УДК 551.52;551.59;551.594.21

ОСОБЕННОСТИ ЗИМНИХ ГРОЗ НА КАМЧАТКЕ

© 2019 г. С. Э. Смирнов^{1, *}, Ю. М. Михайлов^{2, **}, Г. А. Михайлова², О. В. Капустина²

¹Институт космофизических исследований и распространения радиоволн (ИКИР ДВО РАН), пос. Паратунка, Камчатский край, Россия

²Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН (ИЗМИРАН), г. Москва, г. Троицк, Россия

> *e-mail: sergey@ikir.ru **e-mail: yumikh@izmiran.ru Поступила в редакцию 29.03.2019 г. После доработки 14.05.2019 г. Принята к публикации 23.05.2019 г.

Зимние грозы на Камчатке – редкое метеорологическое явление. Для исследования природы этого явления в качестве индикатора грозовой активности в работе использованы временные вариации квазистатического электрического поля и метеорологических величин в обс. Паратунка ИКИР ДВО РАН ($\phi = 52.97^{\circ}$ N; $\lambda = 158.25^{\circ}$ E), а также доступные в INTERNET данные о солнечной, сейсмической и циклонической активностях. Показано, что для формирования грозовой активности возможным дополнительным источником тепла в приземной атмосфере Камчатки могут быть мощные солнечные вспышки, сопровождаемые усилением излучения в видимом и инфракрасном спектрах, а также инфракрасное излучение Земли, поступающее в атмосферу перед мощными землетрясениями с магнитудой M > 8. Вклад тропических циклонов в эти процессы при слабой сейсмической активности определен недостаточно четко и нуждается в дальнейшем детальном изучении.

DOI: 10.1134/S0016794019060117

1. ВВЕДЕНИЕ

Зимние грозы на п-ове Камчатка – очень редкое метеорологическое явление, которое наблюдается, по одним данным, один-два раза в течение пяти лет, а по другим – в течение двух лет. Синоптики связывают это явление с особенностями местного климата, который отличается сильной неустойчивостью, определяемой влиянием окружающих морей, постоянным движением воздушных масс из-за перепадов атмосферного давления и влиянием циклонов, приходящих с Тихого океана. Тропические циклоны приносят на полуостров теплый и влажный воздух, вызывая летом продолжительные обильные ливни, а зимой снежные бури. Несмотря на высокую циклоническую активность, среднее число грозовых дней в год на полуострове, согласно данным (https://yandex.ru/pogoda/paratunka/month), coctabляет величину 10.8. Следовательно, для образования грозовых облаков, кроме шиклонов, возможно действие и других источников дополнительной тепловой энергии, поступающей в приземную атмосферу. Действительно, в работах [Смирнов и др., 2013, 2014] было обнаружено появление грозовых процессов после мощных солнечных вспышек, сопровождаемых усилением солнечного излучения в видимом и инфракрасном диапазонах спектра. Кроме этого, в работе [Смирнов и др., 2017] были обнаружены грозовые явления за 6—7 сут до сильных землетрясений с магнитудой *M*>8.

Настоящая работа посвящена детальному анализу условий появления зимних гроз на Камчатке по одновременным записям напряженности квазистатического электрического поля и метеорологических величин, а также по данным солнечной, циклонической и сейсмической активностей, используемым для оценки их вклада в развитие грозовых процессов в приземной атмосфере.

2. ИСХОДНЫЕ ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ

В качестве индикатора грозовой активности рассмотрены суточные вариации напряженности квазистатического электрического поля (*Ez*-компоненты) одновременно с вариациями метеорологических величин в приземной атмосфере в обс. Паратунка ДВО РАН ($\varphi = 52.97^{\circ}$ N; $\lambda = 158.25^{\circ}$ E). Напряженность электрического поля измерена прибором "Поле-2" с дискретностью по времени 1 мин, а метеорологические величины (температура *T*° C; давление *P*, гПа; относительная влажность *Hm*, %; осадки, мм и скорость

N	Дата	Время, UT	Географические координаты		h m	М	P voi
			φ° N	$\lambda^{\circ} E$	п, км	11/1	л, км
1	04.11.2004 г.	14:03:11.74	43.665	146.812	62.4	5.8	312
2	07.11.2004 г.	02:02:26.34	47.884	144.486	481.8	6.1	420
3	11.11.2004 г.	10:02:47.12	42.164	144.331	32.2	6.1	420
4	14.11.2004 г.	17:37:42.42	41.777	144.114	15.0	5.1	156
5	14.11.2004 г.	17:57:40.66	41.781	144.064	30.3	5.0	140
6	14.11.2004 г.	18:44:13.62	41.786	144.079	21.0	5.4	210

Таблица 1. Землетрясения вблизи п-ова Камчатка, зарегистрированные в ноябре 2004 г.

Примечание: h – глубина эпицентра; M – магнитуда; $R = 10^{0.43M}$ – радиус сейсмически активной зоны накануне землетрясения.

ветра *V*, м/с) – цифровыми станциями WS-2000 и WS-2300 с дискретностью по времени 10 мин. Для оценки уровня солнечной активности использованы записи потоков рентгеновского излучения (Х-лучей, Вт/м²) (http://www.staff.oma.be/default.jsp), сейсмической активности – (http:// www.isc.ac.uk/ iscbulletin/search/catalogue/interactive/), циклонической активности в акватории Тихого океана (http://agora.ex.nii.ac.jp/digital-typhoon/search.date.html.en). Зимние грозы непродолжительны по времени, поэтому они не всегда отмечаются в метеорологических данных, которые традиционно на местных станциях измеряются через каждые три часа в течение суток, либо как среднесуточные их значения (https://vandex.ru/pogoga/paranunka/month). В отличие от этих методов, в обс. Паратунка их записи ведутся практически непрерывно (через 10 мин). Поэтому детальная регистрация временных вариаций напряженности электрического поля и метеорологических величин позволяет наиболее надежно и достоверно оценивать состояние грозовой активности в приземной атмосфере. На временных записях напряженности электрического поля грозовые процессы проявляются как знакопеременные колебания большой величины, порядка кВ/м [Михайлова и др., 2010], в отличие от регулярных колебаний в условиях "хорошей погоды" (~100 В/м) и бухтообразных понижений напряженности перед землетрясениями [Smirnov, 2008]. Ниже рассмотрены особенности вариаций этих величин для событий аномально сильных землетрясений с магнитудой *M* > 8 (ноябрь 2006 г. и январь 2007 г.) и мощных солнечных вспышек (октябрь 2003 г. и ноябрь 2004 г.).

3. ОСНОВНЫЕ РЕЗУЛЬТАТЫ

События в ноябре 2004 г. Особенность этих событий состоит в том, что они развивались на фоне мощных солнечных вспышек, сопровождаемых двумя магнитными бурями [Смирнов и др., 2013]. Это привело к возбуждению аномально сильных грозовых процессов в приземной атмосфере на Камчатке. На рисунке 1а приведены суточные вариации Ег-компоненты электрического поля, а также метеорологических величин (температура T° C, атмосферное давление P, гПа, относительная влажность *Hm*. % и скорость ветра *V*, м/с) и Х-лучей (Вт/м²) в период с 4 по 14 ноября 2004 г. Как видно, в период с 4 по 9 ноября наблюдалась высокая солнечная активность с аномальными потоками X-лучей (~10⁻⁴ Вт/м²), сопровождаемыми, как известно, усилением потоков излучения в видимом и инфракрасном диапазонах. Как видно на графиках температуры и относительной влажности, это привело к нарушению их регулярного суточного хода 3 и 4 ноября. В результате действия солнечных вспышек температура ночью возросла от минус 15°С до нулевых и положительных величин, а относительная влажность – до 80 и более процентов. Это привело к формированию грозовой активности 7 и 10 ноября (характерные знакопеременные колебания Ez-компоненты электрического поля). В этот период циклоническая активность в Тихом океане была спокойной, тайфун MUIFA (рис. 16) зародился только 14 ноября в очень отдаленном месте от Камчатки. Не исключено, что его мощность и продолжительность (более 10 дней) обусловлена усилением солнечной активности в предшествующие дни. Сейсмическая активность в этот период (см. табл. 1) также была относительно спокойной. Моменты ЗТ отмечены стрелками по оси абсцисс графика Ег-компоненты, на котором отсутствуют явления, вызванные землетрясениями.

Завершая анализ графиков рисунка и состояния циклонической и сейсмической активностей, можно с уверенностью сделать вывод о том, что грозовая активность в ноябре была вызвана усилением солнечной активности в этот период.

События в октябре 2003 г. Рассмотренные ниже эффекты в приземной атмосфере развивались в период аномального усиления солнечной активности 21–31 октября (см. рис. 2*a*), когда потоки рентгеновского излучения при вспышках достигали аномальных величин ~ 10^{-3} Вт/м². При

Рис. 1. Суточные вариации *Ez*-компоненты квазистатического электрического поля в приземной атмосфере Камчатки, метеорологических величин и потоков солнечной радиации X-гау (в диапазоне 0.1-0.8 нм) в ноябре 2004 г. (*a*); трек тайфуна MUIFA (δ).

ОСОБЕННОСТИ ЗИМНИХ ГРОЗ НА КАМЧАТКЕ

N	Дата	Время, UT	Географические координаты		h vu	М	P voi
			φ°, N	λ°, Ε	п, км	111	л, км
1	23.10.2003 г.	10:54:37.10	51.76	176.39	14	5.3	190
2	23.10.2003 г.	10:54:39.70	51.46	176.56	33	5.3	190
3	23.10.2003 г.	15:32:06.18	51.39	176.55	33	5.1	156

Таблица 2. Землетрясения вблизи п-ова Камчатка, зарегистрированные в октябре 2003 г.

Таблица 3. Характеристики землетрясений вблизи п-ова Камчатка в ноябре 2006 г. и январе 2007 г.

Ν	Дата	Время, UT	Географические координаты		h vu	м	R KM
			φ°, N	λ°, Ε	п, км	11/1	л, км
1	12.11.2006 г.	14.42:24	55.164	165.295	37.4	5.0	140
2	15.11.2006 г.	11.14:13.57	46.592	153.266	30.3	8.3	3706
3	08.01.2007 г.	16.23:38.00	54.297	159.170	136.5	4.6	95
4	11.01.2007 г.	04.27:26.32	60.955	165.478	10.0	5.0	140
5	13.01.2007 г.	04.23:21.16	46.243	154.524	10.0	8.1	3040
6	13.01.2007 г.	17.35:22.51	54.796	166.192	10.0	4.9	127
7	13.01.2007 г.	17.37:06.31	46.913	156.276	10.0	6.0	380

этом возрастали потоки излучения и в видимой части спектра [Веселовский и др., 2004]. Поступление дополнительной тепловой энергии привело к заметному нарушению регулярного суточного хода температуры 21 и 22 октября, увеличив отрицательные ночные значения (-3°C) до положительных значений (+4–5°С). В течение периодов 23-27 и 29-31 октября сохранялась очень высокая влажность воздуха (~90%). Это привело к формированию интенсивной и продолжительной грозовой активности 24 и 30 октября (колебания напряженности *Ez*-компоненты, сильные ветры, обильные осадки). Именно в эти дни отмечена максимальная интенсивность тайфуна PARMA (рис. 26), когда минимальное давление в "глазу" его составило 930 гПа, а максимальная скорость – 95 узлов/ч. Этот мощный тайфун зародился 21 октября на $\phi \sim 20^\circ - 35^\circ$ N и в течение 10 дней смещался вдоль широты от 140° до 180° Е. Одновременно в тот же период 19-26 октября в акватории Тихого океана действовал менее мощный (V = 90 узлов/ч; P = 940 гПа) тайфун KETSANA (рис. 2e) [http:// agora.ex.nii.ac.jp/digital-typhoon/search.date.html.en]. Хронологическая последовательность их передвижения показана на графике давления рис. 2а. Одновременное развитие этих тайфунов, вызванных появлением аномальных солнечных вспышек, позволяет сделать вывод о том, что только сверхмощные тайфуны способны вызвать грозовые процессы в зимнее время в приземной атмосфере Камчатки. Сейсмическая активность в этот период была относительно спокойной ($M \sim 5$). Характеристики землетрясений приведены в табл. 2, а моменты времени отмечены стрелками на гра-

фике *Ez*-компоненты. Им предшествовали бухтообразные понижения напряженности электрического поля значительно меньшей интенсивности по сравнению с колебаниями в период грозовой активности.

События в ноябре 2006 г. и январе 2007 г. Эти события связаны с сильными Курильскими землетрясениями, магнитуда которых превышала величину $M \sim 8$ (см. табл. 3, а хронологическая последовательность их отмечена стрелками на графике *Ez*-компоненты на рис. 3*a* и 4) [Смирнов и др., 2017]. Как видно на графиках температуры T° С, начиная с 8 ноября и 5 января, в приземной атмосфере изменились условия "хорошей погоды" с регулярным суточным ходом температуры и относительной влажности Нт, %. При наличии высокой влажности (~90%) температура последовательно возрастала в течение нескольких дней, вплоть до момента сильного землетрясения. В отдельные дни повышение температуры сопровождалось усилением ветра (V~ 18-25 м/с) и развитием мощной грозовой активности (8 и 13 ноября и 7-8 января). Более того, 13 ноября в вариациях электрического поля одновременно наблюдались эффекты грозовой активности, совпадающие с бухтообразным понижением напряженности поля, обусловленным сильным землетрясением 15 ноября. Солнечная активность в эти периоды сохранялась относительно спокойной, величины потоков Х-лучей были порядка 10⁻⁶ Вт/м². Циклоническая активность тоже была очень низкой: тайфун СНЕВІ зародился на широте ниже 20° N и смещался в течение четырех суток (9–13 ноября) в интервале долгот 115-135° Е с максимальной

Рис. 2. То же, что и на рис. 1, но в октябре 2003 г. (*a*); треки тайфунов PARMA (б) и KETSANA (в).

Рис. 3. То же, что и на рис. 1, но в ноябре 2006 г. (*a*); трек тайфуна СНЕВІ (*б*).

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 59 № 6 2019

Рис. 4. То же, что и на рис. 1, но в январе 2007 г.

скоростью ветра ~100 узлов/ч (рис. 36) (http:// agora.ex.nii.ac.jp/digital-typhoon/search.date.html.en), т.е. был далеко от Камчатки. В январский период не были зарегистрированы ни тайфуны, ни штормы в рассматриваемой нами части Тихого океана. Таким образом, обнаруженный аномальный рост температуры, вопреки отрицательному регулярному тренду в это время года [Смирнов и др., 2017], вызван, на наш взгляд, появлением дополнительного источника тепла. Состояние солнечной, сейсмической и циклонической активностей позволяет сделать вывод, что этот источник сейсмической природы.

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ И ВЫВОДЫ

Как следует из архивов метеослужбы (www.pogodaiklimat.ru), зимние грозы на Камчатке случаются крайне редко. Для возникновения грозовой активности в это время года недостаточно тепловой энергии, поступающей от Солнца. А для образования кучево-дождевых и кучево-грозовых облаков необходимы следующие условия. Это конвекция теплого воздуха, высокое влагосодержание воздуха и неустойчивость в тропосфере в результате большого градиента температуры по высоте [Матвеев, 2000]. На первой стадии этого процесса сначала образуются кучевые облака с сильными осадками и ветрами, которые далее развиваются в более мощные кучевые и кучевогрозовые с появлением молниевых разрядов. Эти сталии отчетливо просматриваются во временных вариациях метеорологических величин (рис. 1-4). Очевидно, что пусковым механизмом этого процесса является момент увеличения температуры воздуха с последующим движением его вверх, т.е. для развития грозовой активности необходим дополнительный источник теплового излучения в приземной атмосфере. Синоптики полагают, что таким источником являются циклоны, которые приносят на полуостров потоки теплого и влажного воздуха в зимнее время года, вызывая температурную неустойчивость в тропосфере. При этом, как следует из архивов погоды, тропические циклоны происходят достаточно часто, особенно в осенние и зимние сезоны, когда поверхность океана прогревается до высоких температур и усиливается испарение влаги. Вместе с тем зимние грозы случаются крайне редко. Следовательно, тепловой энергии, приносимой циклонами, не всегла достаточно для зарождения грозовой активности и необходимо наличие дополнительного источника теплового излучения в приземной атмосфере, способного вызвать грозовую активность. Сравнительный анализ данных электрических и метеорологических величин, а также данных солнечной, сейсмической и циклонической активностей позволил выделить эти дополнительные источники. Оказалось, что при сильных солнечных вспышках, подобных случившимся в 2003 и 2004 гг., происходящих не часто, возникает поток тепла в видимом и инфракрасном диапазонах [Веселовский и др., 2004, Ермолаев и др., 2005], достаточный для создания условий образования грозовой активности. Кроме того, дополнительным источником тепла в инфракрасном диапазоне могут быть, как известно [Горный и др., 1988], сейсмические процессы в земной коре перед мощными землетрясениями с магнитудой M > 8, которые случаются также крайне редко. В нашем случае оба эти источника действовали либо при слабой, либо при мощной циклонической активности, роль которой, повидимому, свелась к возникновению температурной неустойчивости в тропосфере. Вопрос о возможности зимних гроз на Камчатке при сильных тропических циклонах, но при слабых солнечной и сейсмической активностях нуждается в дальнейшем детальном изучении.

СПИСОК ЛИТЕРАТУРЫ

– Веселовский И.С. + *52 соавтора.* Солнечные и гелиосферные явления в октябре-ноябре 2003 г.: причины и следствия // Космич. исслед. Т. 42. № 5. С. 453–508. 2004.

– Горный В.И., Сальман А.Г., Тронин А.А., Шилин Б.В. Уходящее инфракрасное излучение Земли – индикатор сейсмической активности // ДАН. Т. 301. № 1. С. 67–69. 1988.

– Ермолаев Ю.И. + 48 соавторов. Год спустя: солнечные, гелиосферные и магнитосферные возмущения в ноябре 2004 г. // Геомагнетизм и аэрономия. Т. 45. № 6. С. 723–763. 2005.

– Матвеев Л.Т. Физика атмосферы. С.-Петербург: Гидрометеоиздат, 778 с. 2000.

– Михайлова Г.А., Михайлов Ю.М., Капустина О.В., Смирнов С.Э. Эффекты грозовой активности в спектрах мощности электрического поля в приземной атмосфере на Камчатке // Геомагнетизм и аэрономия. Т. 50. № 6. С. 843–852. 2010.

– Смирнов С.Э., Михайлова Г.А., Капустина О.В. Вариации квазистатического электрического поля в приземной атмосфере на Камчатке во время геомагнитных бурь в ноябре 2004 г. // Геомагнетизм и аэрономия. Т. 53. № 4. С. 532–546. 2013. DOI 10.7868//S001 6794013040147.

– Смирнов С.Э., Михайлова Г.А., Капустина О.В. Вариации электрических и метеорологических величин в приземной атмосфере на Камчатке во время солнечных событий в октябре 2003 г. // Геомагнетизм и аэрономия. Т. 54. № 2. С. 257–265. 2014.

– Смирнов С.Э., Михайлова Г.А., Михайлов Ю.М., Капустина О.В. Эффекты сильных землетрясений в вариациях электрических и метеорологических величин в приземной атмосфере на Камчатке // Геомагнетизм и аэрономия. Т. 57. № 5. С. 656–663. 2017.

– Smirnov S. Association of the negative anomalies of the quasistatic electric field in atmosphere with Kamchatka seismicity // Nat. Hazards Earth Syst. Sci. V. 8. P. 745–749. 2008.