_____ ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА ____ И ТЕРМОХИМИЯ

УДК 544.31:547'1.186

ТЕРМОХИМИЧЕСКИЕ СВОЙСТВА ДИБЕНЗОАТА ТРИФЕНИЛСУРЬМЫ Ph₃Sb(OC(O)Ph)₂

© 2020 г. Д. В. Лякаев^{*a*}, А. В. Маркин^{*a*,*}, Н. Н. Смирнова^{*a*}, А. В. Князев^{*a*}, В. В. Шарутин^{*b*}, О. К. Шарутин^{*b*}

^а Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского, Нижний Новгород, Россия

^b Национальный исследовательский Южно-Уральский государственный университет, Челябинск, Россия

*e-mail: markin@calorimetry-center.ru Поступила в редакцию 09.12.2019 г. После доработки 09.12.2019 г. Принята к публикации 10.12.2019 г.

В калориметре сгорания со статической бомбой определена энергия сгорания кристаллического дибензоата трифенилсурьмы при T = 298.15 К. По полученным экспериментальным данным рассчитаны стандартная энтальпия сгорания указанного вещества в кристаллическом состоянии при T = 298.15 К. Проведен расчет стандартных функций образования изученного соединения $\Delta_f H^\circ$, $\Delta_f G^\circ$ в кристаллическом состоянии при T = 298.15 К.

Ключевые слова: калориметрия, энтальпия сгорания, энтальпия образования, дибензоат трифенилсурьмы

DOI: 10.31857/S0044453720090162

Органические производные сурьмы имеют перспективу применения при лечении онкологических заболеваний [1–6]; в борьбе с болезнетворными организмами, в качестве биоцидов, фунгицидов [7–9]; в тонком органическом синтезе в качестве реагентов и компонентов катализаторов [10–12] и для получения металлосодержащих полимеров [13–15]. Органические комплексы сурьмы используются для разработки новых фотокаталитических и термо-радиорезистентных материалов [16–19]. Кроме того, различные сурьмаорганические соединения проявляют способность поглощения углекислого газа [20, 21].

В связи с широкой областью применения органических производных пятивалентной сурьмы изучение физико-химических свойств новых представителей данного класса соединений остается ключевой задачей многих исследований [22-25]. В частности, информация о термодинамических и термохимических свойствах перспективных соединений сурьмы необходима для расчета и оптимизации технологических процессов с их участием. В работах [26-30] методами адиабатической вакуумной и дифференциальной сканирующей калориметрии были определены термодинамические свойства Ph_5Sb и $Ph_3Sb(OC(O)Ph)_2$ и нескольких других производных пятивалентной сурьмы типа Ph_3SbX_2 , где X — органические заместители. Термохимические характеристики $(\Delta_c U^\circ, \Delta_c H^\circ, \Delta_f H^\circ)$ Ph₃Sb(OC(O)Ph)₂ в литературе отсутствуют.

В настоящей работе продолжено калориметрическое исследование термодинамических свойств указанных представителей ряда органических производных сурьмы(V), определена энтальпия сгорания $\Delta_c H^\circ$, рассчитаны стандартная энтальпия образования $\Delta_f H^\circ$, стандартная функция Гиббса образования $\Delta_f G^\circ$ в кристаллическом состоянии при T = 298.15 К дибензоата трифенилсурьмы.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Характеристика изученного образца

Исследованное соединение было синтезировано и идентифицировано по методике, описанной в работе [31]. Образец дибензоата трифенилсурьмы был получен авторами работы [31] по реакции окислительного присоединения с участием трифенилсурьмы, пероксида водорода и бензойной кислоты (мольное соотношение 1:1:2) в эфире:

$$Ph_{3}Sb + 2PhCOOH + H_{2}O_{2} \rightarrow$$

$$\rightarrow Ph_{3}Sb(OC(O)Ph)_{2} + 2H_{2}O.$$
(1)

Время протекания реакции составило 12 ч при T = 293 К. Соединение представляет собой светло-серые кристаллы, устойчивые на воздухе при

Рис. 1. Структура дибензоата трифенилсурьмы Ph₃Sb(OC(O)Ph)₂.

обычных условиях. Соединение было идентифицировано методом элементного анализа (найдено, %: С 64.63; Н 4.34 для формулы $C_{32}H_{25}O_4Sb$; рассчитано, %: С 64.56; Н 4.23). ИК-спектр (v, см⁻¹): 1610, 1565 (С=О). Погрешность определения углерода составляла 0.1%, водорода – 2%.

Структуру соединения устанавливали методом рентгеноструктурного анализа. На рис. 1 представлено молекулярное строение соединения. Исследование показало, что кристаллы моноклинные a = 19.862(2), b = 15.848(2), c = 16.854(2) Å, $\alpha = 90^{\circ}, \beta = 90^{\circ}, \gamma = 90^{\circ} V = 5305(1)$ Å³, пр. гр. *Рссп*, $Z = 8, \rho(\text{расч.}) = 1.491$ г/см³.

По результатам исследований [31], содержание основного вещества в образце $Ph_3Sb(OC(O)Ph)_2$ составляло 99.0 мол. %. Примеси не были идентифицированы, но, учитывая их количество, можно заключить, что они не влияли на значения термодинамических величин в пределах погрешностей их определения.

Аппаратура и методика измерений

Энтальпию сгорания исследуемого соединения определяли в усовершенствованном калориметре B-08MA со статической калориметрической бомбой [32]. Отметим, что калибровку калориметрической системы проводили по эталонной бензойной кислоте марки K-2 ($\Delta_c U = -(26454.4 \pm 2.2) \text{ Дж/г}$) при взвешивании на воздухе). Энергетический эквивалент системы $W = 14805 \pm 3 \text{ Дж/K}$ с удвоенным квадратичным отклонением от среднего результата 0.02%.

Образец сжигали при давлении кислорода 3 × $\times 10^{6}$ Па в расплавленном парафине, наличие которого, с одной стороны, обеспечивало стандартный подъем температуры в опытах, с другой – созлавало условия лля полного окисления исхолной навески. Газообразные продукты сгорания анализировали на содержание СО2, по количеству которого рассчитывали массу взятого для опыта вещества. Методика проведения анализа газообразных продуктов сгорания приведена в работе [33]. Точность определения СО₂, установленная по результатам анализа сгорания эталонной бензойной кислоты, 5 × 10⁻⁴ г. Полноту сгорания определяли по отсутствию в продуктах сгорания монооксида углерода путем пропускания исследуемого газа через специальные индикаторные трубки. В пределах погрешности анализа (6 \times 10⁻⁶ г) СО не был обнаружен. Визуальный осмотр поверхности бомбы не обнаружил никаких следов неполного сгорания вещества. После опыта был проведен рентгенофазовый анализ твердых продуктов сгорания.

Для приведения измеренной величины $\Delta_c U$ к стандартным условиям ($\Delta_c U^\circ$) использовали приближенную формулу Уошберна [34, 35]:

$$\pi = \frac{0.30P}{-\Delta_c U/a} \left[-1 + 1.1 \left(\frac{b - 2c}{4a} \right) - \frac{2}{p} \right],\tag{2}$$

где p — начальное давление кислорода в бомбе, атм (обычно 30 атм); $\Delta_c U/a$ — энергия сгорания углерода, содержащегося в сжигаемом веществе, ккал/моль; a, b, c — индексы в химической формуле сжигаемого вещества. С учетом поправки Уошберна (π) и поправки, обусловленной изменением числа молей газов (Δn), рассчитывали стандартные величины $\Delta_c U^\circ$ и $\Delta_c H^\circ$ для реакции сгорания исследуемого вещества. По полученным значениям $\Delta_c H^\circ$ рассчитывали энтальпию образования $\Delta_f H^\circ$ соединения в кристаллическом состоянии при T = 298.15 К.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Энергию сгорания кристаллического дибензоата трифенилсурьмы $Ph_3Sb(OC(O)Ph)_2$ определяли в шести опытах. Масса навески исследуемого вещества составляла ~0.2 г. Данные эксперимента представлены в табл. 1. После опыта проводили анализ продуктов сгорания. По данным рентгенофазового анализа, твердые продукты сгорания дибензоата трифенилсурьмы содержали

Величина	№ 1	№ 2	Nº 3	Nº 4	№ 5	Nº 6
т, г	0.15068	0.13572	0.20269	0.18579	0.11086	0.35823
<i>т</i> (пар), г	0.70670	0.72230	0.70518	0.70988	0.71058	0.71337
<i>т</i> (х.н.), г	0.00202	0.00245	0.00185	0.00192	0.00196	0.00256
<i>W</i> , Дж/г	14805	14805	14805	14805	14805	14805
ΔT , K	2.51096	2.53252	2.60151	2.58479	2.44995	2.91304
$-\Delta_{\rm c} U$, Дж	37174.8	37494.0	38515.4	38267.8	36271.5	43127.6
<i>−</i> Δ _с <i>U</i> (пар), Дж	33033.7	33762.9	32962.7	33182.4	33215.1	33345.5
<i>−</i> Δ _с <i>U</i> (х.н.), Дж	33.8	41.0	31.0	32.1	32.8	42.8
$\Delta_{\rm c} U$ (сажа), Дж	5.18	4.67	6.97	6.39	3.81	12.3
$-\Delta_{\rm f} U$ (HNO ₃), Дж	5.86	2.93	5.86	2.93	5.44	9.37
$\Delta_{\rm c} U({\rm Sb}_2{\rm O}_3),$ Дж	3.98	3.59	5.36	4.91	2.93	9.47
$-\Delta_{\rm c} U_{\rm corr}$, Дж	1.94	1.75	2.61	2.39	1.43	4.61
$-\Delta_{\rm c} U^{\circ},$ Дж/г	27267.2	27215.1	27260.9	27231.3	27273.0	27208.9
$-\Delta_{\rm c} U^{\circ}$, кДж/моль	16232.1	16201.1	16228.3	16210.7	16235.5	16197.4
$(-\Delta U_{c} = 16217.5 \pm 13.7 $ кДж/моль)						

Таблица 1. Результаты опытов 1–6 по определению энергии сгорания дибензоата трифенилсурьмы Ph₃Sb(OC(O)Ph)₂

Обозначения: m — масса сжигаемого вещества, ΔT — подъем температуры в опыте с поправкой на теплообмен; $\Delta_c U(\text{пар})$, $\Delta_c U(x.н.)$, $\Delta_c U(cawa)$, $\Delta_f U(HNO_3)$, $\Delta_c U(Sb_2O_3)$ — поправки на энергию сгорания парафина, хлопчатобумажной нити, неполноту сгорания углерода, энергии образования водного раствора HNO₃ и кристаллического Sb₂O₃ соответственно; $\Delta_c U^{\circ}$ — энергия сгорания исследуемого вещества, приведенная к стандартным условиям. В скобках приведены средние значения.

тетраоксид сурьмы Sb_2O_4 (85 мас. %), триоксид сурьмы Sb_2O_3 (15 мас. %). В продуктах сгорания сурьмы в свободном виде не обнаружено.

Погрешность рентгенофазового анализа не превышает 3%, что существенно не искажает экспериментального значения энтальпий сгорания. Поскольку продукты сгорания наряду с тетраоксидом сурьмы содержали триоксид сурьмы, то нами вводились соответствующие поправки на неполное окисление металла:

$$Sb_2O_3(\kappa p.) + 0.5O_2(r) \rightarrow Sb_2O_4(\kappa p.).$$
(3)

Принимая во внимание мольное содержание оксидов и значение энтальпии реакции (3), рассчитанной по энтальпиям образования $\Delta_f H^{\circ}(Sb_2O_3(kp.)) =$ = -715.46 ± 3.422 [36], $\Delta_f H^{\circ}(Sb_2O_4(kp.)) =$ = -907.509 ± 4.602 [36], установили, что величина поправки на неполное окисление металла (3–6 Дж) несущественно влияет на конечное значение $\Delta_c U$ (≈30000 Дж). Кроме того, при вычислении ΔU_c вносили обычные термохимические поправки: на сгорание хлопчатобумажной нити используемой для поджигания навески вещества (CH_{1.686}O_{0.843} [37], $\Delta_c U_{(x.н)} = -(16736.0 \pm 11.1)$ Дж/г), на сгорание применявшегося парафина (*н*-гексадекан, массовая доля > 99.9%, $\Delta_c U_{(пар)} = -(46744 \pm \pm 8)$ Дж/г) и образование раствора HNO₃ ($\Delta_r H^{\circ} =$ = -59.7 кДж/моль для 0.1 моль/л HNO₃(р) из простых веществ N₂(г), O₂(г) и H₂O(ж) [38]). Процесс, протекающий в бомбе, может быть описан уравнением:

Ph₃Sb(OC(O)Ph)₂(
$$\kappa$$
p.) + 37.25O₂(Γ) →
→ 32CO₂(Γ) + 12.5H₂O(κ) + 0.5Sb₂O₄(κ p.). (4)

При вычислении стандартной энтальпии сгорания кристаллического дибензоата трифенилсурьмы вводили также поправку Уошберна ($\pi =$ = -0.04723%) и поправку на изменение числа молей газообразных реагентов реакции сгорания ($\Delta n = -5.25$ моль) в соответствии с [34, 35]. В результате стандартная энтальпия сгорания кристаллического Ph₃Sb(OC(O)Ph)₂ при *T* = 298.15 K:

$$\Delta_{\rm c} H^{\circ}(298.15 {\rm Ph}_3 {\rm Sb}({\rm OC}({\rm O}){\rm Ph})_2, {\rm Kp.}) =$$

= -16230.5±13.7 кДж/моль.

По величине стандартной энтальпии сгорания вещества и стандартной энтальпии образования продуктов сгорания $\Delta_f H^{\circ}(CO_2(r)) = -393.513 \pm 0.046 \ \kappa \mbox{Д} \mbox{ж/моль}$ [36], $\Delta_f H^{\circ}(H_2O(\mbox{w})) = -285.829 \pm 0.040 \ \kappa \mbox{Д} \mbox{w/моль}$ [36], $\Delta_f H^{\circ}(Sb_2O_4(\mbox{kp})) = -907.509 \pm 4.602$ [36], рассчитали стандартную энтальпию образования исследуемого соединения в кристаллическом состоянии при $T = 298.15 \ K$:

$$\Delta_{\rm f} H^{\circ}(298.15 {\rm Ph}_3 {\rm Sb}({\rm OC}({\rm O}) {\rm Ph})_2, {\rm Kp}) =$$

= -388.6 ± 14.5 кДж/моль.

По рассчитанному значению $\Delta_{\rm f} H^{\circ}$ исследованного соединения и значению стандартной энтропии образования $\Delta_{\rm f} S^{\circ}(298.15, {\rm Ph}_3{\rm Sb}({\rm OC}({\rm O}){\rm Ph})_2({\rm kp.})) =$ = -1597 ± 7 Дж/(К моль), полученному в работе [27], была определена стандартная функция Гиббса образования ($\Delta_f G^\circ$, кДж/моль) по уравнению Гиббса–Гельмгольца:

$$\Delta_{\rm f} G^{\circ}(298.15, {\rm Ph}_3{\rm Sb}({\rm OC}({\rm O}){\rm Ph})_2({\rm Kp}.)) =$$

= 87.55 ± 14.5 кДж/моль.

Полученные значения стандартных термохимических функций образования соответствуют уравнению:

$$31C(rp.) + 12.5H_2(r) + 2O_2(r) + Sb(\kappa p.) \rightarrow$$

$$\rightarrow Ph_3Sb(OC(O)Ph)_2(\kappa p.),$$
(5)

где гр. – графит.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта № 19-33-90070).

СПИСОК ЛИТЕРАТУРЫ

- Sharma P., Perez D., Cabrera A. et al. // Acta Pharmacologica Sinica. 2008. V. 29. P. 881.
- Hadjikakou S.K., Ozturk I.I., Banti C.N. et al. // J. Inorg. Biochem. 2015. V. 153. P. 293.
- 3. Tiekink E.R.T. // Hematology. 2002. V. 42. P. 217.
- Islam A., Rodrigues B.L., Marzano I.M. et al. // European J. Med. Chem. 2016. V. 109. P. 254.
- Lin Yu, Yong-Qiang Ma, Guo-Cang et al. // Heteroatom Chemistry. 2004. V. 15. P. 32.
- 6. *Gielen M., Tiekink E.R.T.* // Metallotherapeutic Drug and Metal-based Diagnostic Agents, Wiley, 2005.
- Guo-Cang Wang, Yong-Na Lu, Jian Xiao // J. Organomet. Chem. 2005. V. 690. P. 151.
- Kensuke Naka, Akiko Nakahashi, Yoshiki Chujo // Macromolecules. 2007. V. 40. P. 1372.
- 9. Kensuke Naka, Akiko Nakahashi, Yoshiki Chujo // Ibid. 2006. V. 39. P. 8257.
- Moiseev D.V., Gushchin A.V., Shavirin A.S. et al. // J. Organomet. Chem. 2003. V. 667. P. 176.
- 11. Moiseev D.V., Morugova V.A., Gushchin A.V. et al. // J. Organomet. Chem. 2004. V. 689. P. 731.
- 12. *Gushchin A.V., Moiseev D.V., Dodonov V.A.* // Russ. Chem. Bull.International Edition. 2001. V. 50. P. 1291.
- 13. Naka K. // Polymer J. 2008. V. 40. P. 1031.
- Chujo Y. / Conjugated Polymer Synthesis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 2010.
- 15. *Carraher C.E., Roner M.R., Thibodeau R. et al.* // Inorg. Chimica Acta. 2014. V. 423. P. 123.

- Xiao-Yin Zhang, Lian-sheng Cui, Xia Zhang et al. // J. Mol. Struct. 2017. V. 1134. P. 742.
- 17. Котон М.М. Металлоорганические соединения и радикалы. М.: Наука, 1985. 13 с.
- US Patent No. 3287210 // Chem. Abstr. 1967. V. 66. P. 85070.
- Карраер Ч., Шитс Д., Питтмен Ч. Металлоорганические полимеры. М.: Мир, 1981. 352 с.
- 20. Lermontov S.A., Shkavror S.V., Lermontov A.S. et al. // Russ. Chem. Bull. 1998. V. 47. P. 1607.
- Dostal L., Jambor R., Ruzicka A. et al. // Organometallics 2009. V. 28. P. 2633.
- 22. *Gupta A., Sharma R.K., Bohra R. et al.* // Polyhedron. 2002. V. 21. P. 2387.
- 23. Honglin Geng, Min Hong, Yuanguang Yang et al. // J. Coord. Chem. 2015. V. 68. P. 2938.
- 24. Sharutin V.V., Sharutina O.K., Reshetnikova R.V. et al. // Russ. J. Inorg. Chem. 2017. V. 62. P. 1450.
- 25. Fukin G.K., Samsonov M.A., Kalistratova O.S. et al. // Struct. Chem. 2016. V. 27. P. 357.
- 26. Smirnova N.N., Letyanina I.A., Larina V.N. et al. // J. Chem. Thermodyn. 2009. V. 41. P. 46.
- 27. Markin A.V., Smirnova N.N., Lyakaev D.V. et al. // Russ. J. Phys. Chem. A. 2016. V. 90. P. 1913.
- 28. Lyakaev D.V., Markin A.V., Smirnova N.N. et al. // J. Chem. Thermodyn. 2019. V. 131. P. 322.
- 29. Lyakaev D.V., Markin A.V., Khabarova E.V. et al. // Russ. J. Phys. Chem. A. 2018. V. 92. P. 1659.
- Markin A.V., Lyakaev D.V., Smirnova N.N. et al. // Russ. J. Phys. Chem. A. 2020. V. 94. P. 4.
- Sharutin V.V., Sharutina O.K., Pakusina A.P. et al. // Russ. J. Coord. Chem. 2003. V. 29. P. 780.
- Кирьянов К.В., Тельной В.И. Тр. по химии и хим. технологии: Межвуз. сб. Горький: Горьк. гос. ун-т, 1975. С. 109.
- Лебедев Ю.А., Мирошниченко Е.А. Термохимия парообразования органических веществ. М.: Наука, 1981. 214 с.
- 34. *Скуратов С.М., Колесов В.П., Воробьев А.Ф. //* Термохимия. В 2 т. Т. 2. М.: Изд-во МГУ, 1966. 436 с.
- Washburh E.W. // J. Res. Natl. Bur. Standards. 1933. V. 10. P. 525.
- Термические константы веществ: Справочник / Под ред. В.П. Глушко. М.: ВИНИТИ, 1965–1981, Вып. I–X.
- 37. *Rossini F.D.* Experimental Thermochemistry. N.Y.: Interscience, 1956 (Chapter 3; Chapter 4, Chapter 5).
- 38. The NBS Tables of Chemical Thermodynamic Properties // J. Phys. Chem. Ref. Data. 1982. V. 11 (Suppl. 2).