 5. С. 804–820. 1958.

– Захаров В.И., Зиенко А.С. Метод статистического анализа вейвлет—спектров ионосферных сигналов системы GPS // Вестн. МГУ. Сер. 3. Физика. Астрономия. Т. 62. № 2. С. 44–49. 2007.

– Захаров В.И., Зиенко А.С., Куницын В.Е. Распространение радиосигналов GPS при различной солнечной активности // Электромагнитные волны и электронные системы. Т. 13. № 8. С. 51–57. 2008.

- Клюшников В.Ю. О возможности возникновения триггерных эффектов в геосредах при пусках перспективных ракет-носителей сверхтяжелого класса // Космонавтика и ракетостроение. Т. 79. № 6. С. 121–131. 2014.

– Колмогоров А.Н. Локальная структура турбулентности в несжимаемой жидкости при очень больших числах Рейнольдса // Докл. АН СССР. Т. 30. № 4. С. 299– 303. 1941.

- Криволуцкий А.А., Куницын В.Е. Ионосфера Земли / Физические условия в космическом пространстве. Т. 1. / Модель космоса: Научно-информационное издание в 2-х т. Ред. М.И. Панасюк, Л.С. Новиков. М.: КДУ. С. 744–780. 2007.

- Куницын В.Е., Терещенко Е.Д., Андреева Е.С. Радиотомография ионосферы. М.: Наука. 335 с. 2007.

— Монин А.С., Яглом А.М. Статистическая гидромеханика. Т. 1. М.: Наука, 696 с. 1967.

– Монин А.С., Яглом А.М. Статистическая гидромеханика. Т. 2. Санкт-Петербург: Гидрометеоиздат. 742 с. 1996.

– Намгаладзе А.А., Золотов О.В., Прохоров Б.Е. Численное моделирование вариаций полного электронного содержания ионосферы, наблюдавшихся перед землетрясением 12 января 2010 г. на о-ве Гаити // Геомагнетизм и аэрономия. Т. 53. № 4. С. 553–560. 2013.

- Обухов А.М., Яглом А.М. Микроструктура турбулентного потока // ПММ 15. Вып. 1, 3. 1951.

– Пулинец С.А., Цыбуля К.Г. Уникальные вариации полного электронного содержания в период подготовки землетрясения на Гаити (М7.9) 12 января 2010 г. // Геомагнетизм и аэрономия. Т. 50. № 5. С. 713–716. 2010.

— *Татарский В.И.* Теория флуктуационных явлений при распространении радиоволн в турбулентной атмосфере. М.: изд-во АН СССР. 230 с. 1959.

— Татарский В.И. Распространение волн в турбулентной атмосфере. М.: Наука, 1967.

- Трухин В.И., Показеев К.В., Куницын В.Е. Общая и экологическая геофизика. М.: Физматлит. 576 с. 2005.

– Чиков Б.М. Режимы колебаний и волн в геосферах / Тр. Всероссийского совещ. "Напряженно-деформированное состояние и сейсмичность литосферы". Иркутск, 26–29 августа 2003 г. Ред. С.И. Шерман. Новосибирск: изд-во СО РАН. Фил. "Гео". С. 209–211. 2003.

- Afraimovich E.L., Minko N.P., Fridman S.V. Spectral and dispersion characteristics of medium-scale travelling ionospheric disturbances as deduced from transionospheric sounding data // J. Atmos. Terr. Phys. V. 56. \mathbb{N}_{2} 11. P. 1431–1446. 1994.

- Akhoondzadeh M., Saradjian M.R. TEC variations analysis concerning Haiti (January 12, 2010) and Samoa (September 29, 2009) earthquakes // Adv. Space Res. V. 47. N° 1. P. 94–104. 2011.

– Fridman S.V. The formation of small-scale irregularities as a result of ionospheric plasma mixing by large-scale drifts // Planet. Space Sci. V. 38. № 8. P. 961–972. 1990.

- *Gurtner W., Estey L.* RINEX: The Receiver Independent Exchange Format Version 2.11. Astronomical Institute University of Berne. UNAVCO Boulder, Co. 2007.

- *Gvishiani A., Dubois J.O.* Artificial intelligence and dynamic systems for geophysical applications. Berlin: Springer. 347 p. 2002.

- Hofmann-Wellenhof B., Lichtenegger H., Collins J. GPS Theory and practice. Wien; New York: Springer-Verlag. 389 p. 1997.

- *Klobuchar J.A.* Ionospheric time-delay algorithm for single-frequency GPS users // IEEE T. Aero. Elec.-Sys. V. 23. № 3. P. 325–331. 1986.

- Mercier C. Observations of atmospheric gravity waves by radiointerferometry // J. Atmos. Terr. Phys. V. 48. No 7. P. 605–624. 1986.

– *Pi X., Mannucci A.J., Lindqwister U.J., Ho C.M.* Monitoring of global ionospheric irregularities using the worldwide GPS network // Geophys. Res. Lett. V. 24. № 18. P. 2283– 2286, 1997.

- Yakovets A.F., Kaliev M.Z., Vodyannikov V.V. An experimental study of wave packets in travelling ionospheric disturbances // J. Atmos. Terr. Phys. V. 45. P. 629–639. 1999.