ФОТОХИМИЯ И МАГНЕТОХИМИЯ

УДК: (541.14+541.61+556.3):535.34

ФЕНИЛАМИНИЛЬНЫЕ КАТИОНЫ В ЖИДКО- И ГАЗОФАЗНЫХ ФОТОПРЕВРАЩЕНИЯХ ПРОТОНИРОВАННОГО АЗОБЕНЗОЛА

© 2020 г. Ю. А. Михеев^{*a*,*}, Ю. А. Ершов^{*b*}

^а Российская академия наук, Институт биохимической физики им. Н.М. Эмануэля, Москва, Россия ^b Московский государственный технический университет им. Н.Э. Баумана, Москва, Россия

> *e-mail: mik@sky.chph.ras.ru Поступила в редакцию 20.09.2019 г. После доработки 20.09.2019 г. Принята к публикации 12.11.2019 г.

Проведен анализ данных по спектроскопии фотовозбуждения *транс* \rightarrow *цис*-изомеризации и фрагментации протонированного *транс*-азобензола (ABH⁺) в атмосфере инертных газов. Результаты газофазной изомеризации сопоставлены с результатами жидкофазной реакции в водной серной кислоте, ведущей к образованию циклического бензо[с]циннолина. Циклизация отсутствует при газофазной $t \rightarrow c$ -изомеризации в среде разреженного азота при T = 300 K вследствие высокой скорости обратной $c \rightarrow t$ -изомеризации. Показано, что превращения в обеих фазах идут с участием катионов фениламинильного типа, являющихся хромогенами t- и c-ABH⁺. Фотофрагментация t-ABH⁺ в атмосфере криогенно охлажденного гелия (T = 40 K) идет с образованием осколочных катионов фенила и фенилдиазония тоже с участием фениламинильных катионов. Предложены механизмы фотофрагментации, включающие промежуточные акты с участием атомов H, образующихся путем диссоциации группы NH. Быстрая атака атомов H по фенильному кольцу, связанному с NH-группой, ведет к разрывам C–N-связи, исключая возможность $t \rightarrow c$ -изомеризации в криогенной атмосфере гелия.

Ключевые слова: протонированный азобензол, катион фениламинильного типа, фотоизомеризация, фотоциклизация, фотофрагментация

DOI: 10.31857/S0044453720080208

Азобензол (AB) не относится к технологическим красителям, однако является химическим базисом азобензольных красителей и важен как объект научных исследований по взаимосвязи химического строения и цветности органических соединений [1]. Он и его замещенные соединения способны обратимо претерпевать $t \leftrightarrow c$ -изомеризацию под действием UV- и VIS-света, причем с ультравысокой скоростью в субпикосекундном режиме. В литературе это рассматривается как важное свойство в плане применения замещенных соединений AB в качестве молекулярных фотопереключателей (в том числе в биологических зондах), в механических и оптических материалах, фотофармакологии [2].

Актуальность научного исследования фотореакций производных *t*-AB стимулировала авторов [2, 3] на проведение экспериментов с протонированным *t*-азобензолом (*t*-ABH⁺) в газовой фазе. Важность полученных экспериментальных результатов [2, 3] существенно нивелируется теоретической трактовкой, основанной на устаревших представлениях о природе цветности (и электронного строения) АВ и его производных. Целью настоящей работы является качественно новый анализ данных [2, 3] с учетом того, что ключевым хромогеном азобензола является не катион азония, а катион фениламинильного типа (PhAT) [4–9].

Авторы [2] использовали методику разделения исходных транс- и образующихся при фотовоздействии на *t*-ABH⁺ иис-катионов ABH⁺, основанную на разной скорости дрейфа катионов в аппаратурной трубке через зону разреженного буферного газа N₂. Дрейфующие катионы создавали, распыляя совместный раствор *t*-ABH⁺ (10⁻⁵ M) и уксусной кислоты (1%) в метаноле с помощью электрического распылителя (electrospray source) и инжектируя порции пылевидной смеси в зону дрейфа импульсами длительностью 100 мкс с частотой 20 Гц. Движение таких порций (packets) через зону дрейфа обеспечивалось электрическим полем (E = 44 B/см), причем на половине пути дрейфа эти порции подвергали воздействию монохроматического излучения с регулируемой длиной волны в интервале 30–520 нм. Импульсы излучения имели энергию светового потока

Рис. 1. Спектр возбуждения фотоизомеризации транс-азобензола в разреженной атмосфере азота. Вертикальные полосы обозначают расположение и интенсивность расчетных электронных уровней S_1 , S_2 , S_3 . Данные [2]. Дополнительные пояснения в тексте.

≈1 мДж/(см² импульс). С целью получения разностных масс-спектров, импульсы повторялись с частотой 10 Гц, облучая каждый второй катионный пакет. Сепарирование порций по скорости дрейфа шло вследствие различия величины поперечного сечения катионов в актах соударения с молекулами буферного газа N₂ (≈6 Торр). Результат такого различия в уловиях фотовозбуждения светом с λ_{ex} = 440 нм однозначно показал, что облучение катионов *t*-ABH⁺ приводит к образованию более быстрых катионов *c*-ABH⁺.

Экспериментальная установка [2] позволяла разделять дрейфующие порции катионов обоих типов, регулировать время подачи на них импульсов облучения и регистрировать время их подсчета (arrival time distribution, ATD). Были получены разностные спектры ATD и, кроме того, спектр фотовозбуждения *t*-ABH⁺ по зависимости интегрального сигнала ATD быстрых катионов *с*-ABH⁺ от длины волны возбуждающего света (спектр фотоизомеризационного действия (PISA)).

Спектр PISA (полоса в интервале 370–480 нм с максимумом при $\lambda_m = 430$ нм) представлен на рис. 1 в виде кривой *1*, характеризующей зависимость выхода катионов *с*-ABH⁺ (в произвольных единицах Y). Спектр приписан $\pi \to \pi^*$ -переходу $S_0 \to S_1$ в катионе азония:

На рис. 1 авторы [2] нанесли также вертикальные линии S_1 , S_2 , S_3 , характеризующие длины волн и относительные интенсивности вертикальных электронных переходов, рассчитанные для Az^+ по аутентичным компьютерным методикам.

Согласно данным [2], выход *с*-ABH⁺ при действии импульсов света с $\lambda_{ex} = 440$ нм на *t*-ABH⁺ составил ≈85%. Потеря 15% приписана расходованию *t*-ABH⁺ в актах фотофрагментации. Фотофрагментация *t*-ABH⁺ в газовой фазе установлена в [3].

Авторы [3] исследовали фотопревращение t-ABH⁺ в газовой фазе, тоже опираясь на традиционный постулат, что спектр фотовозбуждения t-ABH⁺ принадлежит катионам азония Az⁺. В отличие от работы [2], процесс проводили при низкой температуре ≈40 К охлажденного гелия, регистрируя образование продуктов фрагментации с помощью времяпролетного (TOF) масс-спектрометра (спектроскопия фотофрагментационого действия, PFA).

Катионы *t*-ABH⁺ продуцировали в электрораспылительном источнике из раствора *t*-AB (концентрация 0.1 мМ в смеси вода/метанол = 1:1) с небольшим количеством уксусной кислоты. Созданные в источнике катионы инжектировали в ловушку, охлажденную импульсом криогенного гелия. На охлаждение катионов в ловушке до T == 40 К уходило несколько десятков миллисекуна. после чего подавался лазерный импульс для фотофрагментации катионов *t*-ABH⁺. Устройство экспериментальной установки позволяло экстрагировать ионные фрагменты и оставшиеся катионы *t*-ABH⁺ из ловушки и вести анализ в TOF масс-спектрометре. Анализ показал, что главными продуктами фотофрагментации катионов t-ABH⁺ (отношение масса/заряд – m/q = 183) являются фенильные катионы (Ph⁺) с m/q = 77, и катионы фенилдиазония ($C_6H_5N_2^+$, benzenediazonium, BD⁺ c m/q = 105).

Спектры UV-VIS PFS катионов *t*-ABH⁺ представляют собой зависимость интенсивности сигналов катионов-фрагментов от волнового числа v_{ex} возбуждающего лазерного излучения. При этом интенсивность сигнала BD⁺ много ниже, чем сигнала Ph^+ . Фотофрагментационные UV-VIS PFS спектры катионов t-ABH⁺, представленные в [3] в произвольных единицах, приведены на рис. 2. Спектры 1, 2 (рис. 2) характеризуют зависимости выхода осколочных катионов Ph⁺ (m/q = 77) от волнового числа v_{ex} . Спектр 2 передает с увеличенным разрешением участок (выделен кружком) в самом начале полосы UV-PFSспектра 1. Авторы [3] установили, что фотофрагментация катионов t-ABH⁺ на Ph⁺ в интервале 20 800-21 100 см⁻¹ соответствует низкочастотной вибрационной прогрессии с активной частотой 41 см⁻¹, начинающейся с $v_{ex} = 20820$ см⁻¹ и $v_{ex} =$ = 20842 см⁻¹. Вместе с тем, на основании очень низкой интенсивности этой прогрессии отмечают, что полоса $v_{ex} = 20\ 820\ \text{см}^{-1}$ не соотносится в явном виде с электронным 0-0 переходом.

Отмеченную особенность авторы [3] связывают с значительным отличием геометрии возбужденного S_1 -состояния азоний катиона t-ABH⁺ от геометрии основного состояния. Их квантовохимические расчеты показали, что для основного состояния (S₀) катиона азония характерна лишь слабая скрученность ароматических колец относительно азогруппы из-за стерических препятствий между кислотным атомом Н и смежным фенильным кольцом. В то же время, для возбужденного S_1 -состояния расчеты показали большую скрученность азоний катиона по N-N-связи, достигающую 96° у диэдрального угла – CN–NC– (ситуация типа изомеризации из планарного состояния в кресловидное). Несмотря на это, начинающуюся с $v_{ex} = 20820$ см⁻¹ и имеющую $v_m \approx$ ≈ 23200 см⁻¹ (≈430 нм) полосу (рис. 2, спектр *1*), авторы [3] все же приписывают переходу $S_0 \to S_1$. Последний рассматривается как переход электрона в азоний-катионе с высшей занятой связывающей молекулярной орбитали π-НОМО на антисвязывающую π^* -LUMO с расчетной силой осциллятора f = 0.91. Учитывая сильное искажение геометрии азоний-катиона *t*-ABH⁺ в S₁-состоянии, авторы [3] не исключают наличия $t \rightarrow c$ -изомеризации. Вместе с тем, подчеркивают, что выход цис-изомеров может быть очень низким из-за быстрой обратной изомеризации кресловидного состояния в планарное при движении возбужденных катионов АВН⁺ по координате реакции в зоне конического пересечения поверхности S₁ с поверхностью S_0 .

Авторы [3] отмечают, что основное количество осколочных катионов BD⁺ (phN=N:⁺, m/q = 105) образуется в интервале волновых чисел v_{ex} от 24390 до 33330 см⁻¹ (рис. 2, спектр 3). Именно

Рис. 2. Спектры возбуждения фотофрагментации t-ABH⁺, полученные по выходу катионов Ph⁺ с m/q = 77 (кривые *1*, *2*) и фенилдиазония с m/q = 105 (кривая *3*). Данные [3]. Дополнительные пояснения в тексте.

этим катионам они уделяют главное внимание при рассмотрении механизма фотофрагментации катионов *t*-ABH⁺ (конкретного механизма образования катионов Ph⁺ они не касаются).

Наблюдаемые в указанном интервале v_{ex} на рис. 2 две полосы с близкими значениями $v_m =$ 24 534 (407 нм) и 25 648 см⁻¹ (384 нм) отнесены в [3] к переходам с переносом заряда (СТ) $S_0 \rightarrow S_2$ ("HOMO – 1" \rightarrow LUMO) и $S_0 \rightarrow S_3$ ("HOMO – 2" \rightarrow \rightarrow LUMO) соответственно. Дана схема 1 актов

Схема 1

Схема 2

фрагментации *t*-ABH⁺ \rightarrow BD⁺ + бензол (B) в возбужденных состояниях S_2 и S_3 :

Согласно схеме 1, фотовозбуждение катиона азония *t*-ABH⁺ вызывает перенос электрона с π -орбиталей колец 1, 2 на протонированный атом азота азогруппы. По мнению авторов [3], эти переходы, осуществляемые то с одного, то с другого кольца, приводят к нейтрализации положительного заряда на группе HN⁺ и последующим гомолитическим разрывам связи NH, миграции образующихся радикалов H к кольцам и, в конечном итоге, образованию бензола (B) и фенилдиазония (BD⁺). Считается, что именно планарное состояние катиона азония *t*-ABH⁺ способствует переносам π -электронов на пустую π -орбиталь атома N⁺, созданную присоединенным протоном.

Резюмируя обзор данных работ [2, 3] следует отметить, что использованные в них теоретические построения базировались на представлении о катионе азония как основного состояния сопряженной кислоты АВ. Между тем, недавно показано, что формулы строения протонированных форм *t*-ABH⁺ включают в себя катионы PhAT [4], которые входят как важные хромогенные элементы также в молекулы AB и ридимеры азобензольных красителей [5–9].

Электронная формула катиона PhAT

Существование катиона PhAT установлено в работе [4]. Согласно [4], вносимый в азогруппу АВ положительный заряд протона не фиксируется в том состоянии, как определяет формула азоний-катиона и как это представляют авторы [2, 3]. Так, согласно схеме 3 [3], электрон переносится с того или другого кольца на свободную π-орбиталь атома N⁺, получившего положительный заряд от присоединенного протона. Тем самым вносится путаница в суть реакции протонирования молекул *t*-AB. В действительности в ходе протонирования сначала один электрон переходит из неподеленной *sp*²-электронной пары азота молекулы АВ на атомную *s*-орбиталь протона. Затем *s*-электрон образовавшегося атома водорода и оставшийся sp^2 -электрон азота образуют σ -связь. При этом положительный заряд протона, локализующийся на *p*_z-орбитали азота образовавшейся группы HN, поляризует азосвязь. Адекватная электронная формула строения ABH⁺ имеет вид [4]:

Согласно схеме 2, увеличение положительного заряда на азоте группы HN (отмечено знаком (+) под атомом N) вызывает притяжение обоих π электронов π-связи так, что они находятся основное время на *p*₂-орбитали этой группы. Таким образом, p_{z} -орбиталь второго атома N, передающая электрон на p_{2} -орбиталь группы NH, приобретает индуцированный положительный заряд и возникает π -катион N⁺. Этот π -катион N⁺ поляризует сопряженное с ним фенильное кольцо так, что π-электроны кольца получают возможность делокализоваться из бензольного электронного секстета на π -катион N⁺ за счет сопряжения, частично повышая на нем электронную плотность и понижая его положительный заряд. При этом сохраняется *sp*²-гибридизация атомов азота и плоское строение *t*-ABH⁺.

Интенсивный желто-оранжевый цвет *t*-ABH⁺, отражающий наличие VIS-полосы с $\lambda_{max} \approx 430-440$ нм, обязан именно катиону PhAT (Ph⁺N⁺, схема 2), принимающему на себя роль хромогена подобно тому, как это происходит в бензильных и фениламинильных катионах [4]. Все указанные катионы имеют не только связывающие высшие молекулярные орбитали (HOMO) и нижние антисвязывающие (LAMO) молекулярные орбитали, но еще и вакантные несвязывающие орбитали (NBMO) с нулевой энергией. Именно на NBMO переходит возбуждаемый VIS-светом электрон с занятой HOMO, приводя к появлению в спектрах указанных катионов VIS-полос, сходных по форме и положению [4, 10, 11].

Отмеченное сходство электронных переходов позволило воспользоваться в [4] принципом аналогии с переходом бензильного катиона из основного состояния в возбужденное состояние, описанное в [12], для демонстрации механизма фотоциклизации *t*-ABH⁺ с участием образующегося при этом *c*-ABH⁺.

Жидкофазная фотоизомеризация с циклизацией t-ABH⁺

Согласно [12], переход бензильного катиона в первичное возбужденное состояние (соответствует переходу электрона с НОМО на NBMO) влечет за собой изомеризацию фенильного кольца в хиноидное кольцо с локализацией положительного заряда на атоме углерода либо в *пара*-, либо в *орто*-положениях кольца. При этом находящийся в кольце атом С, получающий полный положительный заряд, может изменить свое ароматическое валентное *sp*²-состояние на *sp*³-состояние:

Учет такой ситуации при фотовозбуждении катионов *t*-ABH⁺ позволил в [4] объяснить механизм жидкофазной $t \rightarrow c$ фотоизомеризации катионов *t*-ABH⁺, которая, как установлено в [13, 14] ведет к образованию циклического протонированного катиона безо[с]циннолина. Выводы работы [4] позволяют лучше понять экспериментальные данные [2] по газофазной $t \rightarrow c$ фотоизомеризации катионов *t*-ABH⁺.

В жидкой фазе катионы *t*-ABH⁺ и *c*-ABH⁺ образуются в достаточно сильных кислотах и, согласно данным [13, 15], имеют неодинаковые UV-VIS спектры. Например, свежеприготовленный раствор *c*-ABH⁺ (растворитель – этанол/70% HClO₄, 1 : 4 об.) отличается низкой интенсивностью VIS-полосы с $\lambda_m = 418$ нм ($\epsilon_{418} = 7460$ л/(моль см)) от раствора *t*-ABH⁺ ($\lambda_m = 421$ нм, $\epsilon_{421} = 29300$ л/(моль см)) в том же растворителе [15]. Кроме того, *c*-ABH⁺ имеет низкую устойчивость и постепенно изомеризуется в *t*-ABH⁺. Изомеризация в указанном выше растворителе завершается быстро на открытом свету и медленно (много дней) в отсутствие освещения [15].

В сильно кислой среде 22 н. $H_2SO_4 + 10\%$ этанола реакция $c \rightarrow t$ изомеризации в отсутствие света заканчивается в течение нескольких дней [13]. В итоге, спектр цис-формы переходит в спектр *транс*-изомера. В то же время действие света лампы накаливания на растворы *t*-ABH⁺ и *c*-ABH⁺ в данной сернокислой среде вызывает их относительно быстрое обесцвечивание, сопровождающееся образованием протонированного бензо[с]циннолина [13, 14]. На начальном этапе освещения раствора *t*-ABH⁺ (концентрация 2 × × 10⁻⁵ M) оптическая плотность VIS-полосы (с $\lambda_m = 420$ нм) быстро снижается из-за частичного фотопревращения в *c*-ABH⁺.

Рис. 3. Спектры протонированных *транс*-азобензола (1), *цис*-азобензола (2), бензо[с]циннолина (3). Данные [13].

На таком же начальном этапе освещения раствор *с*-АВН⁺ (тоже 2×10^{-5} М) резко увеличивает оптическую плотность вследствие частичного превращения в *t*-ABH⁺. В том и другом случае относительно быстро устанавливается фотодинамическое равновесие между обоими изомерами (их VIS-полосы лежат в одной и той же области спектра (рис. 3, кривые 1, 2)). При этом оптические плотности обоих растворов становятся почти равными за короткое время, и далее их снижение идет с одной скоростью. Одновременное относительно медленное расходование обоих изомеров приводит к образованию протонированного бензо[с]циннолина (рис. 3, кривая 3). Время полупревращения до фоторавновесия примерно в 100 раз меньше, чем время образования продукта циклизации.

Механизм данной фотореакции раскрыт в [4] с учетом функционирования катионов PhAT в t-ABH⁺ и c-ABH⁺ (схема 3). Катионы PhAT способны в результате фотовозбуждения превращаться в орто-хиноидные структуры. Одновременно происходит сильное ослабление двойных связей N=N, обеспечивая вращение фенильного и хиноидного колец вокруг ослабленной азосвязи, а также способность орто-хиноидного карбка-

Схема 3

тиона атаковать незаряженное фенильное кольцо, реализуя реакцию циклизации:

Образующийся в качестве промежуточного соединения протонированный циклический диазин с двумя орто-хиноидными циклами затем окисляется серной кислотой с образованием протонированного бензо[с]циннолина (спектр *3*, рис. 3):

При этом серная кислота восстанавливается до сернистой кислоты.

Согласно изложенному выше, традиционную (неадекватную) идею о принципиальной роли катионов азония в фотохимии протонированного азобензола следует заменить адекватной моделью с ключевой ролью катионов PhAT.

Особенности газофазной t → с фотоизомеризации

В [2] не зарегистрирован спектр PISA, соответствующий катиону c-ABH⁺ (а также циклическому катиону с двумя хиноидными кольцами (схема 3)). Данный факт объясняется высокой скоростью $c \rightarrow t$ -конверсии [2]. Его можно связать с весьма низкой плотностью газа N₂ (8 Торр) и отсутствием клеточного эффекта. В жидкой фазе, благодаря клеточному эффекту [16], встречающиеся фенильное и заряженное орто-хиноидное кольца катионов ABH⁺ (схема 3), имеют возможность для многократных соударений, ведущих к циклизации по схеме 3. Наоборот, низкая плотность газовой среды N₂ не способна оказать сильного торможения торсионному движению колец.

Следует отметить еще одну важную особенность газофазных опытов [2, 3], а именно, усиление основности AB относительно жидкофазной основности. Действительно, для обратимого протонирования (t-AB + H⁺ \leftrightarrow t-ABH⁺) в жидкой фазе необходима достаточно высокая кислотность [4, 5, 13, 15], которая недостижима с применением очень низкой концентрации уксусной кислоты, используемой в опытах [2, 3]. Между тем, эти опыты однозначно демонстрируют факт протонирования AB. Данный результат можно связать с удачным сочетанием электронного строения катиона t-ABH⁺, содержащего хромоген PhAT, и использованного в опытах электрораспылительного ионного источника (electrospray ion source).

В электрораспылителе происходит впрыскивание порций раствора через нагретый капилляр в условиях значительного перепада давления в объем с низким давлением ≈1 мБар, где происходит удаление растворителя. При движении в нагретом капилляре раствор находится под действием высоковольтного напряжения (несколько кВ), в результате чего образуются сильно заряженные капли [17, 18], распыляющиеся в объеме и теряющие растворитель. В условиях высокого напряжения образующаяся соль (ацетат АВ), не способная к электролитической диссоциации в паровом состоянии, теряет анион ацетата. Это можно объяснить тем, что в катионе t-ABH⁺ группа NH практически не имеет заряда, так как положительный заряд делокализован в катионе PhAT при условии компенсации зарядов на атоме N (схема 2). По этой причине кулоновское притяжение аниона AcO⁻ к группе NH сильно ослаблено и АсО- легко отшепляется под действием сильного электрического поля. Затем освободившиеся катионы *t*-ABH⁺ перемещаются в другой отсек установки с давлением около 10⁻³ мБар и далее направляются в устройство для фотовозбуждения и сепарирования катионов в разреженном азоте под действием электрического поля.

Особенности газофазной криогенной фотофрагментации

Ключевая роль катионов PhAT в электроннооптических свойствах АВН⁺. АВ и аминоазобензольных красителей [4-9], свидетельствует о неадекватности теоретических представлений работ [2, 3], базирующихся на модели азоний-катиона t-ABH⁺. Действительно, образование t-ABH⁺ идет с присоединением Н⁺ к азоту азогруппы за счет использования пары sp^2 электронов на образование ковалентной связи N-H. При этом *π*связь азогруппы сильно поляризуется вследствие локализации π -электронов на азоте группы NH и связанной с этим практической компенсацией положительного заряда протона. По этой причине наличие катиона PhAT в *t*-ABH⁺ (схема 2) исключает актуальность схемы 1, представленной в [3]. Согласно схеме 1, фрагментация должна идти вслед за актами переноса электрона с того или иного фенильного кольца на *p*_z-орбиталь азота, присоединившего протон (NH⁺). Между тем, данная p_z -орбиталь в основном состоянии t-ABH⁺ занята двумя электронами (схема 2), и здесь нет места для третьего электрона.

В работе [3] не отмечен наблюдаемый на спектрах UV-VIS PFS (рис. 2, спектры *I*, *3*) факт, что акты образования фрагментов BD⁺ идут не только при возбуждении *t*-ABH⁺ в CT-полосах $S_0 \rightarrow S_2$ и $S_0 \rightarrow S_3$, но и в полосе $S_0 \rightarrow S_1$ ($v_m = 23200 \text{ cm}^{-1}$, $\lambda_m = 430$ нм). Согласно рис. 2, переход $S_0 \rightarrow S_1$ создает интенсивный сигнал m/q = 77 от катионов ph⁺ (спектр *I*), а также значительно менее интенсивный, но все же наблюдаемый сигнал BD⁺ (спектр *3*), который становится значительно

Схема 4

сильнее в СТ-полосах. То есть в [3] не учтен тот факт, что оба продукта фрагментации – Ph^+ и BD^+ – образуются параллельно в интервале v_{ex} от 21 000 до 33 330 см⁻¹.

Перед обсуждением механизмов фрагментации следует отметить, что в спектре UV-VIS PFS полоса *t*-ABH⁺, связанная с переходом $S_0 \rightarrow S_1$ (рис. 2, спектр *I*), имеет $\lambda_m = 430$ нм, как в спектре PISA (рис. 1). Это батохромное смещение в газовой фазе относительно жидкофазной полосы $\lambda_m =$ = 420 нм (рис. 3, спектр *I*) свидетельствует о наличии достаточно высокой колебательной энергии у катионов *t*-ABH⁺, вступающих в фотоизомеризацию при $T \approx 300$ K [2] и фрагментацию при $T \approx 40$ K [3]. Здесь дело в том, что поглощаемая радиация обладает двойственной ролью, наиболее выраженной в опытах работы [3].

В работе [3] для создания температуры ниже 70 К используют холодный гелий с давлением 0.1-1.0 мТорр. В такой криогенной атмосфере гелия фотовозбуждаемые примесные молекулы испытывают резонансное рамановское рассеяние и получают при переходе в основное состояние сильное колебательное возбуждение, которое теряется значительно медленнее, чем в разреженном азоте [18]. Это позволяет понять тот факт, что UV-VIS PFS-спектр осколочных катионов Ph⁺ в криогенной гелиевой ловушке [3] на начальном участке полосы $S_0 \rightarrow S_1$ в (рис. 2, интервал 20800— 21100 см⁻¹) носит характер низкочастотной вибрационной прогрессии с активной частотой 41 см⁻¹. Наблюдаемую прогрессию можно связать с наличием резонансного рамановского рассеяния, индуцирующего высокую скорость генерирования горячих колебательных S_0^{v} состояний *t*-ABH⁺. (Для сопоставления отметим, что даже в жидком гексане молекулы АВ, перешедшие на S_0^{v} -уровень с уровня S_1 , обладают рамановскими антистоксовскими полосами $v = 1440 \text{ см}^{-1}$, имеющими время жизни ~16 пс [19].) С учетом того,

что время акта рассеяния света (порядка фемтасекунды) значительно короче времени лазерного импульса, следует ожидать, что каждый лазерный импульс в [3] (длительность наносекунды) играл двойственную роль, особенно заметную в начале полосы перехода $S_0 \rightarrow S_1$. Действительно, он генерировал S_0^{v} состояния *t*-ABH⁺ за счет резонансно-

го рамановского рассеяния и сам же зондировал их по полосам UV-VIS PFS осколочных катионов Ph^+ (схема "pump + probe \leftarrow puls").

Ранее двойственная роль фотовозбуждения отмечена для протонированных аминоазобензола и диметиламиноазобензола [20]. Действие света на эти соединения вызывает, с одной стороны, акты их депротонирования с образованием хиноидных форм, с другой стороны, свидетельствует об этих актах по интенсивным рамановским полосам образующихся хиноидных форм.

Наличием значительного колебательного воз-

буждения у катионов *t*-ABH⁺ в S_0^v -состоянии можно объяснить также и батохромное смещение спектральной полосы PISA ($\lambda_m = 430$ нм, рис. 1) относительно жидкофазной полосы ($\lambda_m = 420$ нм, рис. 3, спектр *1*). Не исключено также, что образующиеся из *t*-ABH⁺ катионы *c*-ABH⁺ тоже сохраняют колебательное возбуждение, увеличивающее скорость $c \rightarrow t$ релаксации в разреженном азоте в опытах [2].

Механизм фрагментации в полосе $S_0 \rightarrow S_1$

Хромогеном, ответственным за поглощение света в полосе $S_0 \rightarrow S_1 c v_m \approx 23200 cm^{-1} (\approx 430 нм)$ в *t*-ABH⁺ является катион PhAT [4]. Это в принципе исключает актуальность схемы 1. Адекватному механизму образования фенил-катионов Ph⁺ при переходе $S_0 \rightarrow S_1$ соответствует схема 4:

Согласно схеме 4, переход $S_0 \rightarrow S_1$ в ABH⁺ обусловлен возбуждением катиона PhAT путем перехода электрона с занятой HOMO на NBMO, что

Схема 5

создает вакансию на орбитали НОМО, и эта орбиталь становится акцептором для p_z -электрона азогруппы HN^{••}. Протекающий после фотовозбуждения неоптический перенос электрона с HN^{••} изменяет поляризацию ABH⁺, создавая франк-кондоновское (FK) состояние C^{*} с катионом PhAT на противоположном кольце ABH⁺. Места бывшего положительного заряда в FK-C^{*} занимает распределенный по азоту и фенильному кольцу акцептированный электрон. Неоптический перенос электрона с в моменты расположения колец в одной плоскости, необходимой для сопряжения p_z -орбиталей ослабленной осциллирующей азосвязи.

Дальнейшее превращение состояния FK-C* идет с восстановлением азосвязи N=N путем рекомбинации ее π -электронов, оно сопровождается выделением энергии и элиминированием свободного радикала H[•]. Радикал H[•] атакует соседнее фенильное кольцо по углероду с нулевым дефицитом электронной плотности, замещая в нем фрагмент C₁, который затем изомеризуется в C₂.

Состояние C_2 превращается двумя путями, распадаясь в одном из них на молекулу азота N_2 и фенил-катион Ph⁺. По другому пути в нем с малой вероятностью идет переход в крайнем азоте одного из двух π -электронов на *sp*²-орбиталь с образованием *e*-изомера C_3 , который изомеризуется в фенилдиазоний BD⁺. Вероятность перехода $C_2 \rightarrow C_3$ невелика в силу ортогональности орбиталей π и *sp*², однако она все же существует вследствие колебательного возбуждения. Описанная ситуация объясняет факт, хотя малого и не отмеченного в [3], но заметного на рис. 2 сигнала катионов BD⁺ в полосе фрагментации $S_0 \rightarrow S_1$.

В отличие от фотовозбуждения $S_0 \rightarrow S_1$, фотоперенос электронов в полосах, обозначенных в [3] как CT₁ и CT₂, идущий тоже при участии катионов PhAT, ярче проявляет параллельный характер реакций образования BD⁺ и Ph⁺. Это можно объяснить возникновением FK-состояний с более высокой колебательной (v) энергией. Для CT₁ данную ситуацию можно представить схемой 5.

Согласно схеме 5 перенос *p*-электрона с NH-группы идет в том же направлении, что и неоптический перенос в схеме 4, но уже после фотовозбуждения катиона PhAT с орбитали HOMO-1 на NBMO. Образующееся более горячее колебательное состояние $C^{*,v}$ диссоциирует, как в схеме 4, на бензол и катион C_1^v . Превращения C_1^v идут, как в схеме 4, но уже с более высоким выходом BD⁺, что обусловлено более высокой скоростью перехода $C_2^v \rightarrow C_3^v$ относительно скорости перехода $C_2 \rightarrow C_3$.

Следует отметить, что неодинаковое поведение катионов C_2 (C_2^v) и C_3 (C_3^v) обусловлено неодинаковым числом электронов на *sp*²-орбиталях их азогрупп. Слабые азосвязи в C_2^v и C_3^v (C_2 и C_3 в схеме 4) периодически обеспечивают цис-ориентацию обеих sp²-орбиталей за счет ротационных колебаний. В *цис*-ориентации, соседние *sp*²-орбитали образуют две локальные молекулярные орбитали: связывающую МО (ВМО) и антисвязывающую MO (ABMO) [21]. В катионе $C_2(C_2^v)$ на sp²-ABMO имеется один электрон, что снижает силы электронного отталкивания между sp²-орбиталями двух азотов; при этом энергия связи между атомами N=N выше, чем у фрагментов C_3 и C_{3}^{v} (последние имеют по два электрона на ВМО и АВМО, и энергия связывания в них компенсируется энергией разрыхления). По этой причине достающаяся катиону С2 энергия (от рекомбинации π -электронов на группе N=N в C^{*,v}) обеспечивает преимущество для разрыва связи N–Ph с

образованием N_2 и фенилкатиона. В отличие от этого, наличие двух электронов на обеих *sp*²-орбиталях катионов C_3 и C_3^{ν} не способствует энергетическому выигрышу, оставляя им возможность изомеризоваться в катион BD⁺.

Результат возбуждения t-ABH⁺ в полосе CT₂, можно представить схемой 6.

На схеме 6 перенос электрона осуществляется из кольца катиона PhAT на имеющую дефицит электронной плотности p_{z} -орбиталь катиона N⁺ поляризованной азогруппы. Он идет с р₂-орбитали соседнего кольцевого атома углерода, так как на этой орбитали нет электронного дефицита [10, с. 329]. Возникающее при этом возбужденное состояние $Q^{*,v}$ изомеризуется в состояние $Q_1^{*,v}$, реагирующее в жидкой и газовой фазах разными путями. В жидкой фазе из него возникает орто-хиноидная структура Q2, имеющая ослабленную азосвязь и участвующая в реакции фотоциклизации по схеме 3. Наоборот, в весьма разреженной криогенной атмосфере гелия, структура $Q_1^{*,v}$ сохраняет колебательное возбуждение значительно дольше и претерпевает е-таутомеризацию путем переноса электрона с *sp*²-орбитали азота на орбиталь орто-углерода кольца с образованием $\mathrm{Q}_3^{*,\mathrm{v}}$.

В состоянии Q₃^{*,} происходит восстановление

азосвязи и элиминирование радикала Н[•], который присоединяется к соседнему фенильному кольцу по *орто*-углероду с повышенной электронной плотностью. При этом возникает промежуточное соединение Q_4 с циклогексадиенильной структурой и тетраэдрической метиленовой группой. Соединение Q_4 в одном случае претерпевает фрагментацию с переносом атома Н и восстановлением ароматичности кольца, завершаю-

щуюся распадом на молекулы бензола, азота и катиона фенила. В другом случае, на азоте, соседнем с циклогексадиенильным кольцом, идет с низкой вероятностью перенос электрона с p_z -орбитали на sp^2 -орбиталь, ведущий к образованию катиона Q_5 . Далее катион Q_5 распадается либо на молекулу азота и катион фенила, либо на бензол и катион фенилдиазония BD⁺.

Схемы 4–6, построенные на основании данных работы [3], адекватно и более полно раскрывают механизмы параллельных реакций фотофрагментации *t*-ABH⁺ при относительно низком выходе BD⁺. Они позволяют также объяснить значительный процент потери катионов *t*-ABH⁺ (15%) в опытах по газофазной $t \rightarrow c$ фотоизомеризации [2]. В свою очередь, отсутствие $t \rightarrow c$ фотоизомеризации в опытах [3] по газофазной фотофрагментации можно связать с тем, что более высокая колебательная температура катионов *t*-ABH⁺, фотоиндуцированных в разреженной криогенной атмосфере гелия [3, 18], обеспечивала более высокую конкурентную способность фрагментации с участием весьма подвижных ра-

дикалов Н[•] (схемы 4–6).

В дополнение к изложенному следует отметить, что на спектрах рис. 2 имеется еще ряд пиков с низкой интенсивностью, свидетельствующих о появлении осколков Ph⁺ и BD⁺ в интервале более высоких частот возбуждающего излучения. Они свидетельствуют о наличии дополнительных актов фотовозбуждения ABH⁺ с участием катиона фениламинильного типа PhAT. К таковым можно отнести, например, акты фотопереноса электрона в PhAT с *sp*²-орбитали азота N⁺ на π^* -уровень NBMO ($n \rightarrow \pi^*$ -переход [22]), а также внутримолекулярного переноса энергии от возбужденного фенильного кольца анилинового участка (PhNH-) на катион PhAT [23].

В заключение можно отметить, что показанное на основании экспериментальных данных работ [2, 3] фундаментальное значение электронных свойств катиона PhAT позволяет:

 дать адекватные механизмы реакций фотоизомеризации и фотофрагментации *t*-ABH⁺, возбуждаемых в главных полосах поглощения радиации;

 сделать вывод, что этот результат способствует расширению границ понимания фотоники *t*-ABH⁺;

 – сделать вывод о неэффективности традиционной модели катиона азония в теоретических работах.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Гордон П., Грегори П*. Органическая химия красителей. М.: Мир, 1987. 344 с.
- 2. Scholz M.S., Bull J.N., Coughlan J.A. et al. // J. Phys. Chem. A. 2017. V. 121. № 34. P. 6413.
- Féraud G., Dedonder-Lardeux C., Jouvet C., Marceca E. // Ibid. 2016. V. 120. № . P. 3897.
- Михеев Ю.А., Гусева Л.Н., Ершов Ю.А. // Журн. физ. химии. 2015. Т. 89. № 2. С. 243.
- 5. *Михеев Ю.А., Гусева Л.Н., Ершов Ю.А. //* Там же. 2015. Т. 89. № 11. С. 1773.

- 6. *Михеев Ю.А., Ершов Ю.А. //* Там же. 2019. Т. 93. № 6. С. 946.
- 7. Михеев Ю.А., Ершов Ю.А. // Там же. 2019. Т. 93. № 7. С. 1111.
- 8. *Михеев Ю.А., Ершов Ю.А. //* Там же. 2019. Т. 93. № 11. С. 1746.
- 9. *Михеев Ю.А., Ершов Ю.А. //* Там же. 2018. Т. 92. № 10. С. 1552.
- 10. Стрейтвизер Э. Теория молекулярных орбит для химиков-органиков. М.: Мир, 1965. 435 с.
- 11. Хигаси К., Баба Х., Рембаум А. Квантовая органическая химия. М.: Мир, 1967. С. 127.
- 12. Grace J.A., Symons M.C.R. // J. Chem. Soc. 1959. P. 958.
- 13. Lewis G.E. // J. Org. Chem. 1960. V. 25. № 12. P. 2193.
- 14. *Lewis G.E.* // Tetrahedron Letters. 1960. № 9. P. 12.
- Gerson F., Heilbronner E., van Veen A., Wepster B.M. // Helvetica Chim. Acta. 1960. V. 43. P. 1889.
- 16. *Колдин Е*. Быстрые реакции в растворе. М.: Мир, 1966. С. 282.
- 17. Andersen J.U., Hvelplund P., Nielsen S.B. et al. // Rev. Sci. Instruments. 2002. V. 73. № 3. P. 1284.
- Wang Xue-Bin, Wang Lai-Sheng // Rev. Sci. Instruments. 2008. V. 79. № 7. P. 073108.
- Fujino T., Tahara T. // J. Phys. Chem. A. 2000. V. 104. № 18. P. 4203.
- 20. *Михеев Ю.А., Ершов Ю.А. //* Журн. физ. химии. 2019. Т. 93. № 2. С. 313.
- 21. Mason S.F. // J. Chem. Soc. 1959. P. 1240.
- 22. *Михеев Ю.А., Гусева Л.Н., Ершов Ю.А. //* Журн. физ. химии. 2018. Т. 92. № 8. С. 1251.
- 23. *Михеев Ю.А., Гусева Л.Н., Ершов Ю.А. //* Там же. 2020. Т. 94. № 1. С. 143.