_____ ХИМИЧЕСКАЯ КИНЕТИКА __ И КАТАЛИЗ

УДК 544.473-039.63-386

ВЛИЯНИЕ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ НА КАТАЛИТИЧЕСКИЕ СВОЙСТВА ПЕРОВСКИТОВ Ві₄Zr_{2x}V_{2-2x}O_{11-δ} В РАЗЛОЖЕНИИ ИЗОБУТАНОЛА

© 2020 г. Е.И.Князева^{а,*}, А.И.Пылинина^а, И.И.Михаленко^а

^а Российский университет дружбы народов, Москва, Россия

**e-mail: knyazeva-ei@rudn.ru* Поступила в редакцию 02.12.2019 г. После доработки 02.12.2019 г. Принята к публикации 17.12.2019 г.

Исследовано влияние кристаллической структуры на каталитические свойства сложных цирконийсодержащих ванадатов висмута $Bi_4Zr_{2x}V_{2-2x}O_{11-\delta}$ в разложении изобутанола. Сложные оксиды получены твердофазным синтезом и исследованы методами ИК-спектроскопии, РФА, РФС и РФЭС. Показано, что каталитическая активность перовскита $Bi_4Zr_{2x}V_{2-2x}O_{11-\delta}$ в дегидрировании изобутанола увеличивается с ростом содержания ионов циркония(IV) и фазовыми изменениями $\alpha \rightarrow \beta \rightarrow$ $\rightarrow \gamma$; наиболее активна высокопроводящая γ -фаза. Установлено, что увеличение дегидрирующей активности образцов связано со снижением энергии активации реакции и изменением состояния носителей тока твердого раствора.

Ключевые слова: сложные ванадаты висмута, каталитическая активность, изобутанол **DOI:** 10.31857/S0044453720090137

Последние несколько десятилетий внимание исследователей привлекает новый класс твердых электролитов с кислород-ионным типом проводимости. Данные материалы получили название фаз Ауривиллиуса [1], к которым можно отнести достаточно большее семейство висмутсодержащих слоистых перовскитоподобных материалов [2–4]. Чистый и модифицированный катионами различной природы ванадаты висмута образуют семейство соединений BIMEVOX, которые в настоящее время активно исследуются [5, 6]. В качестве Ме могут быть использованы катионы практически любого зарядового состояния (Zn²⁺, Co²⁺, Cu²⁺, Ni²⁺, Fe³⁺, Ga³⁺, Zr⁴⁺ и др.).

Химический состав ванадата висмута описывается общей формулой $Bi_4V_2O_{11-\delta}$. В кристаллической структуре перовскита катионы Bi^{3+} находятся в тетраэдрической координации, а катионы V^{5+} — в октаэдрической. Ионы висмута Bi^{3+} образуют слои катионов $[Bi_2O_2]_n^{n\times 2+}$, чередующиеся с перовскитоподобными слоями анионов $[VO_{3.5-\delta}\Box_{0.5+\delta}]_n^{n\times 2-}$, имеющими "естественные" вакансии анионной подрешетки (\Box), что обеспечивает возможность миграции кислорода в данной структуре. Слои $[VO_{3.5-\delta}\Box_{0.5+\delta}]^{n\times 2-}$ разбиты в ряды из тетраэдров и кислород-дефицитных октаэдров. Кислородные вакансии, которые вовле-

чены в ионную проводимость, расположены в центральной части вокруг атомов ванадия в октаэдрах [2].

Замещение ионов ванадия на катионы *d*-металлов оказывает влияние на структурный тип перовскитов [7]. При небольшом содержании допирующего иона твердые растворы кристаллизуются в α -моноклинной или β -орторомбической модификации, при увеличении концентрации катиона происходит образование γ -тетрагональной высокопроводящей модификации [5]. Модифицирование составов твердых оксидов путем замещений катионов V⁵⁺ преимущественно направлено на стабилизацию тетрагональной модификации, у которой наблюдаются наибольшая проводимость при наименьшем значении энергии активации [8] и, как следствие, высокая активность ионов кислорода.

Сложные ванадаты висмута представляют определенный интерес для катализа, так как они обладают высокой термической стабильностью и способны к замещению ванадия поливалентными катионами различного радиуса в различном соотношении при сохранении структуры. Благодаря таким замещениям увеличивается не только каталитическая активность, но и подвижность кислорода, тем самым создавая дополнительные окислительно-восстановительные центры. Твердые электролиты с перовскитоподобной структу-

КНЯЗЕВА и др.

		Рентгено-	фазовый анали	з [14]			
Параметры ячеек	$x_{\rm Zr} = 0.05$		$x_{\rm Zr} =$	= 0.10	$x_{\rm Zr} = 0.15$		
<i>a</i> , Å	5.54		4	5.55	5.56		
<i>b</i> , Å	5.60		5	5.59	5.59		
<i>c</i> , Å	15.34		15	5.42	15.44		
V, Å ³	475.9		478	3.4	479.9		
		Рентгено-флуо	ресцентная спе	ктроскопия (%)		
Элемент	$x_{\rm Zr} = 0.05$		$x_{\rm Zr} = 0.10$		$x_{\rm Zr} = 0.15$		
	анализ	расчет	анализ	расчет	анализ	расчет	
0	_	_	—	—	—	_	
V	11.80	10.27	11.26	9.70	10.74	9.13	
Zr	0.14	0.97	0.48	1.92	0.981	2.87	
Bi	88.06	88.75	88.26	88.37	88.28	88.00	
Состав по анализу	$Bi_{3.97}V_{2.18}Zr_{0.02}O_{11-\delta}$		Bi _{3.99} V _{2.09}	$Zr_{0.05}O_{11-\delta}$	$Bi_{4.01}V_{2.00}Zr_{0.20}O_{11-\delta}$		
По стехиометрии	$Bi_{4}V_{1.9}Zr_{0.1}O_{11-\delta}$		$Bi_4V_{1.8}Zr_{0.2}O_{11-\delta}$		$Bi_4V_{1.7}Zr_{0.3}O_{11-\delta}$		
]	Рентгенофотоэл	ектронная спен	ктроскопия			
		$\operatorname{Bi}_4 V_{2-2}$	$_{2 \times 0.15} Zr_{2 \times 0.15} O_{11}$	-δ			
Величина	C1s	O1s	Bi4f	V2p	Zr3d		
		Исход	ная поверхност	Ъ	·		
с, ат. %	62.64	25.81	9.58	1.65	0.32		
$E_{\rm cb},$ эВ	284.0	530.5	164.2	517.0	174.6		
		По	осле катализа				
с, ат. %	70.00	26.89	1.58	1.53	—		
<i>Е</i> _{св} , эВ	283.3	530.1	163.9	516.8	—		

Таблица 1. Результаты физико-химических методов исследования катализаторов $Bi_4V_{2-2x}Zr_{2x}O_{11-\delta}$

рой являются хорошими катализаторами реакций окисления, например, удаления выхлопных газов от дизельного топлива [9–11], а также реакций окисления-восстановления субстратов различной природы [12, 13].

Несмотря на большой объем данных по структурным и электрофизическим характеристикам BIMEVOX, в литературе очень ограничено количество работ, посвященных изучению взаимосвязи их структурных и каталитических свойств.

Цель данной работы — исследование влияния кристаллической структуры на каталитические свойства сложных цирконийсодержащих ванадатов висмута $Bi_4Zr_{2x}V_{2-2x}O_{11-\delta}$ (BIZRVOX) в разложении изобутанола.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Перовскитоподобные твердые растворы $Bi_4Zr_{2x}V_{2-2x}O_{11-\delta}$ ($x_{Zr} = 0.05$ (1), 0.10 (2), 0.15 (3)) были получены методом твердофазного синтеза в работе [14].

Методом ИК-спектроскопии была подтверждена идентичность кристаллических структур смешанных оксидов висмута, ванадия и циркония [14]. В спектрах имеются две полосы поглощения: в интервале 670–870 см⁻¹, которые характеризуют валентные колебания связи V–O в полиэдрах VO₄, и в области 420–500 см⁻¹, соответствующей колебаниям связей V–O в октаэдре VO₆. В спектрах BIZRVOX с $x_{Zr} = 0.05$ проявляется полоса поглощения ~580–630 см⁻¹, относящаяся к колебаниям связи V–O в полиэдре VO₅. Полученные данные указывают на изоструктурность данного образца.

Результаты физико-химических методов исследования твердых оксидов BIZRVOX приведены в табл. 1.

Методом рентгенофазового анализа (РФА) определены фазовый состав и параметры кристаллической структуры (дифрактометр ДРОН-3М). Образец 1 представлял моноклинную модификацию (α-фазу), 2 – ромбическую (β-фазу), 3 – тетрагональную (γ-фазу). Увеличение объема

1344

Рис. 1. Спектры РФЭС элементов $Bi_4V_{2-2 \times 0.15}Zr_{2 \times 0.15}O_{11-\delta}$ (*1* – исходная поверхность, *2* – после катализа): V2*p* (a); Zr3*d* (б, до катализа).

элементарной ячейки BIZRVOX с ростом x_{Zr} , объясняется присутствием в подрешетке ванадия ионов циркония с большим радиусом.

Брутто-состав BIZRVOX анализировали на рентгеновском флуоресцентном спектрометре Clever C-31. Для всех образцов BIZRVOX установлено несколько близкие к стехиометрическим содержания ванадия (превышение не более чем на 10%). Содержание висмута и циркония в расчете и эксперименте одинаково (расхождение на 2–3%).

Методом РФЭС (спектрометр XSAM-800) проводили элементный анализ поверхности Ві₄V_{1.7}Zr_{0.3}O₁₁₋₆ и зарядовые состояния элементов до и после катализа. Из табл. 1 видно, что атомное отношение V/Zr занижено в 1.1 раза, а отношение Bi/V завышено в ~2.5 раза из-за снижения содержания ванадия. Соотношение Bi/Zr также не равно стехиометрическому. Состав поверхности и состав объема отличаются и составляют $Bi_4V_{0.6}Zr_{0.2}O_{13}$ и $Bi_4V_{1.9}Zr_{0.3}O_{11-\delta}$ соответственно. Рентгенофотоэлектронные спектры ванадия и циркония показаны на рис. 1. Зарядовые состояния элементов – висмут, ванадий и цирконий (шумный спектр Zr3d) находятся в степени окисления ниже +3, +5 и +4 соответственно. После катализа положение максимумов V2p смещено в сторону меньших энергий (~0.5 эВ), что указывает на частичное восстановление катионов ванадия в поверхностном слое [15, 16].

Каталитические превращения изобутанола изучали в интервале температур 200-400°С на установке проточного типа с хроматографическим анализом продуктов разложения спирта (газ-носитель – гелий, детектор – ДИП, колонка с Porapak Q) [17]. Катализатор массой 30 мг в виде тонкого слоя помещали на пористый стеклянный фильтр микрореактора. Барботажную смесь паров спирта и гелия подавали в реактор со скоростью 1.2 л ч⁻¹.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

На исходной поверхности катализаторов $Bi_4V_{2-2x}Zr_{2x}O_{11-\delta}$, где $x_{Zr} = 0.05$, 0.10 и 0.15, протекает только реакция дегидрирования с образованием изобутаналя. Влияние температуры на степень превращения спирта (W, %) в изобутаналь представлено на рис. 2. Конверсия изобутанола линейно увеличивается с ростом содержания x_{Zr} и для кристаллической γ -модификации достигает ~50% в случае исходной поверхности, тогда как на образцах α - и β -фаз она составляет 10 и 25% соответственно. В повторном опыте образец α -фазы сохраняет свою активность (рис. 2, табл. 2), катализатор β -фазы снижает ее в 2 раза, и только на γ -фазе наблюдается увеличение активности у "рабочей" поверхности на 25%.

Характеристики каталитической активности $Bi_4V_{2-2x}Zr_{2x}O_{11-\delta}$ в превращениях изобутанола приведены в табл. 2.

С ростом содержания *x*_{Zr} и изменением структуры сложного оксида линейно снижается значе-

Рис. 2. Степень превращения спирта в альдегид на исходной поверхности (*1*) и в повторном опыте (*2*) на $Bi_4V_{2-2x}Zr_{2x}O_{11-\delta}$ при 400°С.

ние энергии активации $E_{\rm a}^{\rm C=O}$ реакции образования изобутаналя в первом и повторном опытах (табл. 2, рис. 3), что согласуется с увеличением степени превращения спирта. На исходной поверхности у образца γ-фазы энергия активации реакции в ~1.2 раза ниже, чем у α -, β -образцов. С ростом содержания циркония x_{Zr} линейно уменьшается и логарифм предэкспоненциального множителя реакции $\ln N_0$, связанный с числом активных центров катализа. Следовательно, ионы циркония(IV) и ванадия(V) входят в состав каталитически активного центра. Известно, что образование альдегида проходит через образование алкоксидной группировки, а лимитирующие стадии – восстановление и реокисление каталитически активного иона-допанта с изменением степени окисления [18]. Поэтому введение ионов Zr⁴⁺ способствует формированию сложных центров

Таблица 2. Каталитическая активность перовскитов $Bi_4V_{2-2x}Zr_{2x}O_{11-\delta}$ (BIZRVOX) при дегидрировании изобутанола на исходной поверхности (I) и в повторном опыте (II) при $x_{Zr} = 0.05, 0.10 \text{ и } 0.15$

	Ι			II		
Величина	0.05	0.10	0.15	0.05	0.10	0.15
	α	β	γ	α	β	γ
W _{350°C} , %	5	21	37	2	7	25
$E_{\rm a}^{\rm C=O}$, кДж/моль	103	97	83	78	71	61
$\ln N_0$	-2.1	-2.5	-3.0	-9.8	-10.2	-10.6

Рис. 3. Влияние содержания циркония на энергию активации образования изобутаналя на исходной поверхности (*1*) и в повторном (*2*) опыте.

Zr-O-V, с последующим частичным восстановлением катионов ванадия, что подтверждается данными РФЭС. С другой стороны, увеличение числа носителей тока (анионов O^{2-}) благоприятно для реакции дегидрирования [19], что также подтверждает их участие в образовании комплексов, из которых образуется изобутаналь. По всей видимости, активным центром исследуемых цирконийсодержащих ванадатов висмута следует рассматривать ионные пары $Zr^{4+}-O^{2-}$ и $V^{5+}-O^{2-}$, поскольку на активность влияют и проводящие свойства перовскита.

В повторном опыте значения $E_a^{C=0}$ и ln N_0 меньше, чем для исходной поверхности, но их линейная зависимость от x_{Zr} сохраняется (рис. 3). Снижение активности обусловлено уменьшением в 3 раза значений ln N_0 , тогда как значение энергии активации $E_a^{C=0}$ реакции уменьшается в 1.5 раза. Изменение числа и состояния активных центров дегидрирования спирта связано с частичным восстановлением ионов V⁵⁺ \rightarrow V³⁺ и Zr⁴⁺ \rightarrow Zr²⁺ в присутствии водорода, что подтверждают данные анализа поверхности методом РФЭС.

Таким образом, каталитическая активность перовскитов семейства BIZRVOX в реакции дегидрирования изобутанола зависит от типа кристаллической структуры (содержания ионов циркония(IV)) и наиболее активной является высокопроводящая аниондефицитная тетрагональная γ -фаза. Увеличение дегидрирующей активности образцов в ряду фаз $\alpha \rightarrow \beta \rightarrow \gamma$ связано со сниже-

1347

нием энергии активации реакции и изменением состояния носителей тока твердого раствора (ионов O^{2-}), входящих в состав активных центров $Zr^{4+}-O^{2-}$ и $V^{5+}-O^{2-}$.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 18-33-00928. Публикация подготовлена при поддержке Программы РУДН "5-100".

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

СПИСОК ЛИТЕРАТУРЫ

- 1. Aurivillius B. // Arkiv. Kemi. 1949. V. 1. № 54. P. 463.
- Власенко В.Г., Шуваев А.Т., Зарубин И.А., Шуваева Е.Т. и др. // Электронный научный журнал "Исследовано в России". 2007. С. 291.
- 3. *Belousov V.V.* // Russ. Chem. Rev. 2017. V 86. № 10. P. 934. https://doi.org/10.1070/RCR4741
- Nitin Labhasetwar, Govindachetty Saravanan, Suresh Kumar Megarajan, Nilesh Manwar et al. // Sci. Technol. Adv. Mater. 2015. V. 16. P. 13. https://doi.org/10.1088/1468-6996/16/3/036002
- 5. Мурашева В.В., Полетаева Н.А., Фортальнова Е.А., Сафроненко М.Г. и др. // Журн. неорган. химии. 2010. Т. 55. № 12. С. 1980. https://doi.org/10.1134/S0036023610120090
- Жуковский В.М., Буянова Е.С., Емельянова Ю.В., Морозова М.В. и др. // Электрохимия. 2009. Т. 45. № 5. С. 547. https://doi.org/10.1134/S1023193509050024
- 7. *Abrahams I., Krok F.* // J. Mater. Chem. 2002. № 12. P. 3351.

https://doi.org/10.1039/b203992n

 Lasure S., Vemochet C., Vannier R.N., Nowogrocki G. et al. // Solid State Ionics. 1996. V. 90. P. 117. https://doi.org/10.1016/S0167-2738(96)00412-2

- 9. *Löfberg A., Bodet H., Pirovano C., Steil M.C. et al.* // Topics in Catalysis. 2006. V. 38. № 1–3. P. 169. https://doi.org/10.1007/s11244-006-0082-x
- Munder B., Ye Y., Rihko-Struckmann L., Sundmacher K. // Catalysis Today. 2005. V. 104. P. 138. https://doi.org/10.1016/j.cattod.2005.03.055
- Кузнецова Т.Г., Садыков В.А., Матышак В.А., Батуев Л.Ч. и др. // Химия в интересах устойчивого развития. 2005. Т. 13. С. 779.
- Goodenough J.B. // Rep. Prog. Phys. 2004. V. 67. P. 1915. https://doi.org/10.1088/0034-4885/67/11/R01
- Vannier R.V., Pernot E., Anne M., Isnard O. et al. // Solid State Ionics. 2003. V. 157. P. 147. https://doi.org/10.1016/S0167-2738(02)00202-3
- 14. Мурашева В.В. Твердые растворы на основе ванадата висмута со структурой фаз Ауривиллиуса: синтез, структурные особенности, физико-химические свойства: Дис... канд. хим. наук. М.: РУДН, 2012. 206 с.
- 15. Wagner C.D., Naumkin A.V., Kraut-Vass A. et al. NIST X-ray Photoelectron Spectroscopy Database. NIST Standard Reference Database 20. Version 4.1 (Web Version). 2012.
- Juan Su, Xiao-Xin Zou, Guo-Dong Li, Xiao Wei et al. // J. Phys. Chem. C. 2011. V. 115. P. 8064. https://doi.org/10.1021/jp200274k
- Povarova E.I., Pylinina A.I., Mikhalenko I.I. // Russ. J. Phys. Chem. A. 2012. V. 86. № 6. P. 935. https://doi.org/10.1134/S0036024412060210
- Saad L., Riad M. // J. Serb. Chem. Soc. 2008. V. 6. P. 997. https://doi.org/10.2298/JSC0810997S
- Povarova E.I., Pylinina A.I., Mikhalenko I.I. // Russ. J. Phys. Chem. A. 2013. V. 87. P. 560. https://doi.org/10.1134/S0036024413040237