_____ ФИЗИЧЕСКАЯ ХИМИЯ ____ РАСТВОРОВ

УДК 541.49 + 547.466.22 + 546.72

ОБРАЗОВАНИЕ ГЛИЦИНАТНЫХ КОМПЛЕКСОВ ЖЕЛЕЗА(II) ПРИ РАЗЛИЧНЫХ ИОННЫХ СИЛАХ РАСТВОРА

© 2020 г. М. Рахимова^{*a*,*}, Г. Б. Эшова^{*a*}, Дж. А. Давлатшоева^{*a*}, Л. В. Квятковская^{*a*}, Ф. Мираминзода ^{*a*}

^а Таджикский национальный университет, Душанбе, Таджикистан *e-mail: muboshira09@mail.ru Поступила в редакцию 23.09.2019 г.

После доработки 04.12.2019 г. Принята к публикации 10.12.2019 г.

Процессы комплексообразования в системе Fe(0)–Fe(II)–глицин–Na(H)ClO₄–H₂O при температуре 298.15 K, ионных силах раствора 0.1–1.0 (NaClO₄), $C_{Fe(II)} = 1 \times 10^{-3}$ и $C_{HL} = 3 \times 10^{-3}$ моль/л в интервале pH 0.8–8.0 изучены методом окислительного потенциала Кларка–Никольского. Получены экспериментальные кривые зависимости ЭДС системы от концентрационных параметров: pH, $pC_{Fe(II)}$, pC_{HL} . Для расчета констант образования комплексов использован метод последовательного приближения теоретической и экспериментальной окислительной функций с применением программы Excel. Зависимость константы образования комплексов от ионной силы раствора рассчитана на основе теории Дебая–Хюккеля и по программе "SigmaPlot-10.0". Установлено, что при возрастании ионной силы раствора значения констант образования формирующихся координационных соединений уменьшаются.

Ключевые слова: железо(II), комплексообразование, константа образования, ионная сила, раствор, электродвижущая сила

DOI: 10.31857/S0044453720080233

Координационные соединения переходных металлов обладают уникальными свойствами: биологической, каталитической, акустической активностями, поэтому широко применяются во многих областях науки, техники, промышленности, медицины, фармакологии, косметологии.

Глицин (аминоуксусная кислота) служит модельным объектом при изучении комплексообразования с 3*d*-переходными металлами, так как применяется в лечебных целях несколько десятилетий. Эта аминокислота входит в состав белков растительного и животного происхождения. В жидкостях и тканях может находиться в свободном состоянии. Глицин – составная часть некоторых биологически активных соединений: глутатиона, антибиотиков, нейропептидов, содержится в составе муреина клеточных стенок бактерий. Обычно входящие во внутреннюю сферу комплекса компоненты изменяют его химические свойства и биологическую активность, следовательно, становятся причиной появления других свойств и новых возможных аспектов применения.

Цель настоящей работы — изучение процессов комплексообразования в системе Fe(0)— Fe(II)—глицин—Na(H)ClO₄—H₂O при $C_{Fe(II)} = 1 \times$ × 10^{-3} моль/л и $C_{\rm HL} = 3 \times 10^{-3}$ моль/л в интервале рН 0.8–8.0, температуре 298.15 К и ионных силах раствора 0.1–1.0 моль/л. Закономерности зависимости констант устойчивости комплексов от ионной силы можно установить по изменению коэффициентов активности сосуществующих ионов в растворе [1].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

При проведении экспериментов использовали перхлорат железа(II), исходную концентрацию которого определяли бихроматометрическим методом [2, 3]. Концентрацию NaClO₄ после предварительной очистки перекристаллизацией определяли весовым методом [4, 5]. Хлорную кислоту HClO₄ марки "х. ч." использовали без предварительной очистки. Концентрацию гидроксида натрия определяли методом прямого титрования 0.1 М раствором соляной кислоты HCl из фиксонала [6, 7].

Нами изучена гетерогенная система Fe(0)— Fe(II)—глицин—вода методом оксредметрии [8, 9], которая предусматривает снятие экспериментальных зависимостей электродвижущей силы (*E*, мB) от следующих концентрационных пере-

Рис. 1. Зависимости ЭДС от рН в системе Fe(0)– Fe(II)–глицин–Na(H)ClO₄–H₂O при 298.16 K, $C_{\text{Fe(II)}} = 1 \times 10^{-3}$ и $C_{\text{HL}} = 3 \times 10^{-3}$ моль/л и различных значениях ионных сил раствора: 1 - 0.75, 2 - 0.25, 3 - 0.50, 4 - 0.10, 5 - 1.00 моль/л.

менных pH(-lg h), pC_{Fe(II)}(-lgC_{Fe(II)}) и pC_L(-lgC_{HL}), где h – активность ионов водорода, а C_{HL} – концентрация глицина.

При выполнении экспериментов использовали специальную герметичную установку [9] с аэробными условиями в токе очищенного азота или аргона, что исключало окисление Fe(II) и образование железа(III), а также позволяло хорошо перемешивать рабочий раствор. Методика проведения эксперимента заключается в измерении ЭДС двух гальванических элементов I и II:

В качестве металлического электрода использовали нержавеющую сталь, которая устойчива к коррозии на воздухе, в воде, а также в некоторых агрессивных средах. Марка электрода: сталь 10 (низкоуглеродистая), с содержанием железа 90%. Измерения ЭДС гальванических элементов проводили на иономере ЭВ-74 с точностью ± 1 мВ. Значение рН в исследуемых растворах контролировали стеклянным электродом по калибровочной кривой, составленной по значениям рН стандартных буферных растворов с точностью ± 0.05 единицы рН. Значения потенциала хлоридсеребряного электрода и величина v = 2.303 RT/F при температуре 298.16 К взяты из справочника [3].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Ранее [10–12] были изучены процессы комплексообразования в системах Fe(II)—Fe(III) глицин—Na(H)ClO₄—H₂O и Fe(0)—Fe(II)—глицин—Na(H)ClO₄—H₂O при температуре 298.16 K, ионных силах раствора 0.1–1.0 (NaClO₄) при различных концентрациях металла и лиганда в интервале pH 0.8-8.0 методом окислительного потенциала Кларка-Никольского.

Следует отметить, что использованный классический метод окислительного потенциала Кларка—Никольского является высокочувствительным, и малейшее изменение концентрации Fe(II) (часть катионов идет на образование комплексов) или его окисление и формирование Fe(III) сразу влияет на величины ЭДС или окислительного потенциала системы согласно уравнению Нернста.

Реакцию комплексообразования железа(II) со всеми формами глицина с учетом гидролиза можно представить уравнением:

$$q[Fe(H_2O)_6]^{2+} + /H_sL + kH_2O =$$

= [Fe_q(H_sL)_l(OH)_k(H₂O)_j]^{2q-k-l+s} + (1)
+ kH₃O⁺ + /H₂O,

где q – ядерность комплексов железа(II), l – число лигандов (L⁻), k – число координированных ОН⁻-групп, s – число протонов в лиганде. Указанные частицы являются базисными, так как они все сосуществуют в исследуемой системе и оказывают влияние друг на друга.

Для определения предположительного состава координационных соединений, образующихся в исследуемой системе, а также значений базисных частиц (q, s, l, k), согласно теории метода оксредметрии, были получены экспериментальные зависимости ЭДС (E, мВ) от рН раствора в интервале ионных сил 0.1–1.0 моль/л (рис. 1).

Вид полученных кривых свидетельствует о том, что в кислой области ЭДС не изменяется, следовательно, процесс комплексообразования железа начинается с pH > 2.0 и идет до 8.0. Концентрация комплексообразующих ионов глицина зависит от ионной силы раствора. Из рис. 1 следует, что при меньших ионных силах начало комплексообразования сдвигается в сторону увеличения pH.

Рассмотрим более подробно экспериментальную зависимость *E* от pH при $C_{\text{Fe(II)}} = 1 \times 10^{-3}$, $C_{\text{Gly}} = 3 \times 10^{-3}$ и ионной силе 0.5 моль/л (рис. 2). Согласно теории метода оксредметрии, последовательное формирование линейных участков с тангенсами углов наклона равными: 0, $-\nu/2$, $-\nu$ свидетельствует о ступенчатом комплексообразовании Fe(II). Зависимости *E*-pH позволяют определить общее количество координированных лигандов вокруг центрального иона комплексообразователя.

Анализ наклонов всех полученных экспериментальных кривых позволил составить матрицу значений угловых коэффициентов [13], с помо-

Рис. 2. Зависимость ЭДС от pH для системы Fe(0)– Fe(II)–глицин–Na(H)ClO₄–H₂O при $C_{\text{Fe(II)}} = 1 \times 10^{-3}$, C_{HL} = 3×10^{-3} и I = 0.5 моль/л.

щью которых определены предположительные составы образующихся координационных соединений (табл. 1).

Для расчета констант равновесия использована окислительная функция Юсупова [14]. По экспериментальным значениям ЭДС на ее зависимости от pH сначала рассчитаны величины экспериментальной окислительной функции f_{\Im} по уравнению:

$$f_{\mathcal{P}}^{0} = C_{\rm r}/C_{\rm o} \exp(E - E^{0})n/v,$$
 (2)

где E — экспериментально измеренное значение ЭДС, E^0 — значение стандартной ЭДС, C_r и C_o концентрации восстановленной и окисленной форм железа соответственно. Теоретическое значение f_T рассчитывалось с учетом установленных

Рис. 3. Зависимости логарифмических значений экспериментальной f_3 (*1*) и теоретической f_T (*2*) окислительных функций от pH для системы Fe(0)–Fe(II)– Gly при температуре 298.15 K, I = 0.5, $C_{\text{Fe(II)}} = 1 \times 10^{-3}$ и $C_{\text{Gly}} = 3 \times 10^{-3}$ моль/л.

составов координационных соединений и выражается уравнением:

$$f_{\rm T}^0 = 1000h^3 / \{h^3 + \beta_{1001}h^2 + \beta_{1110}K_1C_{\rm a1}h^2 + \beta_{1111}K_1C_{\rm a1}h + \beta_{1120}K_1^2K_2C_{\rm a1}^2 + \beta_{1002}h\}.$$
(3)

Общим анализом наклонов экспериментальных кривых от концентрационных параметров определены составы образующихся координационных соединений: $[Fe(H_2O)_6]^{2+}$, $[Fe(OH)(H_2O)_5]^+$, $[Fe(HL(H_2O)_5]^{2+}$, $[Fe(HL)(OH)(H_2O)_4]^+$, $[Fe(OH)_2(H_2O)_4]^0$, $[Fe(HL)L^-(H_2O)_4]^+$ при I = 0.5 и $C_{Fe(II)} = 1 \times 10^{-3}$, $C_{Gly} = 3 \times 10^{-3}$ моль/л. Методом итерации экспериментальной окислительной функции с теоретической, выведенной нами, рассчитаны их константы образования (рис. 3). Основное преимущество этого метода в том, что хорошее приближение, совпадение двух кривых происходит только при правильном определении состава комплексов.

Как видно из рис. 3, кривые дали хорошее приближение при указанных в табл. 1 составах.

Таблица 1. Экспериментальные значения угловых коэффициентов зависимостей ЭДС от концентрационных переменных системы Fe(0)—Fe(II)— глицин— $Na(H)ClO_4$ — H_2O при температуре 298.15 K, I = 0.50, $C_{Fe(II)} = 1 \times 10^{-3}$ и $C_{HL} = 3 \times 10^{-3}$ моль/л

IIE ;				
Область существования комплексов по шкале рН	Зависимость Э	Перетионовители и и и		
	pH	$pC_{Fe(II)}$	pC _L	состав комплексов
1.0-2.8	0	—	—	$[Fe(H_2O)_6]^{2+}$
1.0-3.4	-v/2	$-\nu/2$	—	$[Fe(OH)(H_2O)_5]^+$
1.0-4.2	-v/2	$-\nu/2$	v/2	$[FeHL(H_2O)_5]^{2+}$
1.2-6.2	-v	-v/2	ν	$[Fe(HL)(OH)(H_2O)_4]^+$
2.2-4.8	-v	-v/2	—	$[Fe(OH)_2(H_2O)_4]^0$
2.8-8.2	$-\nu$	$-\nu/2$	ν	$\left[\mathrm{Fe}(\mathrm{HL})\mathrm{L}^{-}(\mathrm{H}_{2}\mathrm{O})_{4}\right]^{+}$

Рис. 4. Зависимости степени накопления комплексов $(I - [Fe(H_2O)_6]^{2+}, 2 - [Fe(OH)(H_2O)_5]^+, 3 - [Fe-HL(H_2O)_5]^{2+}, 4 - [Fe(HL)(OH)(H_2O)_4]^+, 5 - [Fe(OH)_2(H_2O)_4]^0, 6 - [Fe(HL)L^-(H_2O)_4]^+)$ от рН для системы Fe(II)-Gly-H₂O при 298.15 K, I = 0.50, $C_{Fe(II)} = 1 \times 10^{-3}$, $C_{Gly} = 3 \times 10^{-3}$ моль/л.

Были попытки осуществить приближение теоретической и экспериментальной окислительной функций без гидроксокомплексов [FeOH]⁺ и $[Fe(OH)_2]^0$. При этом получено слишком большое расхожление кривых, что, согласно теории метода [8, 9], свидетельствует о неправильно определенных составах комплексов. Кроме того, как показывают полученные нами данные из диаграмм их распределения (рис. 4) мольные доли или максимальные их степени накопления в системе составляют всего лишь $\sim 7.63\%$ [FeOH]⁺ (кривая 2 рис. 4) и ~3.99% для [Fe(OH)₂]⁰ (кривая 5 рис. 4). Как было отмечено выше, метод Кларка-Никольского высокочувствительный, что позволило уловить такие незначительные изменения. При использовании других методов исследования мольная доля, составляющая 5-7%, обычно находится в пределах ошибки опыта.

Аналогичные расчеты проведены при различных ионных силах раствора (табл. 2).

Рис. 5. Зависимости констант образования комплексных соединений $(I - [FeHL(H_2O)_5]^{2+}, 2 - [Fe(OH)(H_2O)_5]^+, 3 - [Fe(OH)_2(H_2O)_4]^0, 4 - [Fe(HL)(OH)(H_2O)_4, 5 - [Fe(HL)L^-(H_2O)_4]^+$ от ионной силы раствора (*I*, моль/л) в системе: Fe(0)–Fe(II)–глицин–Na(H)CIO₄–H₂O, температуре 298.15 K, *C*_{Fe(II)} = 1×10^{-3} и *C*_{HL} = 3×10^{-3} моль/л; расчет по программе "SigmaPlot-10.0".

Установлено, что константы протолитических равновесий лиганда изменяются в зависимости от количества фонового электролита, следовательно, ионной силы раствора. Это приводит к различным выходам протонированных форм глицина. При увеличении ионной силы от 0.1 до 1.0 моль/л логарифмы констант образования $(lg\beta_{qslk})$ комплексов (табл. 2) постепенно уменьшаются, что связано с изменением коэффициентов активности ионов раствора [13].

Известно, что зависимость концентрационной константы равновесия координационных соединений от ионной силы раствора выражается по теории Дебая—Хюккеля [15] уравнением:

$$\lg \beta_{\rm C} = \lg \beta_0 + \Delta z^2 A \sqrt{I/(1 + Ba\sqrt{I})} + bI, \qquad (4)$$

Таблица 2. Значения констант устойчивости (lg β_{qslk}) комплексов железа(II) системы Fe(0)–Fe(II)–глицин– Na(H)ClO₄–H₂O при температуре 298.15 К и различных ионных силах раствора (*I*, моль/л), $C_{Fe(II)} = 1 \times 10^{-3}$, $C_{HI} = 3 \times 10^{-3}$ моль/л

Комплекс	I = 0.10	I = 0.25	I = 0.50	I = 0.75	I = 1.00
$[FeHL(H_2O)_5]^{2+}$	3.50 ± 0.06	3.46 ± 0.05	3.32 ± 0.07	3.11 ± 0.05	2.90 ± 0.04
$[Fe(OH)(H_2O)_5]^+$	-2.37 ± 0.08	-2.39 ± 0.06	-2.44 ± 0.05	-2.47 ± 0.05	-2.51 ± 0.04
$[Fe(OH)_2(H_2O)_4]^0$	-5.29 ± 0.08	-5.33 ± 0.09	-5.39 ± 0.06	-5.42 ± 0.05	-5.48 ± 0.05
$[Fe(HL)(OH)(H_2O)_4]^+$	0.97 ± 0.04	0.92 ± 0.05	0.80 ± 0.06	0.57 ± 0.07	-0.01 ± 0.06
$[Fe(HL)L^{-}(H_2O)_4]^+$	9.91 ± 0.05	10.96 ± 0.05	10.92 ± 0.05	10.71 ± 0.05	8.91 ± 0.04

1182

Таблица 3. Величины термодинамической (lg β_0) и эмпирической (b) констант для комплексов Fe(II) образующихся в системе: Fe(0)–Fe(II)–глицин–Na(H)ClO₄–H₂O при 298.15 K, $C_{\text{Fe(II)}} = C_{\text{Fe(II)}} = 1 \times 10^{-3}$ и $C_{\text{HL}} = 3 \times 10^{-3}$ моль/л (I – значения, полученные экстраполяцией, II – расчет по программе "SigmaPlot-10.0")

Комплекс	$\lg \beta_0(I)$	$\lg \beta_0(II)$	<i>b</i> (I)	<i>b</i> (II)
[FeHL(H ₂ O) ₅] ²⁺	2.86	3.54	-0.54	-0.36
$[Fe(OH)(H_2O)_5]^+$	-2.80	-2.37	-0.3	-0.06
$[Fe(OH)_2(H_2O)_4]^0$	-5.56	-5.29	-0.28	0.03
$[Fe(HL)(OH)(H_2O)_4]^+$	0.60	0.88	-0.6	-1.61
$\left[Fe(HL)L^{-}(H_{2}O)_{4}\right]^{+}$	10.02	9.31	-0.06	-8.18

где *A* и *B* – константы (при 25°С для водных растворов *A* = 0.509 и *B* = 0.328); Δz^2 – алгебраическая сумма квадратов зарядов ионов, *I* – ионная сила раствора, *b* – эмпирическая константа, характеризующая изменение диэлектрической постоянной среды вблизи иона; *a* – переменный параметр, равный среднему эффективному диаметру гидратированного иона, выраженному в ангстремах (*a* = 0.49 нм = 4.9 Å), β_0 – термодинамическая константа, β_C – концентрационная константа образования комплекса.

Полученные прямые линии при экстраполяции на нулевое значение ионной силы дают отрезки на оси ординат, численно равные $\lg\beta_0$ (табл. 3). Угловой коэффициент полученных кривых позволил определить величину эмпирической константы *b* уравнения (4), которые приведены в табл. 3.

В изученной системе рассчитанные величины эмпирической константы (*b*) принимают отрицательные значения для всех образующихся комплексов, и тогда уравнение (4) принимает вид:

$$\lg \beta_{\rm C} = \lg \beta_0 + \Delta z^2 A \sqrt{I/(1 + 1.6\sqrt{I})} - bI.$$
 (5)

С учетом рассчитанных по уравнению (5) значений констант образующимся комплексным соединениям соответствуют равенства:

$$[FeHL(H_2O)_5]^{2+}: lg\beta_C = 2.86 + + 3.05\sqrt{I/(1+1.6\sqrt{I})} - 0.54I,$$
(6)

$$[Fe(OH)(H_2O)_5]^+: \ \lg \beta_C = -2.8 + + 1.527 \sqrt{I/(1+1.6} \sqrt{I}) - 0.3I,$$
(7)

$$[Fe(OH)_{2}(H_{2}O)_{4}]^{0}: \ \ \lg\beta_{C} = -5.56 + + 1.018\sqrt{I/(1+1.6\sqrt{I})} - 0.28I.$$
(8)

$$[Fe(HL)(OH)(H_2O)_4]^+: \ \lg\beta_C = 0.6 + + 1.527\sqrt{I/(1+1.6\sqrt{I})} - 0.6I,$$
(9)

$$[Fe(HL)L^{-}(H_{2}O)_{4}]^{\dagger}: \ \lg\beta_{C} = 10.02 + + 3.05\sqrt{I}/(1 + 1.6\sqrt{I}) - 0.06I.$$
(10)

Из уравнений (6)–(10) следует, что величина, представляющая межионное расстояние (A = 0.509), остается постоянной, Δz^2 изменяется в зависимости от заряда комплексной частицы, уравнения отличаются значениями термодина-мических констант (lg β_0) образования комплексов и эмпирической константы (b).

Проведены расчеты и статистическая обработка констант по уравнению (11) с использованием программы "SigmaPlot-10.0" (рис. 5, табл. 3):

$$f = y + ax + bx^2. \tag{11}$$

Значения логарифма термодинамических констант ($\lg \beta_0$) образующихся координационных соединений, полученных двумя методами (табл. 3), согласуются между собой. Значения эмпирической константы (*b*) уравнений (6)—(11) согласуются между собой в пределах ошибки метода расчета.

Константы образования координационных соединений, рассчитанные по экспериментальным данным, полученным методом итерации, и

Таблица 4. Значения концентрационных констант образования (lg $\beta_{\rm C}$) комплексов Fe(II) системы: Fe(0)– Fe(II)–глицин–Na(H)ClO₄–H₂O при 298.15 K, $C_{\rm Fe(III)} = C_{\rm Fe(II)} = 1 \times 10^{-3}$ и $C_{\rm HL} = 3 \times 10^{-3}$ моль/л (I – расчет по уравнениям (6)–(10); II – полученные экспериментально)

<i>I</i> , моль/л	$[\text{FeHL}(\text{H}_2\text{O})_5]^{2+}$		$[Fe(OH)(H_2O)_5]^+$		$[Fe(OH)_2(H_2O)_4]^0$		$[Fe(HL)(OH)(H_2O)_4]^+$		$\left[\mathrm{Fe(HL)L}^{-}(\mathrm{H_2O})_4\right]^{+}$	
	I (6)	II	I (7)	II	I (8)	II	I (9)	II	I (10)	II
0.10	3.45	3.50	-2.51	-2.37	-5.37	-5.29	0.86	0.97	10.3	9.91
0.25	3.57	3.46	-2.45	-2.39	-5.35	-5.33	0.87	0.92	10.4	10.96
0.50	3.60	3.32	-2.44	-2.44	-5.36	-5.39	0.81	0.79	10.5	10.92
0.75	3.56	3.11	-2.47	-2.47	-5.40	-5.42	0.70	0.57	10.5	10.71
1.00	3.49	2.90	-2.51	-2.51	-5.45	-5.48	0.59	-0.05	10.5	8.91

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 8 2020

вычисленные с помощью соответствующих уравнений (6)–(10), а также с применением программы "SigmaPlot-10.0" (уравнение (11)) хорошо согласуются между собой (табл. 4), что свидетельствует о достоверности полученных результатов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Бек М. Исследование комплексообразования новейшими методами. М.: Мир, 1989. 405 с.
- 2. Гиллебранд В.Ф. и др. Практическое руководство по неорганическому анализу. М.: Химия, 1966. 1111 с.
- Пршибил Р. Комплексоны в химическом анализе. М.: Изд-во иностр. лит., 1960. С. 383–386.
- 4. *Кольтгоф И.М. и др.* Объемный анализ. М.: Госхимиздат, 1961. Т. 3. 840 с.
- Шарло Г. Методы аналитической химии. Количественный анализ неорганических соединений. М.: Химия, 1965. 930 с.
- 6. *Сусленникова В.М.* Руководство к приготовлению титрованных растворов. Л.: Химия, 1968. С. 45–71.
- Коростелев П.П. Приготовление растворов для химико-аналитических работ. М.: Изд-во АН СССР, 1962. С. 311.

- 8. *Никольский Б.П. и др.* Оксредметрия. Л.: Химия, 1975. 304 с.
- 9. *Якубов Х.М.* Применение оксредметрии к изучению комплексообразования. Душанбе: Дониш, 1966. 121 с.
- 10. Davlatshoeva J.A., Eshova G.B., Rahimova M.M. et al. // Amer. J. Chem. 2017. V. 7(2). P. 58.
- 11. Эшова Г.Б., Давлатиоева Дж.А., Рахимова М. и др. // Журн. неорган. химии. 2018. Т. 63. № 4. С. 525.
- 12. Эшова Г.Б., Давлатиоева Дж.А., Рахимова М. и др. // Там же. 2018. Т. 63. № 6. С. 736.
- Эшова Г.Б., Давлатшоева Дж.А., Рахимова М., Квятковская Л.В. // Вестник ТНУ. Душанбе, 2016. 1/4(216). С. 235.
- 14. Пат. Республики Таджикистан № ТЈ 295, (51) 7 G 01 N 27/26, С 25 В 3/12. Способ определения состава и констант образования координационных соединений / З.Н. Юсупов; заявитель и патентообладатель Таджикский государственный национальный университет. № 97000501; заявка от 16.12.1997. Бюлл. № 21. 2000. С. 8.
- 15. Васильев В.П. Термодинамические свойства растворов электролитов. М.: Высшая школа, 1982. 317 с.