УДК 551.242.1

АНАЛИЗ СОВРЕМЕННЫХ ДВИЖЕНИЙ И ДЕФОРМАЦИЙ ЗЕМНОЙ КОРЫ ФЕННОСКАНДИИ ПО ДАННЫМ ГНСС

© 2022 г. Г. М. Стеблов^{1,} *, А. О. Агибалов^{1,} **, Г. Э. Мельник^{1, 2,} ***, В. П. Передерин^{1,} ****, Ф. В. Передерин^{1,} *****, А. А. Сенцов^{1,} *****

¹Институт физики Земли имени О.Ю. Шмидта РАН, г. Москва, Россия

²Центр геодезии, картографии и инфраструктуры пространственных данных, г. Москва, Россия

*E-mail: steblov@ifz.ru **E-mail: agibalo@yandex.ru ***E-mail: melnik@ifz.ru ****E-mail: vpp@ifz.ru *****E-mail: crash@ifz.ru *****E-mail: alekssencov@yandex.ru Поступила в редакцию 06.09.2021 г. После доработки 03.02.2022 г. Принята к публикации 11.02.2022 г.

По данным анализа скоростей движений пунктов ГНСС установлено последовательное уменьшение величин современных деформаций от центральной части Фенноскандии, находящейся в условиях растяжения, к ее периферии. На северо-восточной окраине территории обстановки растяжения и сдвига сменяются полосой сжатия, протягивающейся от Ладожского озера до Кандалакшского залива. Эти особенности поля деформаций согласуются с решениями фокальных механизмов очагов землетрясений и объяснимы развитием изучаемой области как растущего поднятия с центром в северной части Ботнического залива, которое испытывает горизонтальное северо-западное сжатие со стороны Срединно-Атлантического хребта. Показано, что большинство ранее выделенных нами зон возможных очагов землетрясений расположены в областях повышенных значений величин деформаций.

Ключевые слова: Фенноскандия, ГНСС, современные деформации, сейсмотектоника, зоны ВОЗ, фокальные механизмы очагов землетрясений.

DOI: 10.31857/S0002333722040123

введение

Анализ характера современных движений Фенноскандии – актуальная и интересная задача, решение которой значимо для понимания основных особенностей сейсмичности этой густонаселенной и хорошо освоенной в хозяйственном отношении территории. Максимальная магнитуда землетрясений за исторический период составляет около 6.5, однако в геологическом прошлом здесь происходили сейсмические события магнитудой ≥8 [Лукк и др., 2019]. Изучение скоростей смещения пунктов ГНСС – один из методов, позволяющих получить информацию о поле современных деформаций: оценить их интенсивность, реконструировать положение главных нормальных осей. Выбор Фенноскандии в качестве региона исследований обусловлен возможностью детального изучения современной геодинамики: в ее пределах расположено значительное количество пунктов ГНСС (табл. 1), с 1800 г. зафиксированы более 4 × 10³ эпицентров землетрясений [Сейсмологический..., 2021а; 2021б; 2021в]. В этой связи рассматриваемая область привлекает внимание многих исследователей. Среди недавних работ, посвященных вопросам анализа современных движений, выделяется статья [Keiding] et al., 2015], в которой по данным GPS определены ориентировки осей деформаций и оценены их величины, проанализированы решения фокальных механизмов очагов землетрясений. Новизна проведенного нами исследования заключается в следующем: 1) учтены результаты многолетних ГНСС наблюдений, выполненных лабораторией спутниковых методов изучения геофизических процессов ИФЗ РАН; 2) база данных решений фокальных механизмов очагов землетрясений [Keiding et al., 2015] дополнена новыми решениями; 3) для ее обработки использован метод катакластического анализа разрывных смещений (МКА) Ю.Л. Ребецкого [Ребецкий и др., 2017]; 4) при анализе современных деформаций по данным ГНСС использован метод наложенных триангуляций [Зубович, Мухамедиев, 2010] и выполнена реконструкция осей удлинения—укорочения.

МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЙ

Источниками информации о расположении и скоростях перемещений пунктов ГНСС на территории Фенноскандии послужили материалы, опубликованные в открытом доступе геодезической лабораторией университета Невады [Blewitt et al., 2018], Центром геодезии картографии и ИПД [Сервис..., 2021], а также данные лаборатории спутниковых методов изучения геофизических процессов ИФЗ РАН. Эти материалы позволили охарактеризовать поля скоростей современных движений и деформаций в единой системе отсчета ITRF2014 по достаточно равномерной сети наблюдений, охват и густота которой достаточны для исследований регионального масштаба. По приведенным в табл. 1 исходным данным выполнены расчеты величин линейной (ε_L) и площадной (ε_s) деформации, составлена схема скоростей современных вертикальных движений изучаемой территории.

Для оценки величин деформаций по скоростям горизонтальных перемещений пунктов ГНСС в программе Generic Mapping Tools выполнена триангуляция Делоне (1934), в результате которой построена расчетная сетка из 127 треугольников. Их количество увеличено до 575 с помощью методического приема, описанного в работе [Зубович, Мухамедиев, 2010]. Его суть заключается в разделении диагональю каждого четырехугольника, образованного двумя смежными треугольниками. Величина площадной относительной деформации (дилатации) (ε_s) рассчитана по формуле:

$$\varepsilon_S = \frac{S_2 - S_1}{S_1},$$

где: S_1 – площадь треугольника (м²); S_2 – площадь треугольника с учетом смещения его вершин за 1 год. Площади S_1 и S_2 вычислены с помощью стандартных инструментов программы ArcGis. Апробированы разные варианты графического представления схемы величины дилатации (в том числе обычными инструментами интерполяции – методами обратно взвешенных расстояний, сплайн-функции и др.). На наш взгляд, оптимальным является присвоение значений ε_s центрам блоков, построенных по принципу мозаики Вороного [Voronoi, 1908], предполагающей разбиение территории на множество многоугольников таким образом, что каждая сторона многоугольника расположена на середине отрезка, соединяющего ближайшие пункты ГНСС, и ортогональна этому отрезку. Методика составления этой блоковой схемы заключается в следующем: 1) в программе Global Mapper построена мозаика Вороного (пункты ГНСС расположены в центрах блоков); 2) схема расчетных треугольников преобразована в множество равноудаленных точек, которым присвоены значения ε_s ; 3) рассчитано среднее значение ε_s для точек, попадающих в пределы каждого блока (рис. 1).

Для того чтобы сделать выводы об ориентировках осей деформации, использована исходная схема триангуляции Делоне пунктов ГНСС. Ориентировка осей удлинения и укорочения в каждом треугольнике, образованным станциями ГНСС, вычислена по методике из работ [Рикитаки, 1979; Теркот, Шуберт, 1985], подробно описанной в работе [Бабешко и др., 2016]. Она сводится к решению матричного уравнения Az = d, где

$$A \equiv \begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 \\ x_2 & y_2 & 1 & 0 & 0 & 0 \\ x_3 & y_3 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_1 & y_1 & 1 \\ 0 & 0 & 0 & x_2 & y_2 & 1 \\ 0 & 0 & 0 & x_3 & y_3 & 1 \end{bmatrix} \quad z \equiv \begin{bmatrix} a_1 \\ b_1 \\ c_1 \\ a_2 \\ b_2 \\ c_2 \end{bmatrix}, \quad d \equiv \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ v_1 \\ v_2 \\ v_3 \end{bmatrix}$$

Координаты вершин каждого треугольника Делоне обозначены x_i, y_i ; приращения координат в меридиональном направлении за 1 год – v_i , в широтном – u_i . Азимут простирания одной из главных осей деформации (θ) вычислен по формуле:

$$\theta = \arctan\left(\frac{a_2 + b_1}{a_1 - b_2}\right).$$

Из-за отсутствия формального критерия выбора между ориентировками осей удлинения и укорочения, нами оценены деформации отрезков (ε_L), соединяющих соседние станции, по формуле:

$$\varepsilon_L = \frac{L_2 - L_1}{L_1},$$

где: L_1 — начальное расстояние между станциями (м); L_2 — расстояние между станциями с учетом их смещения за 1 год. Кроме того, линейная относительная деформация ε_L рассчитана для отрезков HOFN-TORS и TORS-TRDS с целью показать наличие сжатия со стороны Срединно-Атлантического хребта, которое может влиять на современные геодинамические процессы Фенноскандии. Использованная при расчетах ε_L информация о расположении и скоростях 3-х упомянутых станций приведена на сайте Калифорнийского технологического института в системе отсчета IGS14 в декартовой системе координат [GNSS..., 2022].

АНАЛИЗ СОВРЕМЕННЫХ ДВИЖЕНИЙ

	Координаты		Скорости, мм/год			
Пункт I НСС	широта, °	долгота, °	E	N	U	
ARKH	64.549	40.526	21.9 ± 0.2	10.1 ± 0.2	1.2 ± 0.3	
MURM	68.966	33.092	19.1 ± 0.2	12.2 ± 0.2	4.9 ± 0.6	
BBS1	66.552	33.099	19.8 ± 0.1	11.4 ± 0.3	7.5 ± 0.1	
BOTS	61.842	34.381	20.3 ± 0.5	12.5 ± 0.5	0.2 ± 0.9	
GIRS	62.458	33.666	19.6 ± 0.4	12.9 ± 0.5	2.8 ± 0.3	
KNDL	67.168	32.352	18.1 ± 4.0	11.5 ± 0.9	6.2 ± 1.6	
KRMS	63.164	33.934	19.7 ± 1.0	13.6 ± 2.0	3.2 ± 0.5	
KRON	59.988	29.762	20.3 ± 0.4	12.3 ± 0.5	3.3 ± 0.5	
MELO	61.782	30.785	20.3 ± 0.3	13.0 ± 0.5	3.3 ± 0.4	
SHEP	59.966	29.098	19.8 ± 0.4	12.9 ± 0.4	3.1 ± 1.1	
UMBA	66.679	34.340	18.1 ± 0.8	9.2 ± 1.3	5.0 ± 0.8	
VALM	61.359	30.885	20.4 ± 0.4	12.0 ± 0.4	-0.5 ± 1.0	
OBIS	57.725	11.891	17.4 ± 0.2	15.0 ± 0.2	2.9 ± 0.6	
0LOD	55.766	12.995	17.9 ± 0.2	14.9 ± 0.1	0.6 ± 0.6	
0NYB	65.795	23.170	17.6 ± 0.1	14.1 ± 0.1	9.4 ± 0.6	
0ORN	63.290	18.717	17.6 ± 0.2	14.1 ± 0.3	10.7 ± 0.7	
0OXE	58.670	17.107	18.3 ± 0.1	14.0 ± 0.1	4.2 ± 0.6	
0VAR	57.101	12.257	17.7 ± 0.2	14.9 ± 0.2	2.1 ± 0.6	
0VIB	62.373	17.427	17.1 ± 0.2	14.6 ± 0.2	9.0 ± 0.7	
5GAV	60.666	17.132	17.8 ± 0.2	14.3 ± 0.2	7.8 ± 0.7	
AAUG	57.013	9.987	16.9 ± 0.1	15.2 ± 0.2	1.3 ± 0.5	
ANDO	69.278	16.008	13.5 ± 0.2	15.7 ± 0.2	0.8 ± 0.6	
ARJ6	66.318	18.124	15.6 ± 0.2	15.2 ± 0.2	7.9 ± 0.9	
AUDR	58.422	24.313	20.2 ± 0.2	13.0 ± 0.2	2.1 ± 0.7	
DEGE	60.031	20.384	19.1 ± 0.1	13.4 ± 0.2	6.3 ± 0.7	
ESBC	55.493	8.456	17.3 ± 0.1	15.5 ± 0.1	0.2 ± 0.5	
FER5	56.523	8.118	16.7 ± 0.2	15.3 ± 0.2	-2.3 ± 0.7	
FROC	63.865	8.660	13.8 ± 0.1	16.2 ± 0.1	1.9 ± 0.5	
FYHA	54.993	9.986	17.7 ± 0.2	15.5 ± 0.2	-0.1 ± 0.7	
GJOV	60.789	10.680	15.8 ± 0.3	15.7 ± 0.3	5.3 ± 1.3	
HETT	68.406	23.665	16.9 ± 0.2	14.4 ± 0.2	7.0 ± 1.0	
HIRS	57.591	9.967	16.6 ± 0.1	15.2 ± 0.1	1.9 ± 0.5	
HONS	70.977	25.964	16.7 ± 0.1	13.3 ± 0.2	3.3 ± 0.6	
JOE2	62.391	30.096	20.9 ± 0.2	12.2 ± 0.2	3.8 ± 0.9	
JON6	57.745	14.059	17.7 ± 0.2	14.6 ± 0.2	3.5 ± 0.8	
KAD6	59.444	13.505	16.8 ± 0.2	14.8 ± 0.2	6.0 ± 0.9	
KEV2	69.755	27.007	17.2 ± 0.2	13.8 ± 0.2	3.9 ± 0.8	
KILP	68.941	20.914	15.7 ± 0.2	14.9 ± 0.2	5.0 ± 0.8	
KIRU	67.857	20.968	16.0 ± 0.1	14.7 ± 0.1	5.3 ± 0.6	
KIV2	62.819	25.701	20.3 ± 0.2	12.5 ± 0.2	7.2 ± 0.9	
KUN0	56.104	15.589	18.7 ± 0.1	15.4 ± 0.1	1.3 ± 0.6	
KUU2	65.910	29.033	19.5 ± 0.2	12.6 ± 0.2	7.2 ± 0.9	
LEK6	60.722	14.877	16.8 ± 0.2	14.8 ± 0.2	7.2 ± 0.8	
LOV0	59.337	17.828	18.5 ± 0.1	14.0 ± 0.1	5.9 ± 0.4	
MIK3	61.574	27.102	20.4 ± 0.2	12.6 ± 0.2	4.7 ± 0.8	
MVEE	58.865	26.951	20.5 ± 0.2	12.5 ± 0.2	2.9 ± 0.7	

Таблица 1. Скорости перемещений пунктов ГНСС Фенноскандии в системе отсчета ITRF2014

Пущит ГНСС	Координаты		Скорости, мм/год			
Пункі і пес	широта, °	долгота, °	E	N	U	
OLKI	61.239	21.472	19.0 ± 0.1	13.3 ± 0.1	7.2 ± 0.7	
ORIV	61.616	24.211	19.6 ± 0.2	13.0 ± 0.2	6.5 ± 0.9	
OSLS	59.736	10.367	15.8 ± 0.1	15.5 ± 0.1	4.2 ± 0.5	
OST6	63.442	14.857	15.5 ± 0.2	15.4 ± 0.2	8.0 ± 0.8	
OUL2	65.086	25.892	19.0 ± 0.2	13.2 ± 0.2	9.5 ± 0.9	
OVE6	66.317	22.773	17.4 ± 0.2	14.2 ± 0.2	8.7 ± 0.9	
РҮНА	64.497	24.237	19.1 ± 0.2	12.9 ± 0.2	9.9 ± 0.9	
RAT0	63.985	20.895	17.7 ± 0.1	14.2 ± 0.1	10.1 ± 0.6	
ROM2	64.217	29.931	20.3 ± 0.2	12.2 ± 0.2	5.9 ± 0.9	
SAVU	67.960	28.955	18.6 ± 0.2	13.3 ± 0.2	6.2 ± 0.9	
SG40	60.203	24.961	20.4 ± 0.2	12.5 ± 0.2	4.7 ± 1.0	
SKE0	64.879	21.048	16.2 ± 0.1	14.7 ± 0.1	10.4 ± 0.5	
SMID	55.640	9.559	17.3 ± 0.1	15.4 ± 0.1	0.4 ± 0.5	
SMO0	58.353	11.217	16.5 ± 0.1	14.8 ± 0.1	3.7 ± 0.5	
SOD3	67.420	26.389	18.1 ± 0.2	13.7 ± 0.2	7.5 ± 0.8	
SPT0	57.714	12.891	17.4 ± 0.1	14.8 ± 0.1	4.2 ± 0.5	
STAS	59.017	5.598	15.5 ± 0.1	15.6 ± 0.1	0.8 ± 0.4	
SVE6	62.017	14.700	16.2 ± 0.2	15.2 ± 0.2	7.9 ± 0.9	
TALS	57.246	22.586	20.1 ± 0.1	13.5 ± 0.2	1.2 ± 0.855	
ТЕЈН	55.248	14.839	19.0 ± 0.2	15.3 ± 0.2	-0.1 ± 0.7	
TORN	66.077	24.332	18.1 ± 0.2	13.9 ± 0.2	9.3 ± 0.8	
TRDS	63.371	10.319	14.3 ± 0.1	16.2 ± 0.1	3.6 ± 0.6	
TROM	69.662	18.938	14.9 ± 0.2	15.3 ± 0.2	2.5 ± 0.7	
TRYS	61.423	12.381	16.7 ± 0.3	16.0 ± 0.4	3.8 ± 1.7	
TUOR	60.415	22.443	19.5 ± 0.1	13.1 ± 0.1	5.7 ± 0.5	
UME6	63.578	19.509	17.3 ± 0.2	14.3 ± 0.2	9.7 ± 0.9	
VAAS	62.961	21.770	18.5 ± 0.1	13.6 ± 0.1	9.1 ± 0.6	
VAE6	58.693	12.035	16.7 ± 0.2	14.9 ± 0.2	5.4 ± 0.8	
VARS	70.336	31.031	18.0 ± 0.1	12.3 ± 0.1	2.8 ± 0.5	
VIKC	64.863	11.242	14.3 ± 0.2	16.7 ± 0.2	3.3 ± 0.6	
VIL6	64.697	16.559	15.7 ± 0.2	15.3 ± 0.2	8.3 ± 1.0	
VIR2	60.538	27.554	20.7 ± 0.2	12.5 ± 0.2	3.2 ± 0.8	
VIS0	57.653	18.367	19.0 ± 0.1	14.0 ± 0.1	3.0 ± 0.5	

Таблица 1. Окончание

Примечание: Е, N, U – скорости перемещения пунктов ГНСС в горизонтальном (восточном и северном) направлении и по вертикали, соответственно.

Результаты реконструкции ориентировок осей удлинения—укорочения треугольников сопоставлены с решениями фокальных механизмов очагов землетрясений, рассмотренных в работах [International..., 2021; Keiding et al., 2015; Usoltseva, Kozlovskaya, 2016; Wiejacz, 2006; Ассиновская, Овсов, 2008]. Обработка данных выполнена в программе STRESSgeol, реализующей положения МКА Ю.Л. Ребецкого. Эта методика позволила в автоматизированном режиме выделить кинематические группы, каждой из которых соответствует определенный тип напряженно-деформи-

рованного состояния. Разделение решений фокальных механизмов очагов землетрясений на такие группы подчинено принципу максимальности уменьшения (диссипации) энергии упругих деформаций при минимальном количестве групп. Более подробно МКА Ю.Л. Ребецкого, алгоритм и интерфейс программы STRESSgeol рассмотрены в монографии [Ребецкий и др., 2017]. Для того чтобы показать, как изменяются ориентировки главных осей напряжений в центральной части Фенноскандии и на ее периферии, сделан

Рис. 1. Схема значений современной площадной деформации (ε_S) Фенноскандии, составленная по данным анализа ГНСС: ε_S – величина площадной деформации (дилатации). Справа внизу: распределение напряжений в модели антиклинали поперечного изгиба, развивающейся в условиях слабого горизонтального сжатия, по работе [Белоусов, Гзовский, 1964]: σ – величина напряжений, стрелками показано направление сжатия и движение штампа по вертикали.

расчет напряженного состояния с использованием МКА Ю.Л. Ребецкого для 2 опорных участков.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На схеме величин дилатации (ε_s), построенной по данным анализа скоростей горизонталь-

ФИЗИКА ЗЕМЛИ № 4 2022

ных перемещений пунктов ГНСС, преобладают области положительных значений ε_s , в то время как отрицательные зафиксированы только на северо-восточной окраине Фенноскандинавского щита (рис. 1). Эта особенность указывает на доминирование обстановок сдвига и/или растяжения, при которых площади расчетных треуголь-

ников увеличиваются. Уменьшение площади элементов покрытия в зоне Ладожского озера – Кандалакшского грабена объяснимо влиянием сжимающих напряжений. Отмечено последовательное уменьшение величин ε_s от центральной части Фенноскандии (максимум наблюдаются на севере Ботнического залива) к ее периферии, коррелирующее с уменьшением скорости современных вертикальных движений в том же направлении. Эта закономерность, наряду с воздыманием большинства пунктов ГНСС, позволяет предположить, что положительный знак дилатации ε_s чаще всего соответствует изгибу рельефа вверх, хотя в общем случае положительные значения ε_{S} могут соответствовать как поднятиям, так и опусканиям поверхности.

На наш взгляд, основные особенности распределения ε_s по площади изучаемой территории объяснимы ее развитием как растущего поднятия, испытывающего горизонтальное сжатие. Центр поднятия расположен в районе Ботнического залива, где скорости современных вертикальных движений достигают 10.7 ± 0.7 мм/год (рис. 2). Это значение на 2 мм/год превышает максимальную скорость поднятия, приведенную в работе [Kierulf, 2014], что объяснимо погрешностью измерений, различиями исходных данных и систем отсчета. Общее горизонтальное сжатие территории может быть связано с влиянием спрединга Срединно-Атлантического хребта, служащее причиной проявления больших значений ε_s на западном побережье Фенноскандии по сравнению с ее восточной окраиной. По мнению ряда исследователей [Зыков, Полещук, 2016; Макарова и др., 2016], латеральное давление со стороны Атлантического океана – значимый фактор формирования и эволюции новейших морфоструктур Балтийского щита. Проведенные нами расчеты линейной относительной деформации ε_{I} показали, что расстояние между станциями HOFN (восточное побережье Исландии) и TORS (Фарерские острова) сокращается, значение є, составляет -4.8×10⁻⁹. Также происходит укорочение отрезка TORS-TRDS ($\varepsilon_L = -2.5 \times 10^{-9}$), северо-восточный конец которого расположен на окраине Тронхейма. Однако из-за малого количества станций на островах Северной Атлантики затруднительно оценить роль спрединга как источника современных деформаций Фенноскандии с высокой степенью точности по данным ГНСС.

По нашему мнению, отмеченное изменение величин ε_s на фоне сводового поднятия Фенноскандии объяснимо в рамках тектонофизической модели, описанной в монографии [Белоусов, Гзовский, 1964]. Суть эксперимента заключалась в том, что с помощью системы штампов смоделирован рост антиклинального поднятия. развивающегося при слабом горизонтальном сжатии, которое само по себе не вызывает изгиба модели. Установлено, что в центральной части этого поднятия сконцентрированы максимальные напряжения и проявляется обстановка растяжения, а его краевые участки испытывают горизонтальное сжатие при меньших величинах напряжений. В целом условия эксперимента соответствуют условиям деформирования Фенноскандии на современном этапе по следующим соображениям. 1). По данным ГНСС зафиксировано сводовое поднятие территории, происходящее при незначительном сжатии со стороны Северной Атлантики: рассчитанные нами значения ε_L и ε_S имеют порядок 10^{-9} и недостаточны как для разрушения пород верхней части земной коры, согласно [Руководство..., 2022], так и для изгиба литосферы всей Фенноскандии. Превышение горизонтальных скоростей пунктов ГНСС по сравнению с вертикальными не противоречит схеме нагружения модели В.В. Белоусова и М.В. Гзовского, поскольку горизонтальные движения этих пунктов связаны, прежде всего, с перемещением всей Евразийской плиты в северовосточном направлении, и в меньшей степени – с деформациями литосферы Фенноскандии. Эти данные свидетельствуют о развитии Фенноскандии как поднятия в обстановке слабого горизонтального сжатия. 2). Несмотря на отсутствие жестких блоков (инденторов), инициирующих деформации как штампы в модели, на данном этапе исследований эксперимент В.В. Белоусова и М.В. Гзовского представляется в определенном приближении корректным с точки зрения критериев подобия, поскольку общая схема нагружения модели соответствует представлениям об ориентировках главных нормальных осей напряжений при дегляциации Фенноскандии. Кроме того, в методическом отношении достаточно сложно провести моделирование колебаний земной коры, вызванных перераспределением подкорового вещества при снятии ледовой нагрузки [Зыков, Полещук, 2016] на оптически активных материалах, а использование других модельных веществ, не обладающих оптической активностью, существенно затруднит оценку величин деформации и реконструкцию траекторий главных нормальных осей напряжений.

Рассмотрим соотношение величин дилатации с конфигурацией зон возможных очагов землетрясений (ВОЗ), ранее выделенных нами по данным анализа сводного сейсмологического каталога и компьютерного геодинамического моделирования [Сенцов, Агибалов, 2021]. Одна из таких зон, Ботническая, приурочена к области максимальных значений ε_s в районе одноимен-

Рис. 2. Схема скоростей современных вертикальных движений Фенноскандии: 1 – изолинии скоростей вертикальных движений, мм/год; 2 – зоны возможных очагов землетрясений, по [Сенцов, Агибалов, 2021]: I – Норвежская, II – Финско-Шведско-Норвежская, III – Финско-Норвежская, IV – Шведско-Российская, V – Финско-Российская, VI – Беломорская, VII – Апатитовая, VIII – Ботническая, IX – Венернская, X – Осло, XI – Центрально-Норвежская, XII – Бергенская, XIII – Мурманская; 3–7 – эпицентры землетрясений с известными решениями фокальных механизмов очагов, объединенные в кинематические группы № 1–5, соответственно; 8 – границы рассматриваемой области, проведенные по координатам крайних пунктов ГНСС, 9 – границы опорных участков, для которых проанализированы решения фокальных механизмов очагов землетрясений МКА Ю.Л. Ребецкого. Справа внизу: ориентировки главных нормальных осей напряжений (σ_1 – растяжения, σ_3 – сжатия) в модели антиклинали поперечного изгиба, развивающейся в условиях слабого горизонтального сжатия, по работе [Белоусов, Гзовский, 1964]; стрелками показано направление сжатия и движение штампа по вертикали.

ного залива, а для остальных зон BO3 непосредственной взаимосвязи с максимумами ε_s не установлено. На наш взгляд, это связано с тем, что на характер сейсмичности влияет множество геологических процессов, в том числе: 1) гравитационные изгибные деформации на контакте конти-

ФИЗИКА ЗЕМЛИ № 4 2022

N⁰	Название зоны ВОЗ	Медианное значение ε_S , $n \times 10^{-9}$		
1	Норвежская	3.3		
2	Финско-Шведско-Норвежская	3.3		
3	Финско-Норвежская	3.3		
4	Шведско-Российская	3.1		
5	Финско-Российская	1.2		
6	Беломорская	-0.6 (2.1)		
7	Апатитовая	-		
8	Ботническая	4.1		
9	Венернская	3.8		
10	Осло	2.8		
11	Центрально-Норвежская	3.2		
12	Бергенская	1.6		
13	Мурманская	_		

Таблица 2. Медианные значения величины площадной деформации (ε_S), рассчитанные для зон возможных очагов землетрясений (ВОЗ)

Примечание: в скобках указаны значения ε_S , рассчитанные без учета знака для зон ВОЗ, где проявляется обстановка сжатия.

нента и морского шельфа вдоль побережья Норвегии [Лукк и др., 2019], не учтенные нами при построении схемы величин є из-за отсутствия пунктов ГНСС на шельфе; 2) конфигурация активных разломов, рассмотренная на региональном масштабном уровне в работах [База данных..., 2021; Бачманов и др., 2017]. Оба фактора проявлены в Норвежской зоне ВОЗ. для которой установлено наибольшее для всей рассматриваемой территории значение магнитуды землетрясения за инструментальный период наблюдений – 5.9. В то же время медианные значения ε_s , рассчитанные в пределах большинства зон ВОЗ, превышают аналогичную величину, вычисленную для всей изучаемой области. Например, один из локальных максимумов плотности эпицентров землетрясений наблюдается в юго-западной части территории (Венернская и Центрально-Норвежская зоны ВОЗ), где величины дилатации составляют 3.5–4.0 × 10⁻⁹ (при медианном значении $\varepsilon_s = 2.3 \times 10^{-9}$ и аналогичном значении, рассчитанном без учета знака $|\varepsilon_s| = 2.8 \times 10^{-9}$) (табл. 2). Здесь также проходят несколько крупных разломов северо-западного и северо-восточного простирания. Аналогичная особенность наличие активных разломов в сочетании с достаточно высокими по модулю величинами ε_s – проявлена в пределах юго-восточной части Беломорской зоны ВОЗ, соответствующей Кандалакшскому грабену.

Для понимания основных закономерностей современных геодинамических процессов значима информация об ориентировках главных нормальных осей напряжений. Анализ триангуляционной сети показал, что в большинстве случаев треугольники укорачиваются в северо-западном направлении (среднее круговое значение азимута простирания оси укорочения – 135°). При обработке 105 решений фокальных механизмов очагов землетрясений в программе STRESSgeol выделены 5 кинематических групп (табл. 3, рис. 3). Первая, наиболее представительная группа состоит из 31 элемента. Ей соответствует взбросо-сдвиговый тип напряженного состояния, ось сжатия ориентирована субгоризонтально по азимуту 138°. Вторая по количеству элементов группа указывает на проявление горизонтального сжатия, ось которого простирается в запад-северо-западных румбах. Эти типы внешней нагрузки преобладают на периферии Фенноскандинавского щита, для которой известно большинство решений фокальных механизмов очагов землетрясений. Менее представительные группы отражают локальные стресс-состояния: достаточно распространены взбросо-сдвиговые деформации, происходящие при северо-западном сжатии (группа III); на побережье Ботнического залива и фьордах Норвежского моря, а также в северной части грабена Осло сейсмические события происходили в обстановке растяжения (группы IV и V). Растяжение Ботнического залива на современном этапе подтверждено увеличением длин отрезков, соединяющих пункты ГНСС 0NYB-OUL2, 0NYB-PYHA, SKE0-PYHA, RAT0-PYHA, RATO-VAAS, UME6-VAAS, VAAS-0ORN, 0VIB-VAAS; проявление аналогичной обстановки на севере грабена Осло и во фьордах Норвежского моря можно предположить по геоморфологиче-

Таблица З. Ор	риентировки главных нормальных осей напряжений, реконструированных методом катакластиче-
ского анализа	а разрывных смещений (МКА) Ю.Л. Ребецкого по решениям фокальных механизмов очагов земле-
трясений	

№ кинематической группы	<i>T-tr</i> , $^{\circ}$	T - pl , $^{\circ}$	<i>P-tr</i> , °	P - pl , $^{\circ}$	Ν
Ι	232	10	138	25	23b + 8s
II	6	83	106	1	25b + 4s
III	184	21	292	40	15b + 1s
IV	288	19	145	67	15b + 3s
V	92	33	261	57	9b + 1s

Примечания: T-tr – азимут простирания оси растяжения; T-pl – угол наклона оси растяжения; P-tr – азимут простирания оси сжатия; P-pl – угол наклона оси сжатия; N – количество элементов в выборке; b – решения фокальных механизмов, полностью удовлетворяющие критерием МКА Ю.Л. Ребецкого; s – частично удовлетворяющие этим критериям.

ским признакам. Полученные результаты согласуются с представлениями об общем северо-западном сжатии Фенноскандии и растяжении сводовой части Балтийского щита на севере Ботнического залива [Keiding et al., 2015].

Расчет напряженного состояния МКА Ю.Л. Ребецкого для 2 опорных участков показал существенные различие ориентировок главных нормальных осей напряжений в центральной части Фенноскандии и на ее периферии. На юго-западе территории (участок *A*) представительность механизмов очагов землетрясений достаточно высокая. МКА Ю.Л. Ребецкого 40 таких механизмов разделены на 3 кинематические группы, наиболее крупная из которых состоит из 14 элементов. Ей соответствует взбросо-сдвиговый тип внешней нагрузки с полого наклонной осью сжатия, простирающейся в северо-западном направлении. В районе Ботнического залива (участок *Б*) известны 8 решений очагов, 6 из которых относятся одной кинематической группе. МКА Ю.Л. Ребецкого показано, что здесь проявлен сдвиго-сбросовый тип напряженного состояния (табл. 4). Полученные результаты согласуются как с рассмотренными выше данными анализа ГНСС, так и с ранее проведенной нами реконструкцией стресссостояния Фенноскандии с использованием структурно-геоморфологических методов и компьютерного геодинамического моделирования [Сенцов, Агибалов, 2021].

Рис. 3. Реконструкция главных нормальных осей напряжений по решениям фокальных механизмов очагов землетрясений, разделенных на 5 кинематических групп МКА Ю.Л. Ребецкого (нижняя полусфера): *1* – области сжатия; *2* – области растяжения; *3* – главные нормальные оси напряжений. Римскими цифрами обозначены номера кинематических групп (см. табл. 3). На *A* и *Б* – реконструкция главных нормальных осей напряжений для двух опорных участков, показанных на рис. 2.

Таблица 4. Ориентировки главных нормальных осей напряжений в пределах опорных участков, реконструированных МКА Ю.Л. Ребецкого по решениям фокальных механизмов очагов землетрясений

Опорный участок	T-tr, °	T-pl, °	P-tr, °	P-pl, °	п	Ν
A	213	1	123	35	14	40
Б	296	45	296	45	6	8

Примечания: T-tr — азимут простирания оси растяжения; T-pl — угол наклона оси растяжения; P-tr — азимут простирания оси сжатия; P-pl — угол наклона оси сжатия; n — количество элементов в выборке; N — общее количество решений фокальных механизмов очагов землетрясений на территории опорных участков A и E.

ЗАКЛЮЧЕНИЕ

Проведенные исследования позволили сделать следующие выводы:

1. На современном этапе Фенноскандия развивается как сводовое поднятие в обстановке северо-западного сжатия. Его центральная часть (север Ботнического залива) испытывает растяжение, на периферии преобладает взбросо-сдвиговое поле напряжений, на северо-восточной окраине (от Ладожского озера до Кандалакшского залива) – сжатие.

2. В целом наблюдается уменьшение величины современной деформации от Ботнического залива к периферии Фенноскандинавского щита.

3. Большинство ранее выделенных нами зон ВОЗ [Сенцов, Агибалов, 2021] отличаются достаточно высокими величинами современной деформации и связаны с региональными активными разломами [База данных..., 2021].

4. Предложен методический прием вычисления величины деформации по данным ГНСС, реализуемый только с помощью стандартных инструментов программы ArcGis. Его достоинство заключается в простоте использования, возможности построить схему величины деформации без вспомогательных вычислений и специализированного программного обеспечения.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено в рамках Государственного задания ИФЗ РАН.

СПИСОК ЛИТЕРАТУРЫ

Ассиновская Б.А., Овсов М.К. Сейсмотектоническая позиция Калининградского землетрясения 21 сентября 2004 года // Физика Земли. 2008. № 9. С. 32–43.

Бабешко В.А., Калинчук В.В., Шестопалов В.Л., Шереметьев В.М. Технологии геодинамического мониторинга района транспортного перехода через Керченский пролив // Наука Юга России. 2016. Т. 12. № 1. С. 22–31.

База данных активных разломов Евразии (и прилегающих акваторий). URL: http://neotec.ginras.ru/database. html#DB Guide. Дата обращения 01.09.2021.

Бачманов Д.М., Кожурин А.И., Трифонов В.Г. База данных активных разломов Евразии // Геодинамика и тектонофизика. 2017. Т. 8. № 4. С. 711–736.

Белоусов В.В., Гзовский М.В. Экспериментальная тектоника. М.: Недра. 1964. 120 с.

Делоне Б.Н. О пустоте сферы // Изв. АН СССР. ОМЕН. 1934. № 4. С. 793-800.

Зыков Д.С., Полещук А.В. Взаимодействие геодинамических систем на Восточно-Европейской платформе в новейшее время // Бюллетень МОИП. Отд. геол. 2016. Т. 91. Вып. 1. С. 3–14.

Зубович А.В., Мухамедиев Ш.А. Метод наложенных триангуляций для вычисления градиента скорости горизонтальных движений: приложение к Центрально-Азиатской GPS-сети // Геодинамика и тектонофизика. 2010. Т. 1. № 2. С. 169–185.

Лукк А.А., Леонова В.Г., Сидорин А.Я. Еще раз о природе сейсмичности Фенноскандии // Геофизические процессы и биосфера. 2019. Т. 18. № 1. С. 74–90.

Макарова Н.В., Макеев В.М., Дорожко А.Л., Суханова Т.В., Коробова И.В. Геодинамические системы и геодинамически активные зоны Восточно-Европейской платформы // Бюллетень МОИП. Отд. геол. 2016. Т. 91. Вып. 4–5. С. 9–26.

Ребецкий Ю.Л., Сим Л.А., Маринин А.В. От зеркал скольжения к тектоническим напряжениям. Методики и алгоритмы. М.: ГЕОС. 2017. 234 с.

Рикитаки Т. Предсказание землетрясений. М.: Мир. 1979. 388 с.

Руководство по безопасности при использовании атомной энергии "Оценка исходной сейсмичности района и площадки размещения объекта использования атомной энергии при инженерных изысканиях и исследованиях" РБ-019-18. URL: https://docs.secnrs.ru/ documents/rbs/PБ-019-18/PБ-019-18.pdf (Дата обращения 07.02.2022).

Сейсмологический каталог Американской геологической службы. URL: https://earthquake.usgs.gov/ (Дата обращения 01.09.2021а).

Сейсмологический каталог единой геофизической службы РАН. URL: http://www.ceme.gsras.ru/cgi-bin/new/ catalog.pl (Дата обращения 01.09.20216).

Сейсмологический каталог Хельсинского университета. URL: http://www.seismo.helsinki.fi/english (Дата обращения 01.09.2021в).

Сенцов А.А., Агибалов А.О. Выделение зон возможных очагов землетрясений в Фенноскандии по данным анализа сейсмичности и компьютерного геодинамического моделирования // Вестн. Моск. Ун-та. Серия 4. Геология. 2021. № 1. С. 15–22.

Сервис РГС-Центр. URL: https://rgs-centre.ru/ (Дата обращения 01.09.2021).

Теркот Д., Шуберт Д. Геодинамика. Геологическое приложение физики сплошных сред. Ч. 1. М.: Мир. 1985. 376 с.

Blewitt G., Hammond W.C., Kreemer C. Harnessing the GPS data explosion for interdisciplinary science // Eos. 2018. V. 99.

GNSS Time Series. URL: https://sideshow.jpl.nasa.gov/ post/series.html (Дата обращения 01.02.2022).

International Seismological Centre Bulletin: Focal mechanism search. URL: http://www.isc.ac.uk/iscbulletin/ search/fmechanisms/ (Дата обращения 01.09.2021).

Kierulf H.P. A GPS velocity field for Fennoscandia and a consistent comparison to glacial isostatic adjustment models // J. Gephus. Res. Solid Earth. 2014. V. 119. P. 6613–6629.

Keiding M., Kreemer C., Lindholm C.D., Gradmann S., Olesen O., Kierulf H.P. A comparision of strain rates and seismicity for Fennoscandia: depth dependency of deformation from glacial isostatic adjustment // Geophys. J. Int. 2015. V. 202. P. 1021–1028.

Usoltseva O., Kozlovskaya E. Studying local earthquakes in the area Baltic-Bothnia Megashear using the data of the POLENET/LAPNET temporary array // Solid Earth. 2016. \mathbb{N} 7. P. 1095–1108.

Voronoi G.F. Nouvelles applications des paramètres continus à la théorie de formes quadratiques // J. für die reine und angewandte Mathematik. 1908. V. 134. P. 198–287.

Wiejacz P. The Kaliningrad earthquakes of September 21, 2004 // Acta Geodyn. Geomater. 2006. V. 3. № 2. P. 7–16.

Analysis of Current Movements and Deformations of the Earth's Crust in Fennoscandia from GNSS Data

G. M. Steblov^{*a*, *}, A. O. Agibalov^{*a*, **}, G. E. Mel'nik^{*a*, *b*, ***</sub>, V. P. Perederin^{*a*, ****}, F. V. Perederin^{*a*, ****}, and A. A. Sentsov^{*a*, *****}}

^aSchmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia ^bCenter for Geodesy, Cartography and Spatial Data Infrastructure, Moscow, Russia *e-mail: steblov@ifz.ru **e-mail: agibalo@yandex.ru ***e-mail: melnik@ifz.ru ****e-mail: vpp@ifz.ru ****e-mail: crash@ifz.ru

******e-mail: alekssencov@yandex.ru

An analysis of the displacement rates of GNSS points indicates that the values of current deformations gradually decrease from the center of Fennoscandia, which is under tensile conditions, to its periphery. At the northeastern margin of the region, the tensile and shear conditions are replaced by a compression strip extending from Lake Ladoga to the Gulf of Kandalaksha. These features of the deformation field are consistent with the solutions for the focal mechanisms of earthquake sources and can be explained by the fact that the study region is developing as a growing elevation, with its center in the northern Gulf of Bothnia, which is under horizontal northwestward compression from the Mid-Atlantic Ridge. It is shown that most of the seismic generation zones we previously determined are located in the areas of increased values of deformations.

Keywords: Fennoscandia, GNSS, current deformations, seismotectonics, seismic generation zones, focal mechanisms of earthquake sources