СТРОЕНИЕ ВЕЩЕСТВА И КВАНТОВАЯ ХИМИЯ

УДК 541. 572.128

КИНЕТИЧЕСКИЕ ОСОБЕННОСТИ ДЕСТРУКЦИИ ТЕТРА(1,2,5-СЕЛЕНОДИАЗОЛО)ПОРФИРАЗИНА В ПРОТОНОАКЦЕПТОРНЫХ СРЕДАХ

© 2020 г. О. А. Петров^{а,*}, К. А. Аганичева^а, Г. А. Гамов^а, А. Н. Киселев^b

^а Ивановский государственный химико-технологический университет, Иваново, Россия ^b Российская академия наук, Институт химии растворов им. Г.А. Крестова, Иваново, Россия

> *e-mail: poa@isuct.ru Поступила в редакцию 04.12.2019 г. После доработки 18.12.2019 г. Принята к публикации 21.01.2020 г.

Исследовано состояние тетра(1,2,5-селенодиазоло)порфиразина в различных по основности протоноакцепторных средах. Показано, что порфиразин с селенодиазольными кольцами образует в диметилсульфоксиде устойчивый во времени комплекс с переносом протонов. Введение добавок азотсодержащих оснований в диметилсульфоксид приводит к дестабилизации этого комплекса с последующей деструкцией порфиразинового макроцикла. Установлено, что кинетические параметры процесса зависят от величины р K_a основания, а также от пространственного экранирования атома азота в составе молекулы.

Ключевые слова: тетра(1,2,5-селенодиазоло)порфиразин, деструкция, комплекс с переносом протона, азотсодержащее основание, диметилсульфоксид

DOI: 10.31857/S0044453720090228

Аннелированные порфиразины, благодаря разнообразным возможностям модификации их структуры. относятся к числу перспективных соединений в качестве электро- и фотокатализаторов окисления и восстановления, жидкокристаллических веществ, химических сенсоров и фотосенсибилизаторов [1, 2]. Более или менее жесткие ограничения на их практическое применение оказывает поведение порфиразиновых молекул в протоноакцепторных средах. К настоящему времени наиболее полные сведения о деструкции тетрапиррольных макроциклов получены для βзамещенных порфиразинов, замещенных фталоцианина и тетрапиразинопорфиразина в системе азотсодержащее основание – диметилсульфоксид (бензол) [3-5]. Данных об устойчивости порфиразинов с аннелированными пятичленными гетероциклами в протоноакцепторных средах существенно меньше [6, 7].

В связи с этим в данной работе исследовано состояние тетра(1,2,5-селенодиазоло)порфиразина ($H_2Pa(SeN_2)_4$) в диметилсульфоксиде, а также в системе азотсодержащее основание (B) – диметилсульфоксид (ДМСО). В качестве В были взяты пиридин (Py), 2-метилпиридин (MePy), морфолин (Morph), пиперидин (Pip), *н*-бутиламин (BuNH₂), *трет*-бутиламин (Bu^tNH₂), диэтиламин (Et₂NH)

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Тетра(1,2,5-селенодиазоло)порфиразин синтезировали по методике [8]. Основания подвергали очистке [9]. В инертных малополярных растворителях (бензоле, хлороформе и др.) исследуемый порфиразин не растворим, подобно большинству замещенных тетрапиразинопорфиразина [5–7]. Поэтому, исследования проводили в диметилсульфоксиде, который выдерживали в течение суток над MgSO₄ и CaO, а затем перегоняли под уменьшенным давлением (2–3 мм рт. ст., температура кипения –40°С). Для проведения кинетических измерений в термостатируемую кювету спектрофотометра SHIMADZU–UV-1800 помещали свежеприготовленный раствор H₂Pa(SeN₂)₄ в ДМСО с постоянной концентрацией и добавляли переменные количества азотсодержащих оснований. Скорость деструкции комплекса с переносом протонов – H₂Pa(SeN₂)₄ · 2ДМСО определяли по уменьшению оптической плотности раствора на длине волны $\lambda = 676$ нм. Текущую и конечную концентрации комплекса определяли по формуле:

$$C = C^{\circ}(A_0 - A_{\infty}) / (A_{\tau} - A_{\infty}), \qquad (1)$$

где A_0, A_τ, A_∞ — оптические плотности растворов в начальный момент времени, в момент времени τ и после завершения реакции (τ_∞); C° и C начальная и текущая концентрации комплекса H₂Pa(SeN₂)₄ · 2ДМСО. Все измерения проводили в условиях реакции псевдопервого порядка, поэтому наблюдаемую константу скорости деструкции H₂Pa(SeN₂)₄ · 2ДМСО рассчитывали по формуле:

$$k_{\rm H} = (1/\tau) \ln(C^{\circ}/C).$$
 (2)

Точность кинетических параметров оценивалась с помощью обычных методов статистики при доверительном интервале 95%. Использование метода Стьюдента позволило определить относительную ошибку в значениях $k_{\rm H}$, которая составила 2–6%, а в определении $E_{\rm a}$ не более 10%. Квантовохимические расчеты были выполнены с помощью программного обеспечения Gaussian09 [10] и оптимизированы с использованием полуэмпирического метода РМ6 [11]. Оптимизированная структура соответствовала точке минимума полной энергии, что было подтверждено путем расчета частот колебаний. Диметилсульфоксид учитывался в рамках подхода СРСМ.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В предварительных опытах было установлено, что электронный спектр поглощения (ЭСП) H_2 . Pa(SeN₂)₄ в ДМСО содержит в видимой области нерасщепленную Q-полосу с $\lambda = 676$ нм, подобно спектрам металлокомплексов H_2 Pa(SeN₂)₄ (D_{4h} симметрия молекулы [12]). Этот факт указывает на то, что H_2 Pa(SeN₂)₄ в присутствии слабоосновного ДМСО проявляет свойства двухосновной NH-кислоты и образует комплекс с переносом протонов — H_2 Pa(SeN₂)₄ · 2ДМСО. В подобных комплексах протоны NH-групп, связанные с двумя внутрициклическими атомами азота и атомом кислорода молекул ДМСО, посредством водородных связей, располагаются над и под плоскостью макроцикла, что обеспечивает D_{4h} -симметрию распределения зарядов [3, 4, 13]. При этом перенос протонов от NH-кислоты к основанию, приводящий к возникновению разделенных растворителем ионных пар с последующей их диссоциацией в среде слабоосновного ДМСО представляется маловероятным. Кислотно-основное взаимодействие (КОВ) H₂Pa(SeN₂)₄ с ДМСО, скорее всего, ограничивается стадией образования H-комплекса (H-ассоциата I)

Полученные спектральные данные и выводы на их основе по строению $H_2Pa(SeN_2)_4 \cdot 2ДMCO$ достаточно хорошо согласуются с данными квантово-химических расчетов, согласно которым образование H-комплекса в среде ДМСО является стабильной структурой, но только при достаточно сильном отклонении селенодиазольных колец от плоскости σ – остова порфиразинового макроцикла (рис. 1). Этот факт не является неожиданным, поскольку наблюдается для порфиразинов с различным типом аннелирования или замещения по пиррольным кольцам молекулы [14].

Образующийся в результате КОВ комплекс $H_2Pa(SeN_2)_4 \cdot 2ДMCO$ не подвергается распаду стечением времени. На это указывает характер ЭСП $H_2Pa(SeN_2)_4$ в ДМСО, который остается без изменений в течение ~80 ч при 323 К.

Дальнейшие исследования показали, что если в диметилсульфоксид вводить достаточно слабые основания (пиридин, 2-метилпиридин), то комплекс H₂Pa(SeN₂)₄ · 2ДМСО сохраняет ЭСП с $\lambda =$ = 676 нм в течение ~300 мин при 323 К в интервале концентраций $C_{Py}^{\circ} = C_{Mepy}^{\circ} = 0.31-9.93$ моль/л.

Рис. 1. Геометрическое строение комплекса $H_2Pa(SeN_2)_4 \cdot 2ДMCO$, оптимизированное методом РМ6.

Рис. 2. Изменение электронного спектра поглощения $H_2Pa(SeN_2)_4 \cdot 2ДMCO$ в системе *н*-бутиламин–ДMCO в течение 40 мин при $C_{BuNH_2}^{\circ} = 0.05$ моль/л, T = 308 K.

Напротив, добавки более сильных оснований (морфолина, пиперидина, *н*-бутиламина, *трет*бутиламина, диэтиламина) приводят к деструкции комплекса $H_2Pa(SeN_2)_4 \cdot 2ДMCO$. Независимо от природы основания с течением времени наблюдается уменьшение интенсивности нерасщепленной Q-полосы при $\lambda = 676$ нм (рис. 2) и полосы Соре, характеризующей наличие пиррольных фрагментов в макроцикле. Одновременно с этим наблюдается обесцвечивание раствора. При $C_{\text{Morph}} > 2.89$ [7], $C_{\text{Pip}} > 2.02$ [7], $C_{\text{BuNH}_2} > 1.01$ и $C_{\text{BuNH}_2}^{\text{t}} > 6.78$ моль/л в ДМСО деструкция комплекса $\text{H}_2\text{Pa}(\text{SeN}_2)_4 \cdot 2$ ДМСО существенно облегчается и протекает со скоростями, не позволяющими измерить их обычными спектрометрическими методами.

Результаты эксперимента (табл. 1) показывают, что среди изученных ациклических азотсодержащих оснований максимальная скорость де-

Таблица 1. Кинетические параметры реакции деструкции комплекса $H_2Pa(SeN_2)_4 \cdot 2ДMCO$ в системе азотсодержащее основание – ДМСО, ($C_{H_2Pa(SeN_2)_4 \cdot 2ДMCO}^\circ = 1.09 \times 10^{-5}$ моль/л)

	, ,					
$C_{\rm B}^{\circ}$,	TV	$k_{\rm H} \times 10^4$,	$k \times 10^4$,	$E_{\rm a}$,		
моль/л	Ι, Κ	c^{-1}	л/(моль с)	кДж/молі		
н-Бутиламин						
0.05	298	2.75	55.00	39		
	308	4.40	88.00			
	318	7.45	149.10			
0.13	298	7.85	56.05	40		
	308	13.30	95.00			
	318	22.00	157.05			
0.25	298	14.17	54.50	38		
	308	22.60	87.00			
	318	37.45	144.07			
0.51	298	28.85	55.50	39		
	308	47.00	90.40			
	318	77.50	149.00			
1.01	298	55.55	55.00	40		
	308	91.90	91.05			
	318	153.50	152.00			
<i>трет</i> -Бутиламин						
1.13	298	0.65	0.57	29		
	303	0.80	0.70			
	313	1.10	0.98			
	323	1.60	1.41			
2.26	298	1.50	0.67	27		
	303	1.80	0.80			
	313	2.55	1.12			
	323	3.50	1.54			
4.52	298	2.83	0.62	28		
	303	3.40	0.75			
	313	4.75	1.05			
	323	6.80	1.50			
6.78	298	4.80	0.70	28		
	303	5.76	0.85			
	313	8.20	1.21			
	323	11.50	1.70			
		Циэтилами	н			
1.20	298	0.50	0.40	32		
	303	0.60	0.50			
	313	0.90	0.75			
	323	1.35	1.10			
2.40	298	1.05	0.42	30		
	303	1.25	0.50			
	313	1.75	0.70			
	323	2.65	1.05			
4.80	298	1.80	0.35	34		
	303	2.35	0.45			
	313	3.60	0.70			
0.10	323	5.45	1.05	21		
9.18	298	4.10	0.40	31		
	303	5.40	0.53			
	313	7.60	0.75			
	523	11.70	1.15			

Примечание. Значения *k*_H при 298 К для *mpem*-бутиламина и диэтиламина рассчитаны по уравнению Аррениуса.

струкции комплекса H₂Pa(SeN₂)₄ · 2ДМСО наблюдается в присутствии *н*-бутиламина (р K_a = = 10.60 [15]). Замена *н*-бутиламина на близкий по основности *трет*-бутиламин (р $K_a = 10.68$ [15]), имеющий у атома азота более объемный алкильный заместитель, приводит к уменьшению значений k^{298} более, чем в 90 раз. При этом величина E_a процесса не претерпевает изменений. Наряду с разветвлением углеводородной цепи. стабилизации комплекса $H_2Pa(SeN_2)_4 \cdot 2ДMCO$ способствует увеличение числа алкильных заместителей в амине. Так, в ряду $BuNH_2 \rightarrow Bu^tNH_2 \rightarrow Et_2NH$ скорость деструкции, судя по величинам k^{298} . уменьшается в ~140 раз. В случае циклических азотсодержащих оснований достаточно быстрый распад комплекса $H_2Pa(SeN_2)_4 \cdot 2ДMCO$ происходит в присутствии пиперидина (табл. 2), который обладает достаточно высокой протоноакцепторной способностью и имеет стерически доступный атом азота в составе молекулы [16]. Понижение pK_a на ~2.5 единицы при переходе от пиперидина $(pK_a = 11.23 [15])$ к морфолину $(pK_a = 8.50 [15])$ не влияет на пространственное строение молекулы [17], однако, судя по величинам k^{298} , противодействует деструкции комплекса H₂Pa(SeN₂)₄ · 2ДМСО. В отличие от морфолина, добавки более слабых оснований (пиридина (р $K_a = 5.23$ [14]), 2-метилпиридина (р $K_a = 5.97$ [14]) в ДМСО не приводят к потере кинетической устойчивости комплекса $H_2Pa(SeN_2)_4 \cdot 2ДMCO$.

Процесс деструкции $H_2Pa(SeN_2)_4 \cdot 2ДMCO$ описывается уравнением первого порядка по комплексу с переносом протонов (рис. 3). Порядок реакции по *н*-бутиламину, *трет*-бутиламину и диэтиламину, численно равный тангенсу угла наклона прямых, представленных на рис. 4, близок к единице.

Следовательно,

$$k_{\rm H} = kC_{\rm B},\tag{3}$$

$$-dC_{\rm H_2Pa(SeN_2)_4}/d\tau = kC_{\rm H_2Pa(SeN_2)_4}C_{\rm B},$$
 (4)

где $k_{\rm H}$ и k — наблюдаемая константа скорости деструкции и константа скорости деструкции комплекса с переносом протонов второго порядка соответственно; В — BuNH₂, Bu^tNH₂, Et₂NH.

Аналогичным кинетическим уравнением второго порядка описывается процесс деструкции комплекса $H_2Pa(SN_2)_4 \cdot 2ДMCO$ в системе ДMCO – морфолин (пиперидин) [6].

Представляется вполне вероятным, что причина распада порфиразинового макроцикла в сильноосновных средах с достаточно высокой диэлектрической проницаемостью среды связана с протеканием конкурентной реакции за протон, которая может быть представлена в виде последовательно протекающих стадий:

Рис. 3. Зависимости $lg(C^{\circ}/C)$ от времени деструкции комплекса $H_2Pa(SeN_2)_4 \cdot 2ДMCO$ в системе азотсодержащее основание – ДМСО при концентрациях (моль/л): $1 - C_{BuNH_2}^{\circ} = 0.13$ (308 K), $2 - C_{Bu^{\dagger}NH_2}^{\circ} = 6.78$ (313 K), $3 - C_{ELNH}^{\circ} = 4.80$ (323 K).

$$H_{2}Pa(SeN_{2})_{4} \cdot 2\mathcal{J}MCO + B \xrightarrow{k_{1}}$$

$$\xrightarrow{k_{1}} [HPa(SeN_{2})_{4} \cdot \mathcal{J}MCO]^{-} + HB^{+} + \mathcal{J}MCO,$$
(5)

$$[HPa(SeN_2)_4 \cdot \squareMCO]^- + B \xrightarrow{k_2} \\ \xrightarrow{k_2} [Pa(SeN_2)_4]^{2-} + HB^+ + \squareMCO.$$
(6)

На стадиях (5) и (6) молекулы основания вступают во взаимодействие с выведенными из плоскости макроцикла атомами водорода $H_2Pa(SeN_2)_4 \cdot 2ДMCO$ и благодаря более выраженной протоноакцепторной способности вытесняют молекулы ДMCO. Образующаяся при этом дианионная форма тетра(1,2,5-селенодиазоло)порфиразина относится к группе симметрии D_{4h} и спектрально не отличается от комплекса $H_2Pa(SeN_2)_4 \cdot 2ДMCO$. Из-за отсутствия эффективной компенсации избыточного отрицательного заряда в макроцикле дианионная форма $[Pa(SeN_2)_4]^2$ подвергается деструкции с образованием низкомолекулярных бесцветных продуктов реакции.

Таблица 2. Кинетические параметры реакции деструкции комплекса $H_2Pa(SeN_2)_4 \cdot 2ДMCO$ в системе азотсодержащее основание – ДМСО [7], ($C_{H_2Pa(SeN_2)_4} \cdot 2ДMCO = 1.09 \times 10^{-5}$ моль/л)

Основание	$C_{\rm B}^{\circ},$ моль/л	$k_{\rm H} \times 10^4,$ c ⁻¹	<i>k</i> ²⁹⁸ × 10 ⁴ , л/(моль с)	<i>Е</i> _а , кДж/моль
Морфолин	1.44	14.80	10.25	28
Пиперидин	1.01	51.50	51.00	36

Рис. 4. Зависимости $\lg k_{\rm H}$ от $\lg C_{\rm B}^{\circ}$ для деструкции комплекса $H_2 {\rm Pa}({\rm SeN}_2)_4 \cdot 2 {\rm ДМСО}$ в системе азотсодержащее основание – ДМСО в присутствии *н*-бутиламина при 308 К (*1*), *трет*-бутиламина при 313 К (*2*) и диэтиламина при 313 К (*3*).

При этом уменьшение концентрации $H_2Pa(SeN_2)_4 \cdot 2ДMCO$ происходит без появления в реагирующей системе промежуточной спектральной формы – [HPa(SeN_2)_4]⁻. Это обстоятельство дает основание полагать, что $k_1 < k_2$.

Увеличение р K_a основания приводит к увеличению скорости деструкции $H_2Pa(SeN_2)_4$ · · 2ДМСО и способствует образованию кинетически неустойчивой формы – $[Pa(SeN_2)_4]^{2-}$. Напротив, если протоноакцепторный центр основания оказывается пространственно экранирован объемными алкильными заместителями, то это создает пространственные помехи при протекании стадии (5), и как следствие, более быстро протекающей стадии (6). В этом случае основанию труднее конкурировать с ДМСО за протон, несмотря на его высокую протоноакцепторную способность.

СПИСОК ЛИТЕРАТУРЫ

- Novakova V., Donzello P.A., Ercolani C. et al. // Coord. Chem. Rev. 2018. V. 361. P. 73.
- The Porphyrins Handbook. Phthalocyanines: Properties and Materials / Ed. by K.M. Kadish, M.K. Smith, R. Guilard. Amsterdam, Boston, London, N.Y., Oxford, Paris, S. Diego, S. Francisco, Singapore, Sydney, Tokio: Acad. Press, 2003. V. 17. 284 p.
- 3. *Петров О.А. //* Журн. общ. химии. 2013. Т. 83. № 4. С. 681.
- 4. Петров О.А. // Там же. 2013. Т. 83. № 6. С. 1006.
- 5. *Петров О.А., Осипова Г.В., Горнухина О.В. //* Журн. физ. химии. 2017. Т. 91. № 3. С. 459.

- 6. *Петров О.А., Киселев А.Н., Сырбу С.А. //* Росс. хим. журнал. 2016. Т. 60. № 2. С. 89.
- Петров О.А., Киселев А.Н., Телецкий З.А., Беляева А.О. // Журн. общ. химии. 2019. Т. 89. № 3. С. 400.
- Bauer E., Ercolani C., Galli P., Popkova I., Stuzhin P. // J. Pophyrins Phthalocyanines. 1999. V. 3. P. 371.
- 9. *Титце Л., Айхер Т.* Препаративная органическая химия. М.: Мир, 1999. 704 с.
- Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 09, Revision A.02. Gaussian Inc., Wallingford CT, 2016.
- Stewart J.J.P. // J. Mol. Model. 2007. V. 13. Iss. 12. P. 1173.

- The Porpyrins Handbook. Phthalocyanines: Synthesis / Ed. by K.M. Kadish, M.K. Smith, R. Guilard. Amsterdam, Boston, London, N.Y., Oxford, Paris, S. Diego, S. Francisco, Singapore, Sydney, Tokio: Acad. Press, 2003. V. 15. 369 p.
- 13. Кокарева Е.А., Петров О.А., Хелевина О.Г. // Журн. общ. химии. 2009. Т. 79. № 11. С. 1918.
- 14. *Donzello P.M., Ercolani C., Novakova V. et al.* // Coord. Chem. Rev. 2016. V. 309. № 2. P. 107.
- 15. CRC Handbook of Chemistry and Physics / Ed. by *W.M. Haynes.* N.Y.: Taylor and Francis, 2013. 2668 p.
- Crowley P.J., Morris G.A., Robinson M.J.T. // Tetrahedron. Lett. 1976. V. 36. P. 3575.
- 17. Blackburne I., Katritzky A.R., Takeuchi Y. // Accounts. Chem. Res. 1975. V. 8. № 9. P. 3575.