_____ ФИЗИЧЕСКАЯ ХИМИЯ _____ РАСТВОРОВ

УДК 543.8

ЗВУКОХИМИЧЕСКИЕ ПРЕВРАЩЕНИЯ МЕТАНА И ЭТИЛЕНА В ВОДНЫХ РАСТВОРАХ В УСЛОВИЯХ КАВИТАЦИИ

© 2020 г. С. Д. Арсентьев^{а,*}

^а Национальная академия наук Республики Армения, Институт химической физики им. А.Б. Налбандяна, Ереван, Армения

*e-mail: arsentiev53@mail.ru Поступила в редакцию 01.10.2019 г. После доработки 25.01.2020 г. Принята к публикации 11.02.2020 г.

Изучено превращение метана, этилена и их смесей в водных растворах при воздействии ультразвуковых колебаний с частотой 22 кГц в условиях кавитации. Установлено, что формальдегид, который является основным продуктом, образуется, даже если в исходном растворе нет растворенного кислорода. Показано, что скорость накопления формальдегида зависит от мощности подаваемого ультразвукового излучения и количества введенного в систему молекулярного кислорода.

Ключевые слова: звукохимия, кавитация, метан, этилен, формальдегид **DOI:** 10.31857/S0044453720090022

Для интенсификации химических, физикохимических и технологических процессов применяют различные методы. Один из методов воздействия на химические реакции – использование ультразвука. При этом большинство химичеультразвуковых ских реакций в полях происходит в водных растворах при наличии кавитации. Известно, что под воздействием кавитации направление и скорость химических реакций, протекающих в растворе, могут существенно меняться [1–4]. В ряде случаев возможно протекание процессов, не осуществимых в обычных условиях [4-7].

Следует особо подчеркнуть, что ультразвуковое излучение непосредственно не взаимодействует с молекулами реагентов. Диапазон частот ультразвуковых колебаний значительно ниже частот собственных колебаний молекул, а удельные энергии намного меньше энергии активации. Поэтому очевидно, что звукохимические превращения вызываются кавитационными явлениями. Воздействие ультразвука на химические реакции в растворах – следствие концентрации относительно невысокой энергии, излучаемой в раствор, в малых объемах парогазовых пузырьков. При этом кинетическая энергия жидкости превращается в энергию нагрева и сжатия содержимого коллапсирующего пузырька, т.е. реагентов, находящихся в парогазовой фазе. Высокие температуры и давления, достигаемые при схлопывании парогазовых пузырьков, сочетающиеся с высокой скоростью охлаждения продуктов реакции,

а также возникновение ударных волн [8–10] позволяют предположить определенное сходство процессов, протекающих в парогазовых пузырьках, образующихся в растворах в условиях кавитации с процессами в ударных трубах [11–15]. Одна из возможных причин воздействия ультразвука на химические процессы, протекающие в водных растворах, — возникновение в парогазовых пузырьках электрических разрядов [16, 17].

Широкие возможности могут открыться при осуществлении в подобных условиях процессов окисления углеводородов. К сожалению, в настоящее время в данной области исследований практически отсутствуют экспериментальные данные. Известно лишь, что при воздействии ультразвука с частотой 850 кГц на водные растворы смеси метана с этиленом возможно образование формальдегида и ацетальдегида [18].

Цель настоящей работы — изучение кинетических закономерностей окислительного превращения метана, этилена и их смесей при воздействии ультразвука на их водные растворы в отсутствие и в присутствии кислорода.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Воздействие ультразвука на водные растворы метана и этилена производилось при частоте ультразвука $v = 22 \kappa \Gamma \mu$ в кварцевом реакторе, схематически изображенном на рис. 1. Во избежание попадания в систему воздуха реактор и все ком-

Рис. 1. Схема реакционного узла: *1* – волновод, *2* – шлиф, *3* – водяная "рубашка", *4* – зона реакции, *5* – капилляр.

муникации герметизировались. Источником ультразвука служил ультразвуковой диспергатор УЗДН-2Т. Объем раствора, подвергаемого ультразвуковому воздействию V = 30 мл.

Подача газов осуществлялась через капилляр 5, а вывод производился через шлиф 2, герметично соединенный с отводящими коммуникациями.

В связи с тем, что процесс кавитации сопровождается выделением большого количества тепла, во избежание перегрева реактор охлаждался с помощью водяной "рубашки". Эксперименты показали, что через ~5 мин после начала воздействия ультразвуком температура раствора достигает 310–314 К и далее остается неизменной.

Метан, этилен и кислород поступали в систему непосредственно из баллонов. Чистота углеводородов составляла не менее 99.9%. Кислород содержал ~3% азота. Расход газов регулировался вентилями с точностью подачи ±2%. Газы подавались в реактор со скоростью 8 мл/мин. Перед началом воздействия ультразвуком на раствор производилось насыщение дистиллированной воды углеводородом или углеводород-кислородной смесью путем барботажа непосредственно в реакторе в течение 60 мин. Специальными опытами было показано, что воспроизводимые результаты получаются при временах предварительного барботажа, превышающих 20 мин. Очевидно, за это время происходит насыщение раствора исходной реагирующей смесью, и устанавливается равновесие между жидкой и газовой фазами.

Проведены две серии экспериментов — в условиях, когда барботаж раствора реагентами производился в течение 60 мин до начала воздействия ультразвуком и прекращался при включении генератора ультразвука, а также когда барботаж

Рис. 2. Зависимость квадрата амплитуды колебаний торца волновода (A^2) от тока обмотки возбуждения (I) излучателя.

раствора начинался за 60 мин до начала воздействия ультразвуком и продолжался до окончания процесса. Сравнение результатов, полученных в этих сериях, дает дополнительную информацию и позволяет установить различие в процессах при непрерывном расходе исходного реагента и при его восполнении за счет подачи новых порций.

При осуществлении химических процессов важно знать количество энергии, вводимой извне в реагирующую систему. Существуют различные способы оценки мощности, передаваемой источником ультразвука в раствор: термоэлектрические, оптические, калориметрические, химические и т.п. [1, 2, 19–25]. В данной работе использовался метод измерения амплитуды колебания торца излучающего элемента. С этой целью была установлена зависимость между током возбуждающей обмотки излучателя и амплитудой колебания волновода, погружаемого в раствор. Величину тока измеряли высокоточным микроамперметром М-130 с зеркальной световой шкалой, а амплитуду колебаний определяли с помощью микроскопа МБС-10, снабженного масштабной сеткой. Эксперименты показали, что существует линейная связь между током возбуждающей обмотки (I) и квадратом амплитуды (A) колебаний торца волновода. Полученная закономерность представлена на рис. 2. Наличие столь простой зависимости позволило измерять в относительных единицах излучаемую в раствор мощность непосредственно во время воздействия ультразвуком, поскольку известно [1, 26], что $N = \alpha A^2$, где N – излучаемая в раствор мощность, A – амплитуда колебаний излучателя, α – постоянный коэффициент.

Рис. 3. Кинетика накопления формальдегида при звукохимическом превращении метана (1, 2) и этилена (3, 4) в отсутствие кислорода; 1, 3 – продувка раствора углеводородом в течение 60 мин до начала воздействия ультразвуком; 2, 4 – то же с последующим барботажем в течение всего эксперимента.

Воздействие ультразвуком на растворы производилось при различных амплитудах колебания торца волновода A = 6-30 мкм и частотах ультразвуковых колебаний v = 22 кГц.

Анализ газообразных продуктов реакции проводился методом газовой хроматографии. Для определения этана, пропана, пропилена, диоксида углерода, метанола, этанола, ацетальдегида, оксида этилена, а также метана и этилена (в случае, когда они являлись продуктом реакции) использовалась хроматографическая колонка, заполненная полимерным сорбентом Полисорб-1 $(l = 3 \text{ м}, d = 3 \text{ мм}, T_{\text{кол}} = 363 \text{ K}, Q = 30 \text{ мл/мин}).$ Проба на анализ отбиралась из раствора микрошприцом и в жидком виде вводилась в испаритель хроматографа, нагретый до 423 К. В качестве газаносителя использовали гелий. Данная колонка позволяла также проводить качественный анализ исходного раствора на содержание кислорода после барботирования воды углеводородом. Водород, монооксид углерода и метан определялись в пробе, отобранной непосредственно из газовой фазы над раствором. Разделение осуществлялось с использованием колонки, заполненной молекулярным ситом 5 Å (l = 3 м, d = 3 мм, $T_{\text{кол}}$ = 363 K, Q = 25 мл/мин). В этом случае газом-носителем был аргон. Детектором в обоих случаях служил катарометр.

Измерение концентрации формальдегида проводили с использованием хромотроповой кислоты на фотоэлектроколориметре КФК-2. С этой целью в заданный момент времени воздействие ультразвуком на раствор прекращалось, и содержимое реактора анализировалось на содержание формальдегида.

действии ультразвуком на раствор не производится барботаж углеводородом или углеводородкислородной смесью, то по ходу процесса наблюдается существенное уменьшение скорости накопления формальдегида. Возможной причиной

Рис. 4. Кинетика накопления формальдегида при звукохимическом превращении смесей метан-кислород (1, 2) и этилен-кислород (3, 4); 1, 3 – продувка раствора реагирующей смесью в течение 60 мин до начала воздействия ультразвуком; 2, 4 – то же с последующим барботажем в течение всего эксперимента.

Эксперименты показали, что при окислении метана, этилена и их смесей образуются формальдегид, водород и незначительные количества монооксида углерода. При окислении этилена были обнаружены также следы ацетальдегида. Другие кислородсодержащие соединения (оксид этилена, спирты), а также углеводороды в условиях опыта обнаружены не были. Чувствительность хроматографического анализа метанола, ацетальдегида и оксида этилена составляет (1.2-1.4) × × 10⁻⁹ моль/мл. Порог определения углеводородов еще ниже. Учитывая изложенное, можно сделать вывод, что основным углеродсодержащим продуктом звукохимического превращения метана и этилена в водных растворах является формальдегид. В связи с этим за развитием процесса следили по количеству накапливающегося в растворе формальдегида.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

На рис. 3 приведены кинетические кривые накопления формальдегида при воздействии ультразвуком на водные растворы метана и этилена в отсутствие кислорода.

смесей метан-кислород или этилен-кислород.

Кинетические кривые, полученные для соотно-

шений $CH_4: O_2 = 1:1$ и $C_2H_4: O_2 = 1:1$, пред-

Аналогичным образом получены данные при использовании в качестве исходного реагента

Таблица 1. Значения максимальных скоростей накопления формальдегида ($W_{\max} \times 10^9$, моль/(мл мин)) в зависимости от состава растворенного газа; A = 15 мкм, v = 22 кГц

Реагент	Ι	II
CH ₄	0.93	2.72
C_2H_4	3.84	4.51
$C_2H_4: CH_4 = 1:1$	2.96	4.15
$CH_4: O_2 = 1:1$	3.00	10.36
$C_2H_4: O_2 = 1:1$	13.2	18.32

Обозначения: I — значение W_{max} , полученное при продувке раствора исходным реагентом в течение 60 мин до начала воздействия ультразвуком; II — при продувке раствора исходным реагентом в течение 60 мин до начала воздействия ультразвуком с последующим барботажем в течение всего эксперимента.

уменьшения скорости может быть расход исходных реагентов. Как видно из рис. 3 и 4, во всех случаях накопление формальдегида с самого начала протекает с максимальной скоростью. Значения максимальных скоростей накопления формальдегида в зависимости от состава растворенного газа, рассчитанные на начальных стадиях процесса, приведены в табл. 1.

Из приведенных данных видно, что, при барботировании раствора реагентами во время воздействия ультразвуком, скорости накопления формальдегида значительно выше, чем в случае прекращения барботажа в момент включения ультразвука. Очевидно, что это объясняется тем, что кавитация приводит к интенсивной дегазации раствора и, следовательно, к уменьшению концентрации реагентов. В условиях, когда во

Рис. 5. Зависимости максимальной скорости накопления формальдегида от концентрации кислорода в подаваемых в реактор метан-кислородной (1) и этилен-кислородной (2) смесях; A = 15 мкм, v = 22 кГц.

время воздействия ультразвуком производится барботаж раствора реагентами, уменьшение их концентрации компенсируется подачей свежей порции. Кроме того, непрерывная подача свежего реагента компенсирует его расход в ходе процесса. Поэтому скорости в этом случае выше.

Интересным представляется тот факт, что формальдегид образуется, даже если в исходном растворе отсутствует молекулярный кислород. Действительно, барботирование в течение 60 мин дистиллированной воды чистым метаном или этиленом, которые растворяются в воде значительно лучше кислорода, практически полностью очищает воду. Хроматографический анализ получаемых растворов перед началом воздействия ультразвуком не обнаружил присутствия кисло-Чувствительность хроматографического рода. анализа позволяет определять количества кислорода меньшие, чем 10-9 моль/мл. Такие количества кислорода могут обеспечить лишь 0.1% формальдегида, накапливающегося в системе за время процесса. Очевидно, что в этом случае кислород, необходимый для окисления метана и этилена, отщепляется от молекулы воды. Тем не менее, введение кислорода в исходную смесь приводит к ускорению процесса образования формальдегида и увеличению его концентрации. В связи с этим было изучено влияние концентрации кислорода в исходной смеси на скорость накопления формальдегида. В этих экспериментах подача реагентов производилась барботажем газовой смеси непосредственно в реактор, заполненный дистилированной водой в течение 60 мин до начала воздействия ультразвуком. В момент включения ультразвука подача реагентов в реактор прекращалась. Результаты представлены на рис. 5.

Из данных рис. 5 следует, что введение в исходную смесь молекулярного кислорода увеличивает скорость накопления формальдегида как при окислении метана, так и при окислении этилена. В случае метана наиболее сильное изменение *W*_{СН4} при увеличении содержания кислорода в исходной смеси наблюдается при $[O_2] \le 10\%$. Дальнейшее повышение концентрации кислорода мало влияет на скорость накопления формальдегида. При окислении этилена концентрация кислорода, выше которой скорость накопления формальдегида перестает расти, составляет ~20%. Вероятно, характер наблюдаемой зависимости можно объяснить, если учесть различие в растворимостях реагентов. Согласно данным [27], растворимости кислорода, метана и этилена в воде составляют ~ 1.3×10^{-6} , 4.0×10^{-6} и $11.4 \times$ × 10⁻⁶ моль/мл соответственно. Поскольку растворимость этилена значительно выше растворимости метана, то очевидно, что на его окисление требуется больше кислорода, чем на окисление метана. Поэтому предел по концентрации кислорода в случае этилена наблюдается при ее более высоких значениях (см. рис. 5).

Кавитация, как и любое изменение условий (в частности температуры, давления) изменяет растворимость газов. Поскольку процесс длится достаточно долгое время, то концентрации газов в воде достигают определенного значения, которое при неизменных условиях не меняется во времени. Строго говоря, концентрации газов в растворе в условиях кавитации не обязательно будут прямо пропорциональны значению их равновесной растворимости при нормальных условиях. Поэтому наблюдаемая в эксперименте корреляция объясняется различием растворимостей метана и этилена лишь в порядке предположения.

Следует особо отметить, что в исследуемой системе взаимодействие углеводорода с водой или кислородом — принципиально разные реакции с совершенно разной энергетикой. Если в отсутствие кислорода в исходной смеси процесс в целом можно описать гипотетическими брутто-реакциями:

$$\begin{split} \mathrm{CH}_4 + \mathrm{H}_2\mathrm{O} &\rightarrow \mathrm{HCHO} + 2\mathrm{H}_2, \\ \mathrm{C}_2\mathrm{H}_4 + 2\mathrm{H}_2\mathrm{O} &\rightarrow 2\mathrm{HCHO} + 2\mathrm{H}_2, \\ \mathrm{H}_2\mathrm{O} + \mathrm{H}_2\mathrm{O} &\rightarrow \mathrm{H}_2\mathrm{O}_2 + \mathrm{H}_2, \end{split}$$

 $RH + H_2O_2 \rightarrow$ продукты (формальдегид),

то при введении в систему молекулярного кислорода ситуация меняется. В частности, наличие больших количеств растворенного кислорода может привести к протеканию инициированных кавитацией цепных реакций окисления углеводорода. Вполне вероятными становятся реакции цепного окисления:

> $RH + O_2 \rightarrow R + HO_2,$ $R + O_2 \rightarrow RO_2,$ $RO_2 + RO_2 \rightarrow RO + RO + O_2,$ $RO \rightarrow$ альдегид + H.

Очевидно, что цепной процесс должен протекать значительно легче, чем и объясняется увеличение скорости накопления формальдегида при введении в исходную смесь молекулярного кислорода.

Следует особо подчеркнуть, что приводимые реакции носят предположительный характер, поскольку исследованный процесс, как и большинство звукохимических реакций, является совокупностью ряда сложных параллельных и последовательных физических и химических процессов [1, 26, 28]. Проблема осложняется тем, что в условиях кавитации затруднено определение точных параметров процесса, таких как температура, градиент температуры и давление в парогазовом пузырьке. Выяснение истинного механизма процесса требует постановки ряда специальных экспериментов. В частности, необходимо выяснить роль таких активных частиц, как ионы, радикалы, ион-радикалы, возбужденные частицы.

Таким образом, на основании полученных экспериментальных данных можно заключить, что основным продуктом звукохимического окисления метана, этилена и их смесей в водных растворах при частоте ультразвука $v = 22 \ \kappa\Gamma \mu$ является формальдегид, который образуется, даже если в исходном растворе нет растворенного кислорода. Скорость накопления формальдегида зависит от мощности подаваемого ультразвукового излучения и количества введенного в систему молекулярного кислорода.

СПИСОК ЛИТЕРАТУРЫ

- 1. Маргулис М.А. Основы звукохимии. М.: Высшая школа, 1984. 272 с.
- 2. Suslick K.S., Didenko Yu., Fang M.M. et al // Phil. Trans. R. Soc. Lond. A. 1999. V. 357. P. 335.
- Смородов Е.А., Галиахметов Р.Н., Ильгамов М.А. Физика и химия кавитации. Российская акад. наук, Уфимский науч. центр, Ин-т механики, 2008. 228 с.
- 4. *Colmenares J.C., Chatel G.* Sonochemistry. From Basic Principles to Innovative Applications. Springer, 2017. 281 p.
- Bernard D., Primius B. // Ultrasonics Sonochemistry. 2008. V. 15. № 1. P. 78.
- 6. Воропаев С.А., Шкинев В.М., Днестровский А.Ю. и др. // Докл. РАН. 2012. Т. 446. № 4. С. 388.
- 7. Воропаев С.А., Днестровский А.Ю., Скоробогатский В.Н. и др. // Там же. 2014. Т. 459. № 2. С. 162.
- Shaw S.J., Spelt P.D.M. // J. Fluid Mech. 2010. V. 646. P. 363. https://doi.org/10.1017/S0022112009993338
- 9. Нигматулин Р.И., Аганин А.А., Топорков Д.Ю., Ильгамов М.А. // Докл. РАН. 2014. Т. 458. № 3. С. 282.
- 10. Аганин А.А., Топорков Д.Ю. // Учен. зап. Казан. унта. Сер. Физ.-матем. науки. 2017. Т. 159. Кн. 3. С. 271.
- 11. *Гейдон А., Герл И*. Ударная труба в химической физике высоких температур. М.: Мир, 1966. 428 с.
- 12. *Агафонов Г.Л., Тереза А.М. //* Хим. физика. 2015. Т. 34. № 2. С. 49.
- Davidson D.F., Oehlschlaeger M.A., Herbon J.T., Hanson R.K. // Proceedings of the Combustion Institute. 2002. V. 29. P. 1295.
- Rickard M.J.A., Hall J.M., Petersen E.L. // Ibid. 2005. V. 30. P. 1915.
- 15. Penyazkov O.G., Ragotner K.A., Dean A.J., Varatharajan B. // Ibid. 2005. V. 30. P. 1941.
- 16. *Маргулис М.А.* // Журн. физ. химии. 2008. Т. 82. № 8. С. 1581.
 - https://doi.org/10.1134/S004445370808030X
- Margulis M.A. // Russ. J. Phys. Chem. A. 2008. V. 82. № 8. P. 1407.

- 18. Эльпинер И.Е., Сокольская А.В. // Журн. физ. химии. 1971. Т. 45. № 12. С. 3071.
- 19. Маргулис М.А. // Там же. 1976. Т. 50. С. 2531.
- 20. *Маргулис М.А., Маргулис И.М.* // Там же. 2003. Т. 77. № 7. С. 1318.
- 21. Margulis M.A., Margulis I.M. // Ultrasonics Sonochemistry. 2003. V. 10. P. 343.
- 22. *Маргулис М.А., Маргулис И.М.* // Акуст. журн. 2005. Т. 51. № 6. С. 802.
- 23. Suslick K.S., Hammerton D.A., Cline R.E. // J. Amer. Soc. 1986. V. 108. P. 5641.
- Sumet Umchid, Kakanumporn Prasanpanich // Proceedings of the World Congress on Engineering. 2013. V. 2. WCE 2013. London, U.K.
- 25. *Swamy K.M., Keil F.J.* // Ultrasonics Sonochemistry. 2002. V. 9. № 6. P. 305.
- 26. *Маргулис М.А.* // Успехи физ. наук. 2000. Т. 43. № 3. С. 259.
- 27. Справочник химика. Том 2 (изд. 2). М.; Л.: Химия, 1964. 1168 с.
- 28. *Маргулис М.А.* // Химия высоких энергий. 2004. Т. 38. № 3. С. 163.