_____ ФИЗИЧЕСКАЯ ХИМИЯ ____ РАСТВОРОВ

УДК 541.11:536.7

ТЕРМОДИНАМИЧЕСКИЕ ПАРАМЕТРЫ ПРОЦЕССОВ СМЕШАННОЛИГАНДНОГО КОМПЛЕКСООБРАЗОВАНИЯ КОБАЛЬТА(II) С ТРИГЛИЦИНОМ И L-ГИСТИДИНОМ В ВОДНОМ РАСТВОРЕ

© 2020 г. Г. Г. Горболетова^{*a*,*}, С. А. Бычкова^{*a*}, Е. А. Горбашова^{*a*}, К. О. Фролова^{*a*}

^а Ивановский государственный химико-технологический университет, Иваново, Россия

*e-mail: gorboletova@mail.ru Поступила в редакцию 12.10.2019 г. После доработки 05.12.2019 г. Принята к публикации 10.12.2019 г.

Потенциометрическим и калориметрическим методами изучена система Co^{2+} -триглицин-L-гистидин в водном растворе при T = 298.15 K (KNO₃). Установлено образование смешаннолигандного комплекса CoL_2Y^- , определены стандартные термодинамические характеристики ($\Delta_r H^\circ$, $\Delta_r G^\circ$, $\Delta_r S^\circ$) реакции комплексообразования. Предложена структура комплекса.

Ключевые слова: смешаннолигандные комплексы Co²⁺ с триглицином и L-гистидином, термодинамические характеристики

DOI: 10.31857/S0044453720090083

Изучение совместимости лигандов в смешанных комплексах состава MLY, где L и Y – аминокислоты и пептиды, представляет интерес в связи с их научным и практическим значением. Комплексы аминокислот и олигопептидов используются в аналитической химии, сельском хозяйстве, промышленности, медицине [1, 2]. Комплексы металлов, содержащие аминогруппы, карбоксильные и амидные группы используются также в качестве лекарственных средств [3, 4]. Информацию о факторах, влияющих на совместимость двух разных лигандов в одной координационной сфере центрального иона, можно получить из энтальпийной и энтропийной характеристик реакций сопропорционирования. Однако, в литературе, как правило, отсутствуют термохимические данные о реакциях образования смешаннолигандных комплексов аминокислот и пептидов. Ранее были определены термодинамические характеристики процессов комплексообразования в системе Со²⁺-глицин-Lгистидин [5]. В настоящей работе проведено потенциометрическое и калориметрическое изучение процессов комплексообразования иона Со²⁺ с триглицином (L^{-}) и L-гистидином (Y^{-}).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали глицил-глицил-глицин фирмы "Sigma" и L-гистидин марки "х.ч." без дополнительной очистки. Растворы аминокислоты и пептида готовили по точной навеске из кристаллических препаратов, высушенных до постоянной массы при 343 К. Для приготовления растворов $Co(NO_3)_2$ использовали реактив марки "х.ч.", концентрацию устанавливали комплексонометрически. Заданное значение ионной силы поддерживали с помощью нитрата калия марки "х.ч.".

Состав и устойчивость смешаннолигандного комплекса CoL_2Y^- определяли из потенциометрических измерений. Суммарная концентрация лигандов изменялась от 3.2×10^{-2} до 4.8×10^{-2} моль/л. Исследования проводили при соотношениях Co: L: Y = 1:3:1; 1:4:1; 1:5:1 (I = 0.2). Данные соотношения соответствовали максимальному выходу изучаемого комплекса.

Потенциометрическое титрование проходило по стандартной методике. Измерения ЭДС цепи:

Ag, AgCl, $\text{KCl}_{\text{Hac}} | \text{HL}^{\pm}$, KNO_3 , Ni $(\text{NO}_3)_2 |$ стеклянный электрод

проводили с помощью прибора "Мультитест" ИПЛ-311. Абсолютная погрешность измерения потенциала составляла не более 0.5 мВ. Равновесие считалось установившимся, если измеряемое значение ЭДС не изменялось в пределах 0.1 мВ в течение 5 мин. Температуру (298.15 K) потенциометрической ячейки, титранта и электрода поддерживали с точностью ±0.1 K с помощью воздушного и водяного термостатов. Раствор, содер-

Рис. 1. Диаграмма распределения частиц в системе Co(II)-триглицин-L-гистидин ($C^{\circ}(\text{Co}^{2^+}) = 1 \times 10^{-2}$ моль/л, $C^{\circ}(\text{L}) = 4 \times 10^{-2}$ моль/л, $C^{\circ}(\text{Y}) = 1 \times 10^{-2}$ моль/л).

жащий нитрат кобальта(II), триглицин и Lгистидин, помещали в ячейку и титровали 0.1 М раствором КОН в токе инертного газа.

Градуировку стеклянного электрода проводили по стандартным растворам соляной кислоты при I = 0.2 (KNO₃). Полученная при обработке этих данных по методу наименьших квадратов величина tg α составляла 0.05950 В/ед рН. Для каждого соотношения Co: L: Y проводили по три– четыре параллельных опыта.

Экспериментальные данные обрабатывали по универсальной программе "PHMETR", предна-

Таблица 1. Тепловые эффекты (кДж/моль) взаимодействия раствора Co(NO₃)₂ (0.8978 моль/кг раствора) с растворами триглицина (0.04000 моль/л) и L-гистидина (0.01000 моль/л)

Ι	т, г	$-\Delta_{\rm mix}H$	$-\Delta_{\rm dil}H$	$-\Delta_{\rm r}H$
0.2	0.45015	41.67	1.72 ± 0.10	39.95
	0.45000	41.64		39.92
	0.45010	41.95		40.23
		41.75 ± 0.31		40.03 ± 0.33
0.5	0.45005	43.92	2.97 ± 0.10	40.95
	0.45025	43.80		40.83
	0.45030	44.09		41.12
		43.94 ± 0.27		40.97 ± 0.29
1.0	0.45025	46.33	4.05 ± 0.10	42.28
	0.45020	46.24		42.19
	0.44995	46.45		42.40
		46.34 ± 0.19		42.29 ± 0.21

значенной для расчета констант равновесия с произвольным числом реакций по измеренной равновесной концентрации одной из частиц [6]. Критерием адекватности выбранной модели служили различия между рассчитанными и экспериментальными величинами рН. Они были знакопеременными и не превышали погрешности эксперимента.

Измерения тепловых эффектов проводили в ампульном калориметре смешения с изотермической оболочкой, термисторным датчиком температуры и автоматической записью кривой температура-время, надежность работы которого проверяли по теплоте растворения KCl в воде при 298.15 К [7]. Необходимое значение рН растворов триглицина L-гистидина создавали добавлением рассчитанного количества гидроксида калия марки "х.ч.". Опыты проводили при 298.15 К и значениях ионной силы 0.2, 0.5, 1.0. Навески растворов взвешивали на весах марки ВЛР-200 с точностью 1×10^{-5} г. Величины pH контролировали с помошью прибора "Мультитест" ИПЛ-311. Для подбора условий проведения калориметрических опытов использовали программу RRSU [8]. Для расчета доверительного интервала среднего значения ΔH из трех параллельных опытов критерий Стьюдента был взят при доверительной вероятности 0.95.

Как видно из диаграммы равновесий в системе Co²⁺-триглицин-L-гистидин (рис. 1), наибольший выход смешаннолигандного комплекса наблюдается при pH 7.8.

Для определения энтальпии образования частицы СоL₂Y- измеряли тепловые эффекты смешения растворов Co(NO₃)₂, триглицина и L-гистидина при соотношении $c_{Co}^0: c_L^0: c_Y^0 = 1:4:1.$ Навеска нитрата кобальта(II) концентрации 0.8978 моль/кг раствора в ампуле составляла ~0.45 г. После разрушения ампулы в калориметрической ячейке объемом 39.86 мл, содержащей растворы триглицина концентрации 0.04 моль/л L-гистидина 0.01 моль/л, концентрация и Со(NO₃)₂ составляла ~0.01 моль/л. В ходе калориметрического опыта значение рН изменялось в интервале 8.5-7.8. Были измерены также теплоты разведения раствора Co(NO₃)₂ в растворах фонового электролита. Экспериментальные данные приведены в табл. 1.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

При моделировании системы Co²⁺-триглицин-L-гистидин учитывали следующие равновесия:

$$L^{-} + H^{+} \leftrightarrow HL^{\pm}, \qquad (1)$$

Обозначения: I – ионная сила (KNO₃), m – навеска раствора Co(NO₃)₂, $-\Delta_r H = \Delta_{mix} H - \Delta_{dil} H$.

Процесс	$\lg \beta^\circ$	$-\Delta_r H^\circ$, кДж/моль	$-\Delta_r G^\circ$, кДж/моль	$\Delta_r S^\circ, Дж/(моль K)$
		I = 0		
$Co^{2+} + 2L^- + Y^- \leftrightarrow CoL_2Y^-$	12.54 ± 0.11	34.73 ± 0.33	71.58 ± 0.57	123.6 ± 0.8
ľ		I = 0.2	1	1
$Co^{2+} + 2L^- + Y^- \leftrightarrow CoL_2Y^-$	11.73 ± 0.11	36.61 ± 0.33	66.95 ± 0.57	101.8 ± 0.8
'		I = 0.5	1	I
$Co^{2+} + 2L^- + Y^- \leftrightarrow CoL_2Y^-$	11.59 ± 0.11	38.20 ± 0.33	66.16 ± 0.57	93.8 ± 0.8
'		I = 1.0	1	1
$Co^{2+} + 2L^- + Y^- \leftrightarrow CoL_2Y^-$	11.34 ± 0.11	39.73 ± 0.30	64.73 ± 0.57	83.8 ± 0.9
'		I = 0	1	1
$Co^{2+} + Gly^- + Y^- \leftrightarrow CoGlyY[5]$	12.46 ± 0.12	37.82 ± 0.30	71.12 ± 0.68	111.7 ± 1.5

Таблица 2. Стандартные термодинамические характеристики реакций образования комплексов кобальта(II) с глицином (Gly⁻), триглицином (L⁻) и L-гистидином (Y⁻)

$$Y^- + H^+ \leftrightarrow HY^{\pm}, \tag{3}$$

$$Y^{-} + 2H^{+} \leftrightarrow H_{2}Y^{+}, \qquad (4)$$

$$\operatorname{Co}^{2+} + \operatorname{L}^{-} \leftrightarrow \operatorname{CoL}^{+},$$
 (5)

$$\operatorname{Co}^{2+} + 2L^{-} \leftrightarrow \operatorname{Co}L_{2},$$
 (6)

 $\operatorname{Co}^{2+} + 3L^{-} \leftrightarrow \operatorname{Co}L_{3}^{-},$ (7)

$$\operatorname{Co}^{2^+} + \operatorname{L}^- - \operatorname{H}^+ \leftrightarrow \operatorname{CoH}_{-1}\operatorname{L},$$
 (8)

$$\operatorname{Co}^{2^{+}} + 2L^{-} - 2H^{+} \leftrightarrow \operatorname{Co}H_{-2}L_{2}^{2^{-}}, \tag{9}$$

$$\operatorname{Co}^{2^{+}} + 3L^{-} - 3H^{+} \leftrightarrow \operatorname{CoH}_{-3}L_{3}^{4^{-}}, \tag{10}$$

$$\operatorname{Co}^{2^+} + \operatorname{Y}^- \leftrightarrow \operatorname{Co}\operatorname{Y}^+,$$
 (11)

$$\operatorname{Co}^{2^+} + 2Y^- \leftrightarrow \operatorname{Co}Y_2,$$
 (12)

$$\operatorname{Co}^{2^+} + 3Y^- \leftrightarrow \operatorname{Co}Y_3^-,$$
 (13)

$$\operatorname{Co}^{2^+} + \operatorname{Y}^- + 2\operatorname{L}^- \leftrightarrow \operatorname{CoL}_2\operatorname{Y}^-,$$
 (14)

 $H^{+} + OH^{-} \leftrightarrow H_2O, \tag{15}$

$$\operatorname{Co}^{2+} + \operatorname{HOH} \leftrightarrow \operatorname{CoOH}^{+} + \operatorname{H}^{+}.$$
 (16)

В расчетах использовали константы диссоциации триглицина (р $K_1 = 3.25$, р $K_2 = 7.90$) и L-гистидина (р $K_2 = 6.10$, р $K_3 = 9.16$), а также константы устойчивости однородных комплексов кобальта(II) с триглицином и L-гистидином [9–12]. Учитывали возможность гидролиза ионов Co²⁺. Термодинамические параметры диссоциации воды на фоне KNO₃ взяты из [13].

Расчеты показали, что в системе Co²⁺-триглицин-L-гистидин происходит образование смешанного комплекса состава CoL₂Y⁻, смешанные комплексы другого состава не образуются. Следует отметить, что при моделировании изучаемой системы с помощью универсальной программы "РНМЕТR" не зафиксировано образования молекулярных комплексных соединений между триглицином и L-гистидином. Полученные при разных соотношениях триглицина и L-гистидина значения $\lg\beta$ удовлетворительно согласуются между собой. В качестве наиболее вероятной принята величина $\lg\beta(CoL_2Y^-) = 11.73 \pm 0.11$. Погрешность рассчитывали как средневзвешенное вероятного отклонения среднеарифметического при доверительной вероятности 0.95.

Экспериментальный тепловой эффект взаимодействия растворов кобальта(II), триглицина и L-гистидина имеет вид:

$$\Delta_{\min} H - \Delta_{\dim} H = \alpha_1 \Delta_r H_{(CoL_2Y^-)} + \sum \alpha_i \Delta_r H_i, \quad (17)$$

где $\Delta_{\text{mix}}H$ – тепловой эффект взаимодействия растворов Co(NO₃)₂ с растворами триглицина и Lгистидина, имеющими заданное значение pH; $\Delta_{\text{dil}}H$ – теплота разведения нитрата кобальта(II) в растворах фонового электролита; α_1 – полнота протекания процесса (14); $\sum \alpha_i \Delta_r H_i$ – вклад в измеряемый тепловой эффект одновременно протекающих побочных процессов (1)–(13), (15), (16).

Условия проведения калориметрических опытов выбирали таким образом, чтобы вклад побочных процессов был минимальным. Необходимые для расчета энтальпии процессов кислотно-основного взаимодействия в растворах триглицина и L-гистидина взяты из работ [10, 14], энтальпии реакций образования комплексов CoL⁺, CoH₋₁L, CoL₂, CoH₋₂L₂²⁻, CoL₃⁻ – из [15], комплексов CoY⁺, CoY₂, CoY₃⁻ – из [16]. Вклад теплового эффекта процесса (16) стремился к нулю.

При определении энтальпии образования комплекса кобальта(II) с триглицином и L-гистидином наряду с равновесием (14) протекали реакции (7), (8), (9), (11) и (12). Доля образования

Рис. 2. Спектры поглощения иона Co^{2+} ($C^{\circ}(\text{Co}^{2+}) = 1 \times 10^{-2}$ моль/л) в присутствии триглицина ($C^{\circ}(\text{L}) = 4 \times 10^{-2}$ моль/л) и L-гистидина ($C^{\circ}(\text{Y}) = 1 \times 10^{-2}$ моль/л) при различных значениях pH: 1 - 5.29, 2 - 5.70, 3 - 5.80, 4 - 6.21, 5 - 7.06, 6 - 7.28, 7 - 8.87, 8 - 9.05, 9 - 9.75.

смешаннолигандного комплекса составляла ~51%. Энтальпию образования комплекса CoL₂Y⁻ рассчитывали по универсальной программе HEAT [17] путем минимизации критериальной функции *F* по искомым параметрам:

$$F = \sum_{i=1}^{N} \omega_i (\Delta H_i^{\scriptscriptstyle \mathsf{5KC\Pi}} - \Delta H_i^{\scriptscriptstyle \mathsf{BHY}})^2, \qquad (18)$$

где $\Delta H_i^{\text{выч}}$ — рассчитанный тепловой эффект при заданных значениях общих концентраций $c_{\text{Co}^{2+}}^0$, $c_{\text{L}^-}^0$, $c_{\text{Y}^-}^0$ и текущих значений lg β и $\Delta_r H$; N — число опытов; ω_i — весовые множители. Рассчитанные энтальпии процессов образования частицы CoL₂Y⁻ приведены в табл. 2.

Энтальпия комплексообразования в стандартном растворе была найдена экстраполяцией величин тепловых эффектов при фиксированных значениях ионной силы к нулевой по уравнению:

$$\Delta H - \Delta Z^2 \Psi(I) = \Delta H^\circ + bI, \tag{19}$$

где ΔH и ΔH° — изменение энтальпии при конечном значении ионной силы и $\Delta I = 0$ соответственно; $\Psi(I)$ — функция ионной силы, вычисленная теоретически; ΔZ^2 — разность квадратов зарядов продуктов реакции и исходных компонентов; *b* — эмпирический коэффициент. Результаты экстраполяции и рассчитанные значения стандартных термодинамических характеристик комплексообразования в системе Co²⁺—триглицин—L-гистидин приведены в табл. 2. Из табл. 2 видно, что энтальпия образования смешаннолигандного

Рис. 3. Спектры поглощения иона Co^{2+} ($C^{\circ}(\text{Co}^{2+}) = 1 \times 10^{-2}$ моль/л) в присутствии L-гистидина ($C^{\circ}(\text{Y}) = 1 \times 10^{-2}$ моль/л) при различных значениях рН: 1 - 5.21, 2 - 5.59, 3 - 5.71, 4 - 6.13.

комплекса CoL_2Y^- близка к среднему значению $\Delta_r H^\circ$ однородных трискомплексов кобальта(II) с триглицином и L-гистидином ($\Delta_r H^\circ(CoL_3^-) = -18.01 \pm 0.21$ кДж/моль, $\Delta_r H^\circ(CoY_3^-) = -61.54 \pm \pm 0.25$ кДж/моль.

На рис. 2 приведены спектры поглощения в системе Co^{2+} -триглицин-L-гистидин при соотношении Co: L: Y = 1:4:1 и различных значе-

Рис. 4. Спектры поглощения иона Co^{2+} ($C^{\circ}(\text{Co}^{2+}) = = 8 \times 10^{-3}$ моль/л) в присутствии триглицина ($C^{\circ}(\text{L}) = 4.0 \times 10^{-2}$ моль/л) при различных значениях рН: 1 - 5.46, 2 - 7.12, 3 - 7.46, 4 - 7.75, 5 - 8.01, 6 - 8.24, 7 - 8.62, 8 - 9.23, 9 - 9.56, 10 - 9.86.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 9 2020

ниях pH. Максимальному выходу частицы CoL_2Y^- , согласно диаграмме равновесий (рис. 1), соответствуют кривые 5 и 6. Наблюдающийся для данных кривых максимум поглощения при длине волны ~450 нм занимает промежуточное положение между максимумами поглощения в системах Co^{2+} —триглицин и Co^{2+} —L-гистидин, спектральные данные которых приведены на рис. 3 и 4 соответственно.

В табл. 2 приведены также стандартные термодинамические характеристики процессов комплексообразования в системе Co²⁺-глицин-Lгистидин, полученные ранее [5]. Обращают на себя внимание близкие величины $\lg\beta(CoL_2Y^-)$ и lgβ(CoGlyY). По-видимому, присоединение третьего лиганда настолько повышает устойчивость смешанного комплекса кобальта(II) с L-гистилином и триглицином, что практически в равной мере компенсирует более низкую координационную способность карбонильного кислорода пептидной группы триглицина по сравнению кислородом карбоксильной группы глицина в CoGlyY. Абсолютное значение $\Delta_r H^{\circ}(CoL_2Y^{-})$ несколько меньше, чем $\Delta_r H^{\circ}$ (CoGlyY). Это может быть связано с более значительными затруднениями во внутрисферной координации молекул воды для частицы CoL₂Y⁻ по сравнению с CoGlyY. Достаточно большие положительные величины $\Delta_r S^\circ$ наблюдаются для реакций образования обоих комплексов. Однако, $\Delta_r S^{\circ}(CoL_2Y^{-})$ больше, чем $\Delta_r S^{\circ}$ (CoGlyY), что подтверждает приведенное выше предположение.

Логарифм константы равновесия реакции сопропорционирования:

$$2\mathrm{CoL}_{3}^{-} + \mathrm{CoY}_{3}^{-} \leftrightarrow 3\mathrm{CoL}_{2}\mathrm{Y}^{-}$$
(20)

является мерой отклонения $\lg\beta(CoL_2Y^-)$ от величины, ожидаемой из аддитивности $\lg\beta(CoL_3^-)$ и $\lg\beta(CoY_3^-)$, и характеризует устойчивость смешаннолигандного комплекса CoL_2Y^- к распаду на од-

нородные CoL_3^- и CoY_3^- . Реакцию (20) можно представить как сумму двух реакций:

$$\operatorname{CoL}_2 + \operatorname{CoY}_3^- \leftrightarrow \operatorname{CoL}_2 \operatorname{Y}^- + \operatorname{CoY}_2,$$
 (21)

$$\operatorname{CoY}_{2} + 2\operatorname{CoL}_{3}^{-} \leftrightarrow 2\operatorname{CoL}_{2}\operatorname{Y}^{-} + \operatorname{CoL}_{2}, \qquad (22)$$

каждая из которых характеризует различие в реакциях:

$$\operatorname{CoX}_2 + Z \leftrightarrow \operatorname{CoX}_2 Z,$$
 (23)

$$\operatorname{CoZ}_2 + Z \leftrightarrow \operatorname{CoZ}_3.$$
 (24)

В табл. 3 приведены термодинамические характеристики процессов (20)–(22), рассчитанные с использованием результатов настоящей работы (табл. 2) и данных [15, 16], а также термодинамические характеристики процессов смешаннолигандного комплексообразования в системе Co²⁺– глицин–L-гистидин, полученные ранее [5] для реакций:

$$Co(Gly)_2 + CoY_2 \leftrightarrow 2CoGlyY,$$
 (25)

$$\operatorname{CoGly}^+ + \operatorname{CoY}_2 \leftrightarrow \operatorname{CoGlyY} + \operatorname{CoY}^+,$$
 (26)

$$\operatorname{CoY}^+ + \operatorname{Co}(\operatorname{Gly})_2 \leftrightarrow \operatorname{CoGlyY} + \operatorname{CoGly}^+.$$
 (27)

Смешанный комплекс CoL₂Y⁻ устойчив к диспропорционированию, так как логарифм константы реакции (20) $\lg K > 0$. Сравнение величин $\lg K$ и $\Delta_r H^\circ$ для реакций (20) и (25), приведенных в табл. 3, показывает, что комплекс CoL₂Y⁻ более устойчив к распаду на однородные лиганды, чем комплекс CoGlyY. Положительные значения $\lg K$ реакций (21), (22) показывают, что присоединение триглицина и L-гистидина в качестве смешанных лигандов в комплексе CoL₂Y⁻ усиливает его устойчивость больше, чем присоединение этих лигандов в качестве однородных усиливает устойчивость образующихся при этом трис-комплексов. В большей степени это проявляется в случае присоединения L-гистидина. На основании термодинамических данных реакций (26) и (27), приведенных в табл. 3, можно сделать аналогичные выволы в отношении смешаннолиганл-

(1) = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =									
Процесс	lg K	$\Delta_r H^\circ$, кДж/моль	$-\Delta_r G^\circ$, кДж/моль	$\Delta_{\rm r} S^{\circ}, \mbox{Дж/(моль K)}$					
$2\text{CoL}_3^- + \text{CoY}_3^- \leftrightarrow 3\text{CoL}_2\text{Y}^-$	6.19	-6.63	35.37	96.3					
$CoL_2 + CoY_3^- \leftrightarrow CoL_2Y^- + CoY_2$	5.07	-11.85	28.95	57.2					
$CoY_2 + 2CoL_3^- \leftrightarrow 2CoL_2Y^- + CoL_2$	1.12	5.22	6.42	39.1					
$Co(Gly)_2 + CoY_2 \leftrightarrow 2CoGlyY$ [5]	2.20	2.23	12.58	49.7					
$CoGly^+ + CoY_2 \leftrightarrow CoGlyY + CoY^+$	1.30	-11.67	7.43	-14.2					
$CoY^+ + Co(Gly)_2 \leftrightarrow CoGlyY + CoGly^+$	0.90	13.90	5.15	63.9					

Таблица 3. Стандартные термодинамические характеристики реакций сопропорционирования смешаннолигандных комплексов кобальта(II) с глицином (Gly⁻), триглицином (L⁻) и L-гистидином (Y⁻) при I = 0

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 9 2020

ного комплекса CoGlyY и бискомплексов $Co(Gly)_2$ и CoY₂.

Вероятная структура комплекса CoL_2Y^- приведена на схеме:

Работа выполнена в НИИ Термодинамики и кинетики химических процессов Ивановского государственного химико-технологического университета в рамках Государственного задания на выполнение НИР. Тема № FZZW-2020-0009.

СПИСОК ЛИТЕРАТУРЫ

- Prakash O., Kumar R., Kumar R. et al. // Eur. J. Med. Chem. 2007. V. 42. P. 868.
- Zhang N., Ayral-Kaloustian S., Nguyen T. et al. // Bioorg. Med. Chem. Lett. 2007. V. 17. P. 3003.

- 3. *Xia-Bing Fu, Zi-Hua Lin, Hai-Feng Liu et al.* // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2014. V. 122. P. 22.
- Dharmaraja J., Esakkidurai T., Subbaraj P. et al. // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2013. V. 114. P. 607.
- 5. *Горболетова Г.Г., Метлин А.А.* // Журн. физ. химии. 2016. Т. 90. № 2. С. 206.
- Бородин В.А., Васильев В.П., Козловский Е.В. // Журн. неорган. химии. 1986. Т. 31. № 1. С. 10.
- 7. Лыткин А.И., Черников В.В., Крутова О.Н. и др. // Журн. общ. химии. 2019. Т. 89. № 2. С. 254.
- Васильев В.П., Бородин В.А., Козловский Е.В. Применение ЭВМ в химико-аналитических расчетах. М.: Высшая школа, 1993. С. 112.
- Горболетова Г.Г., Бычкова С.А., Метлин А.А. // Изв. вузов. Химия и хим. технология. 2016. Т. 59. Вып. 2. С. 57.
- 10. Васильев В.П., Кочергина Л.А., Гаравин В.Ю. // Журн. общ. химии. 1985. Т. 55. № 1. С. 189.
- 11. Бычкова С.А., Горболетова Г.Г., Фролова К.О. // Изв. вузов. Химия и хим. технология. 2020. Т. 63. Вып. 2. С. 21.
- 12. Васильев В.П., Зайцева Г.А. // Журн. неорган. химии. 1989. Т. 34. № 12. С. 3082.
- 13. Васильев В.П., Лобанов Г.А. // Изв. вузов. Химия и хим. технология. 1969. Т. 12. № 6. С. 740.
- 14. Лыткин А.И., Черников В.В., Крутова О.Н. и др. // Журн. неорган. химии. 2017. Т. 62. № 2. С. 249.
- 15. Горболетова Г.Г., Бычкова С.А., Фролова К.О. // Журн. физ. химии. В печати.
- Горболетова Г.Г., Метлин А.А. // Журн. физ. химии. 2015. Т. 89. № 9. С. 1382.
- 17. *Бородин В.А., Козловский Е.В., Васильев В.П. //* Журн. неорган. химии. 1982. Т. 27. № 9. С. 2169.