СТРОЕНИЕ ВЕЩЕСТВА И КВАНТОВАЯ ХИМИЯ

УДК 544.032.732;544.171.42;544.354.081.7

КОНСТАНТЫ КИСЛОТНОСТИ МОДЕЛЬНЫХ СОЕДИНЕНИЙ ЛИГНИНА В ЭЛЕКТРОННО-ВОЗБУЖДЕННОМ СОСТОЯНИИ В СМЕСЯХ ВОДЫ С N,N-ДИМЕТИЛФОРМАМИДОМ

© 2020 г. М. В. Кузнецова^{*a*}, Д. С. Косяков^{*a*,*}, Н. С. Горбова^{*a*,*b*}, К. Г. Боголицын^{*a*,*b*}

^аСеверный (Арктический) федеральный университет имени М.В. Ломоносова, Архангельск, Россия ^bФедеральный исследовательский центр комплексного изучения Арктики РАН, Архангельск, Россия

**e-mail: d.kosyakov@narfu.ru* Поступила в редакцию 10.09.2019 г. После доработки 10.09.2019 г. Принята к публикации 17.09.2019 г.

Методом флуоресцентной спектроскопии с использованием цикла Ферстера определены константы кислотности ряда гваяцильных фенолов, моделирующих структурные фрагменты природных лигнинов, в электронно-возбужденном состоянии в смесях воды с N,N-диметилформамидом. Показано дифференцирующее действие апротонного растворителя на кислотность фенолов. Установлено, что значения р K_a в возбужденном состоянии тесно связаны со свойствами *пара*-заместителей по отношению к фенольной гидроксильной группе. Наибольшую способность к кислотной ионизации при фотовозбуждении проявляют соединения, имеющие электроно-акцепторную карбонильную группу.

Ключевые слова: лигнин, фенолы, флуоресценция, электронно-возбужденное состояние, смешанные растворители, N,N-диметилформамид, константа кислотности **DOI:** 10.31857/S0044453720080178

Лигнин является вторым по распространенности в природе биополимером (после целлюлозы) и составляет до трети биомассы растений. Он представляет собой продукт радикальной дегидрогенизационной ферментативной полимеризации трех мономерных ароматических спиртов (кониферилового, синапового и *n*-кумарового), образующих, соответственно, гваяцильные, сирингильные и *n*-гидроксифенильные фенилпропановые структурные фрагменты макромолекулы, соединенные различными типами связей [1]. В настоящее время лигнин рассматривается как один из наиболее перспективных возобновляемых источников ценных ароматических соединений и сырье для получения различных полимерных продуктов, сорбентов, лекарственных препаратов и пр.

Физико-химические свойства и реакционная способность биополимера в растворах в значительной степени определяются фенольными гидроксильными группами, способными к кислотной диссоциации с образованием фенолят-анионов и хинонметидных структур, играющих большую роль в химических превращениях лигнина [2]. Протолитические равновесия фенолов исключительно сильно зависят от природы растворителя вследствие различия в энергиях сольватации молекулярной и анионной форм. В наибольшей степени данный эффект проявляется при переходе от воды к высокоосновным апротонным растворителям (ДМСО, ДМФА, 1,4-диоксан, ацетон), демонстрирующим наибольшую растворяющую способность по отношению к лигнину [3, 4]. Так, известно, что увеличение доли апротонного растворителя на каждые десять процентов (мольн.) ведет возрастанию величин pK_a структурных фрагментов лигнина на 0.10– 0.31 единицы [5], при этом данная величина зависит от степени делокализации электронной плотности в фенолят-анионе [6].

Еще одним фактором, оказывающим сильное влияние на протолитические свойства фенолов, является переход в электронно-возбужденное состояние (ЭВС), который может осуществляться как под действием света, так и при протекании радикальных реакций [7]. Перераспределение электронной плотности в ЭВС как правило ведет к увеличению полярности молекулы и, соответственно, значительному снижению величин pK_a . Так, закислением материала под действием света объясняется светостарение и пожелтение бумаги, содержащей остаточные количества лигнина [8, 9]. Явление автопротолиза в ЭВС лигнина, повидимому, играет значительную роль и в совре-

Рис. 1. Структурные формулы исследуемых модельных соединений лигнина.

менных масс-спектрометрических методах изучения структуры этого биополимера, использующих фотоионизацию лигнинных олигомеров при атмосферном давлении, сопровождающуюся переносом протона на молекулу апротонного растворителя [10].

Важнейшим методом изучения ЭВС лигнина и родственных ему фенолов является флуоресцентная спектроскопия [11, 12], поскольку квантовые выходы флуоресценции таких соединений достаточно велики, а длины волн поглощения и эмиссии излучения находятся в удобной для исследования области, не перекрываемой поглощением растворителя. Использование цикла Ферстера позволяет легко рассчитать величины показате-

лей констант кислотности в ЭВС (pK_a^*) на основе величин pK_a в основном состоянии молекулы и значений стоксова сдвига. Применение данного подхода к модельным соединениям лигнина позволило ранее [13] определить, что величины констант кислотности гваяцильных фенолов в водном растворе при фотовозбуждении возрастают

на 3—5 порядков, а величины р K_a^* оказываются в диапазоне от 2.2 (для кониферилового альдегида) до 7.6 (для гваякола).

Сольватация молекул в ЭВС также оказывает значительное влияние на распределение электронной плотности и протолитические свойства, при этом, согласно принципу Франка-Кондона, составы сольватных оболочек в основном и возбужденном состояниях идентичны [14]. В целом, сольватационные процессы оказывают влияние на физические и химические свойства молекулы в возбужденном состоянии даже в большей степени, чем в основном [15]. Растворитель в значительной степени определяет и времена жизни ЭВС, которые зависят от колебательной и врашательной релаксации молекулы в пределах сольватной оболочки [16]. Несмотря на это, в литературе до сих пор отсутствуют данные о величинах констант кислотности лигнина в неводных и смешанных водно-органических растворителях, широко используемых в химии ароматического биополимера. На восполнение данного пробела направлено настоящее исследование, целью которого является изучение протолитических свойств наиболее важных гваяцильных фенолов, моделирующих структурные единицы макромолекул хвойных лигнинов, в смесях воды с N,Nдиметилформамидом как одних из важнейших и наиболее доступных растворителей лигнина.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Объекты исследования

В качестве объектов исследования выбраны 2-метоксифенол (гваякол) и шесть его производных отличающихся заместителем в пара-положении по отношению к фенольной гидроксильной группе (рис. 1): 1-(3-метокси-4-оксифенил)-пропен-2 (эвгенол), 1-(3-метокси-4-оксифенил)пропен-1 (изоэвгенол), 3-метокси-4-оксибензальдегид (ванилин), 3-метокси-4-оксибензиловый спирт (ванилиновый спирт), 3-метоксиоксибензойная кислота (ванилиновая кислота), 3-метокси-4-оксиацетофенон (ацетованилон). Все модельные соединения использовались без дополнительной очистки в виде препаратов с содержанием основного вещества не менее 98% производства Sigma-Aldrich (США).

Для приготовления растворов исследуемых соелинений использовали смеси особо чистой воды, полученной с помощью системы Milli-Q (Millipore, Франция), с ДМФА квалификации "для спектроскопии" (Lab-Scan, Польша), полученные весовым методом. При исследовании молекулярных и анионных форм фенолов создавали фоновые концентрации 0.02 моль/л соляной кислоты "ос. ч." (НеваРеактив, Россия) и гидроксида тетраэтиламмония (Aldrich, Германия). Концентрацию фенолов в растворе (10⁻⁴-10⁻⁵ моль/л) подбирали таким образом, чтобы оптическая плотность не превышала 0.1, с целью избежания эффекта внутреннего фильтра. Перед записью спектров растворы предварительно барботировали высокочистым аргоном (99.998%) для удаления растворенного кислорода.

Флуоресцентная спектроскопия

Спектры возбуждения и эмиссии растворов фенолов записывали во флуориметрических кварцевых односантиметровых кюветах OS 10 (Hellma, Германия), термостатированных при температуре $25 \pm 0.2^{\circ}$ С, на флуоресцентном спектрометре Fluorolog-3 (Horiba, Франция), оснащенном двойными монохроматорами в каналах возбуждения и эмиссии и ксеноновой лампой высокого давления мощностью 450 Вт в качестве источника возбуждения. Для регистрации сигнала использовали детектор FL-1073 на основе фотоумножителя R928P, работающий в режиме счета фотонов при комнатной температуре. Управление спектрометром и сбор данных осуществляли с помощью программного обеспечения Fluor-Essence (Horiba, Франция), а обработку данных с использованием программного пакета Origin 8.0 (OriginLab, США). Длина волны возбуждающего излучения соответствовала положению максимума поглощения исследуемого соединения. Положение максимума эмиссии определяли с точностью 0.1 нм после сглаживания спектрального пика флуоресценции по Голею-Савицкому. Ширину щелей монохроматоров возбуждения и эмиссии и время интегрирования сигнала подбирали для каждого фенольного соединения для достижения оптимального уровня сигнала (~10⁶ cps). В большинстве экспериментов спектральные ширины щелей составляли 3-5 нм.

Определение констант кислотности и дипольных моментов

Для расчета констант кислотности модельных фенолов в возбужденном состоянии использовали термодинамический цикл Ферстера, на основе которого для температуры *Т* выводится известное уравнение [17]:

$$pK_{a}^{*} = pK_{a} + \frac{N_{a}h}{2.303RT} (v_{0-0(A^{-})} - v_{0-0(HA)}), \quad (1)$$

где N_a – число Авогадро, h – постоянная Планка, R – универсальная газовая постоянная, $v_{0-0(HA)}$ и $v_{0-0(A^-)}$ – частоты излучения, соответствующие энергиям электронного перехода 0–0 между нижними колебательными уровнями основного и возбужденного состояния молекулы фенола (HA) и соответствующего аниона (A⁻).

При температуре 298 К и использовании волновых чисел $\tilde{v}_{0-0(A^{-})}$ и $\tilde{v}_{0-0(HA)}$ уравнение (1) преобразуется к виду:

$$pK_{a}^{*} = pK_{a} + 2.095 \times 10^{-3} (\tilde{v}_{0-0(A^{-})} - \tilde{v}_{0-0(HA)}).$$
(2)

Волновые числа, соответствующие 0–0 переходу $\pi \to \pi^*$ вычисляли, как среднее арифметическое между максимумами положения полос поглощения (\tilde{v}_{abs}^{max}) и эмиссии (\tilde{v}_{em}^{max}) соответствующих частиц (НА или А⁻):

$$\tilde{v}_{0-0} = \frac{\tilde{v}_{abs}^{max} + \tilde{v}_{em}^{max}}{2}.$$
(3)

В расчетах по уравнениям (2) и (3) использовали опубликованные ранее величины р K_a модельных соединений лигнина [5, 18] и данные по положению полос поглощения нейтральных молекул и соответствующих анионов [3] в смесях воды с ДМФА.

Для оценки величин дипольных моментов в возбужденном состоянии применяли сольватохромный подход, основанный на линейной корреляции между волновыми числами максимумов поглощения и флуоресценции и функцией полярности растворителя [19]. В качестве последней использовали нормализованную энергию Димрота–Райхардта (E_T^N), учитывающую как поляр-

рога–Раихардта (*E_T*), учитывающую как полярность/поляризуемость среды, так и ее способность к донорно-акцепторным взаимодействиям с растворенным веществом. Величины данного параметра определяются по данным о положении полосы поглощения реперного сольватохромного индикатора (бетаина Райхардта [20]) в соответствующем растворителе и для системы вода– ДМФА доступны в литературе [5].

В соответствии с моделью, предложенной Райхардтом [21] и развитой Рави с соавт. [22], линейная корреляция имеет вид уравнения

$$\tilde{\mathbf{v}}_{abs}^{max} - \tilde{\mathbf{v}}_{em}^{max} = sE_T^N + \text{const},$$
 (4)

в котором угловой коэффициент *s* связан с изменением дипольного момента молекулы (иона) исследуемого фенола (Δμ) и бетаина Райхардта КУЗНЕЦОВА и др.

Рис. 2. Нормализованные спектры возбуждения и эмиссии растворов ацетованилона (а) и ванилиновой кислоты (б).

 $(\Delta \mu_{\rm B})$ при переходе в ЭВС, а также соотношением радиусов Онзагера этих соединений (*a* и *a*_B, соответственно):

$$s = 11307.6 \left[\left(\frac{\Delta \mu}{\Delta \mu_{\rm B}} \right)^2 \left(\frac{a_{\rm B}}{a_0} \right)^3 \right],\tag{5}$$

где $\Delta \mu_{\rm B} = 9D$ и $a_{\rm B} = 6.2$ Å [23]. Для исследуемых фенолов a_0 приняли равным 6 Å, аналогично фенольным соединениям, приведенным в литературе [24].

Изменение дипольного момента можно выразить уравнением (6):

$$\mu_g = \mu_e - \sqrt{\frac{81s}{11307.6 \left(\frac{6.2}{a_0}\right)^3}}.$$
 (6)

Дипольные моменты исследуемых соединений в основном состоянии рассчитывали с использованием полуэмпирического метода AM1, при помощи программы MOPAC ChemOffice Ultra Version 6.0 (CambridgeSoft Corp., США) [19, 24]

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Спектры флуоресценции гваяцильных фенолов в системе вода—ДМФА

Исследованные фенолы обладают достаточно интенсивной флуоресценцией в видимой и УФобласти спектра, позволяющей регистрировать спектры возбуждения и эмиссии с приемлемым соотношением сигнал/шум. Как и в случае спектров поглощения, кислотная ионизация фенолов приводит к батохромному сдвигу максимумов флуоресценции, который сильно зависит от природы *пара*-заместителя в гваяцильном ядре – его величина варьируется от ~40 нм для изоэвгенола, обладающего сопряженной с ядром двойной связью, до ~5 нм в случае эвгенола и ванилина (табл. 1). Полосы эмиссии представляют зеркальное отображение полос в спектрах возбуждения, отличаясь несколько большей полушириной и потерей вибрационной структуры (рис. 2). Такое поведение подразумевает тождественность колебательной структуры основного и синглетного возбужденного электронных состояний молекулы [25], что имеет большое значение для точного определения энергии 0—0-перехода с использованием уравнения (3).

Влияние состава растворителя на спектры флуоресценции определяется разностью энергий сольватации основного и возбужденного состояний и носит сложный характер вследствие одновременного действия таких факторов как диэлектрическая проницаемость среды, способность растворителя к образованию водородных связей с растворенным веществом, явление избирательной сольватации и формирование в сольватных оболочках хромофоров и флуорофоров комплексов компонентов бинарного растворителя различного состава. В случае гваякола и эвгенола положение полос флуоресценции практически не зависит от состава растворителя как для молекулярной, так и для анионной форм. При увеличении доли ДМФА максимум флуоресценции ванилина, ацетованилона и ванилиновой кислоты претерпевает гипсохромный сдвиг, в то время как для ванилинового спирта, имеющего алифатическую гидроксильную группу, способную вступать в донорно-акцепторные взаимодействия, характерен батохромный сдвиг.

Y NOT TOTH	$\tilde{\nu}_{abs}^{max}$, см ⁻¹	\tilde{v}_{em}^{max} ,	, см ⁻¹	\tilde{v}_{0-0},cm^{-1}				
л, мол. доли	AH	A ⁻	AH	A ⁻	A ⁻	AH			
Гваякол									
0	36483	34674	32852	29464	34668	32069			
0.027	36390	34602	32776	29446	34583	32024			
0.058	36337	34507	32563	30312	34450	32410			
0.096	36284	34400	32841	30276	34563	32338			
0.141	36232	34294	32520	30367	34376	32331			
0.198	36179	34223	32680	30600	34430	32412			
0.270	36127	34083	32573	30618	34350	32351			
0.365	36075	33944	32658	30139	34367	32042			
0.497	36023	33670	32573	29516	34298	31593			
0.689	36010	33036	32468	29438	34239	31237			
1.00	35958	32000	32808	30395	34383	31198			
	<u>!</u>	1	Эвгенол	<u>!</u>	<u>!</u>	<u>!</u>			
0	35765	33887	31953	31287	33859	32587			
0.027	35689	33807	31989	31458	33839	32633			
0.058	35638	33715	31939	31526	33789	32621			
0.096	35600	33636	32155	31944	33878	32790			
0.141	35549	33 512	32071	31683	33810	32598			
0.198	35499	33422	32028	31434	33764	32428			
0.270	35448	33300	32011	31275	33730	32288			
0.365	35411	33069	31895	31052	33653	32061			
0.497	35361	32873	32036	31086	33699	31980			
0.689	35323	32552	31965	31310	33644	31931			
1.00	35311	31447	31961	31513	33636	31480			
	<u>!</u>	1	Изоэвгенол	<u>!</u>	<u>!</u>	<u>!</u>			
0	38835	35587	28944	33890	30910	31232			
0.027	38670	35386	29087	33879	30921	32136			
0.058	38 5 5 1	35236	29104	33828	30700	32058			
0.096	38447	35063	29231	33839	30607	31934			
0.141	38402	34892	29002	33702	30 4 39	31968			
0.198	38241	34722	29146	33694	30352	31721			
0.270	37922	34483	29129	33526	30236	31311			
0.365	37636	34247	29104	33370	29974	30212			
0.497	37411	33582	29044	33228	29622	29743			
0.689	37286	33356	28986	33136	29388	29458			
1.00	37147	32342	28986	33067	28706	28791			
	<u>!</u>	1	Ванилин	<u>!</u>	<u>!</u>	<u>!</u>			
0	32404	28769	23764	24189	28084	26 479			
0.027	32268	28 5 47	23781	24009	28133	26224			
0.058	32206	28433	24272	24679	28239	26556			
0.096	32175	28329	24254	24564	28215	26447			

Таблица 1. Спектральные данные положения максимумов полос поглощения (\tilde{v}_{abs}^{max}), максимумов полос флуоресценции (\tilde{v}_{em}^{max}) и положения волнового перехода (\tilde{v}_{0-0}) соответствующих форм фенолов

Х мол лоли	\tilde{v}_{abs}^{max} ,	, см ⁻¹	\tilde{v}_{em}^{max} ,	, см ⁻¹	$\tilde{v}_{0-0},\mathrm{cm}^{-1}$		
л, мол. доли	AH	A^-	AH	A ⁻	A ⁻	AH	
0.141	32134	28241	24379	24655	28257	26448	
0.198	32134	28177	24967	24777	28551	26477	
0.270	32134	28121	25025	24888	28580	26505	
0.365	32216	28043	25291	24931	28754	26487	
0.497	32279	27988	25031	24814	28655	26401	
0.689	32362	27886	25974	25063	29168	26 475	
1.00	32478	27594	25316	24900	28897	26247	
	I	Ba	нилиновый спи	рт	I	I	
0	35958	34223	32185	31142	34072	32683	
0.027	35881	34153	32247	31230	34064	32692	
0.058	35829	34072	32175	31192	34002	32632	
0.096	35778	33990	32031	31486	33905	32738	
0.141	35714	33898	32103	31566	33909	32732	
0.198	35676	33761	32123	31437	33900	32599	
0.270	35625	33636	32062	31616	33844	32626	
0.365	35562	33443	32051	31056	33807	32168	
0.497	35524	33300	32123	31575	33824	31662	
0.689	35486	32862	32062	31756	33774	30762	
1.00	35474	32248	31270	31299	33348	29686	
	<u>!</u>	Ba	нилиновая кисл	ота	<u>!</u>	<u>!</u>	
0	34294	33512	28209	28225	31252	30869	
0.027	34200	33 501	28177	28321	31189	30911	
0.058	34165	33 501	28653	28265	31409	30883	
0.096	34153	33 501	28769	28329	31461	30915	
0.141	34165	33523	28877	28377	31521	30950	
0.198	34176	33557	29265	27964	31721	30761	
0.270	34211	33 591	29300	28580	31756	31086	
0.365	34247	33636	29621	28662	31934	31149	
0.497	34329	33738	29869	28777	32099	31258	
0.689	34412	33875	30211	28952	32312	31414	
1.00	34495	34746	30572	28686	32534	31716	
	•	•	Ацетованилон	•	•	•	
0	33025	29223	24600	24172	28813	26698	
0.027	32808	28960	24863	24528	28836	26744	
0.058	32744	28852	25088	24528	28916	26690	
0.096	32690	28810	25221	24564	28956	26687	
0.141	32669	28744	25342	24832	29006	26788	
0.198	32690	28964	25660	24938	29175	26816	
0.270	32701	28604	26123	24975	29 412	26790	
0.365	32765	28539	26171	25031	29468	26785	
0.497	32830	28393	26385	25094	29608	26744	
0.689	32938	28273	26042	25278	29490	26776	
1.00	33179	27601	26455	25082	29817	26342	

Таблица 1. Окончание

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 8 2020

Таблица 2.	Коэффициенты	уравнения (4) зав	висимости стокс	ова сдвига от	г энергии Д	Ц имрота–Ра	ихардта и	1 ди-
польные м	юменты ионизир	ованной и неиони	зированной фор	м гваяцильнь	ых фенолов	в основном	1 и возбуж	ден-
ном состо	хвинк							

Фенот	1	5	co	nst	μ		
Фенол	AH	A ⁻	AH	A	AH	A	
Гваякол	386	2602	3300	2544	2.11/3.86*	3.05/7.58*	
Эвгенол	666	1325	3116	1166	2.52/4.81*	6.04/9.27*	
Изоэвгенол	2287	2008	7631	7580	2.22/6.47*	5.00/8.98*	
Ванилин	2853	2747	5839	1895	2.94/7.69*	3.23/7.89*	
Ванилиновый спирт	401	1703	3343	1393	2.81/3.50*	4.59/7.17*	
Ванилиновая кислота	2934	472	3230	4807	5.55/10.4*	2.74/4.67*	
Ацетованилон	2696	2766	5600	2182	4.70/9.31*	3.12/7.79*	

* - В возбужденном состоянии.

Таблица 3. Константы кислотности модельных соединений лигнина в основном (pK_a) [5, 13] и возбужденном (pK_a^*) состояниях в смесях воды с N,N-диметилформамидом

Хдмфа	Гвая	кол	Эвге	енол	Изоэе	вгенол	Ванилин		Ванилиновый спирт		Ванилиновая кислота		Ацетованилон	
	pK _a	pK_a^*	p <i>K</i> _a	pK_a^*										
0	10.04	4.60	10.15	7.48	10.11	3.67	7.40	4.03	9.80	6.88	9.40	8.60	7.90	3.46
0.027	10.35	4.99	10.53	8.00	10.41	6.26	7.54	3.87	10.17	7.29	9.63	9.05	8.34	3.95
0.058	10.57	6.30	10.79	8.34	10.64	6.41	7.71	4.18	10.42	7.54	10.01	8.91	8.51	3.84
0.096	10.89	6.23	11.08	8.80	10.92	6.63	7.90	4.19	10.73	8.28	10.43	9.28	8.70	3.94
0.141	11.26	6.97	11.44	8.89	11.28	7.05	8.15	4.35	11.10	8.63	10.74	9.54	8.94	4.28
0.198	11.79	7.56	11.89	9.09	11.75	6.99	8.44	4.09	11.57	8.84	11.25	9.23	9.25	4.30
0.270	12.47	8.28	12.57	9.54	12.34	6.94	8.83	4.47	12.16	9.60	11.69	10.28	9.63	4.12
0.365	13.25	8.38	13.37	10.03	13.12	6.01	9.33	4.57	12.93	9.66	12.45	10.80	10.15	4.52
0.497	14.33	8.66	14.59	10.98	14.20	6.29	10.02	5.29	14.01	11.10	13.36	11.59	10.80	4.79
0.689	15.96	9.67	16.20	12.60	15.78	7.21	11.04	5.38	15.58	12.50	14.85	12.96	11.93	6.23
1.00	18.55	11.88	18.81	14.28	18.34	8.81	12.68	7.12	18.12	14.76	17.26	15.54	13.68	6.38

Зависимости величин стоксова сдвига от энергии Димрота-Райхардта как обобщенного параметра полярности смешанного растворителя могут быть с удовлетворительной точностью описаны линейной функцией в соответствии с уравнением (4). Полученные величины угловых коэффициентов *s* позволили оценить изменение полярности нейтральных молекул исследуемых фенолов и соответствующих анионов при переходе в ЭВС (табл. 2). Полученные значения дипольных моментов для ЭВС оказываются в 1.2-3 раза выше по сравнению с основным состоянием для обеих форм фенолов, участвующих в кислотноосновных равновесиях. Наблюдаемое перераспределение электронной плотности при фотовозбуждении должно неизбежно приводить к значительному изменению протолитических свойств исследуемых соединений.

Кислотность гваяцильных фенолов в электронновозбужденном состоянии

Результаты расчета величин р K_a^* по уравнению (2) показывают значительное возрастание констант кислотности исследуемых соединений при переходе в ЭВС, достигающее 9 порядков (табл. 3). В наибольшей степени данный эффект выражен для гваякола и изоэвгенола в чистом ДМФА, показатели констант кислотности которых изменяются с 18.55 и 18.34 до 11.88 и 8.81 ед. соответственно.

Как и в случае основного состояния, существенное влияние на протолитические свойства фенолов в ЭВС оказывает природа заместителя в *пара*-положении по отношению к фенольной гидроксильной группе, что согласуется с данными работы [26]. Так, соединения, имеющие в

Рис. 3. Зависимости констант кислотности модельных соединений лигнина в возбужденном состоянии от мольной доли N,N-диметилформамида. *1* – ванилиновая кислота, *2* – ванилиновый спирт, *3* – эвгенол, *4* – гваякол, *5* – изо-эвгенол, *6* – ванилин, *7* – ацетованилон.

структуре электроноакцепторную карбонильную группу, сопряженную с ароматическим ядром (ванилин, ацетованилон) демонстрируют большую способность к кислотной ионизации, благодаря увеличению стабильности феноксид-аниона за счет перераспределения электронной плотности. В то же время, ванилиновый спирт, содержащий электронодонорный заместитель, показывает уменьшение кислотных свойств, по сравнению с гваяколом, не имеюшим заместителя в napa-положении. Несмотря на это, в целом для исследуемых соединений в ЭВС не наблюдается соблюдения уравнения Гаммета, постулирующего линейную зависимость величин показателей констант кислотности от σ-констант заместителей. Например, при фотовозбуждении наблюдается инверсия кислотности ванилина и ацетованилона, а изоэвгенол, являющийся в основном состоянии на два порядка более слабой кислотой, занимает

Таблица 4. Эмпирические константы уравнения (7) зависимости константы кислотности фенолов в возбужденном состоянии в смеси воды и ДМФА от мольной доли апротонного растворителя

Соединение	pK_a^w	k	r^2
Гваякол	5.64	6.45	0.918
Эвгенол	7.89	6.59	0.991
Ванилин	3.77	3.15	0.901
Ванилиновый спирт	7.24	7.60	0.989
Ванилиновая кислота	8.51	6.73	0.985
Ацетованилон	3.79	2.93	0.912
Изоэвгенол	3.81	5.57	0.990

промежуточное положение между упомянутыми фенолами.

С увеличением содержания органического растворителя наблюдается снижение кислотности исследуемых фенолов в возбужденном состоянии, характерное и для основного состояния [19]. При этом зависимости р K_a^* от мольной доли апротонного растворителя (*x*) близки к линейным (рис. 3) и могут быть описаны с коэффициентами корреляции (r^2) более 0.9 (табл. 4) уравнением вида:

$$pK_a^* = pK_a^{*w} + kx, \tag{7}$$

где pK_a^{*w} — значение константы кислотности в электронно-возбужденном состоянии в водной среде.

Величина углового коэффициента k, характеризующая чувствительность протолитических равновесий к изменению состава растворителя, в целом коррелируют с величинами р K_a производных гваякола. Наибольшее значение k характерно для фенолов с большим значением константы кислотности в возбужденном состоянии – ванилинового спирта, ванилиновой кислоты и эвгенола. Это связано с тем, что как константы кислотности, так и эффекты среды в протолитических равновесиях определяются степенью делокализации электронной плотности в фенолят-анионе, максимальной для структур с электроноакцепторными заместителями.

Заметное отклонение зависимостей, представленных на рис. 2, от линейности свидетельствует о проявлении эффектов избирательной сольватации частиц — участников протолитических равновесий компонентами бинарного растворителя. При этом выраженная S-образность кривых свидетельствует в пользу образования и преобладания в сольватных оболочках (в определенной области составов растворителя) комплексов вода– ДМФА, обладающих высокой сольватирующей способностью по отношению к исследуемым соединениям. В данном отношении, поведение гваяцильных фенолов в ЭВС практически не отличается от основного электронного состояния [3] вследствие сохранения при фотовозбуждении исходных сольватных оболочек молекул в соответствии с принципом Франка–Кондона.

Если, как показано выше, величины констант кислотности производных гваякола в основном и электронно-возбужденном состояниях слабо коррелируют друг с другом, то взаимосвязь значений pK_a^* в смешанном растворителе (pK_a^{*s}) и в водной среде (pK_a^{*w}) прослеживается весьма отчетливо и может быть описана линейной функцией (табл. 5):

$$pK_a^{*s} = mpK_a^{*w} + d.$$
(8)

Это говорит о полном сохранении относительных кислотностей исследуемых фенолов в ЭВС при изменении состава растворителя несмотря на значительные проявления сольватационных эффектов. Величины коэффициентов *m* (табл. 5) в уравнении (8) превышают единицу, что говорит о дифференцирующем действии апротонного растворителя на кислотность фенолов. Наиболее выраженным этот эффект становится при высоких содержаниях ДМФА, превышающих 50 мол. % за счет вытеснения апротонным растворителем воды и комплекса вода-ДМФА из сольватных оболочек фенолов.

Таким образом, полученные результаты показывают, что в среде ДМФА и его бинарных смесей с водой кислотность родственных лигнину фенолов резко возрастает при фотовозбуждении, что связано со значительным перераспределением электронной плотности и возрастанием дипольных моментов молекулярной и анионной форм в электронно-возбужденных состояниях. Переход от воды к апротонному растворителю с одной стороны, ведет к возрастанию величин показателей констант кислотности в электронно-возбужденных состояниях, а, с другой стороны, приводит к дифференцированию силы кислот и возрастанию влияния фотовозбуждения на константы кислотности производных гваякола. Отмеченные эффекты могут быть использованы для направленного регулирования реакционной способности различных структурных фрагментов макромолекул лигнина в процессах его химической модификации.

Работа выполнена при финансовой поддержке РНФ (грант № 18-73-10138) с использованием оборудования Центра коллективного пользова-

Таблица 5. Эмпирические константы уравнения (8) зависимость констант кислотности фенольной гидроксильной группы модельных соединений лигнина в смесях воды с N,N-диметилформамидом от констант кислотности в воде

Х, мол. доли	т	d	r
0.027	1.05	0.10	0.990
0.058	1.02	0.52	0.937
0.096	1.12	0.16	0.949
0.141	1.09	0.65	0.913
0.198	1.05	0.98	0.834
0.270	1.17	0.88	0.834
0.365	1.19	1.07	0.856
0.497	1.32	1.11	0.878
0.689	1.43	1.66	0.851
1.00	1.69	1.87	0.856

ния научным оборудованием "Арктика" Северного (Арктического) федерального университета имени М.В. Ломоносова.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Heitner C., Dimmel D., Smidt J.A.* Lignin and Lignans: Advances in Chemistry. Boca Ration: CRC Press, 2010. 629 p.
- 2. Боголицын К.Г., Лунин В.В., Косяков Д.С., Карманов А.П. и др. Физическая химия лигнина. М.: Академкнига, 2010. 492 с.
- 3. Косяков Д.С., Горбова Н.С., Боголицын К.Г., Гусаков Л.В. // Журн. физ. химии. 2007. Т. 81. № 7. С. 1227—1232.
- Freitas A.A., Silva C.P., Silva G.T.M. et al. // Photochem. Photobiol. 2018. V. 94(6). P. 1086–1091. https://doi.org/10.1111/php.12944
- 5. Боголицын К.Г., Горбова Н.С., Косяков Д.С. // Журн. физ. химии. 2003. Т. 77. № 4. С. 667–671.
- Yang L., Niu J., Zhan Y. et al. // Chin. J. Chem. 2017. V. 36(1). P. 42–46. https://doi.org/10.1002/cjoc.201700534
- Cilento G., Adam W.// Free Radical Biol. Med. 1995. Vol. 19. № 1. P. 103–114. https://doi.org/10.1016/0891-5849(95)00002-F
- Liukko S., Yasapuro V., Liitia T. // Holzforschung. 2007. V. 61. P. 509–515. https://doi.org/10.1515/HF.2007.107
- Jaeger C., Nourmamode A., Castellan A. // Holzforschung. 1993. V. 47. P. 375–390. https://doi.org/10.1515/hfsg.1993.47.5.375
- Kosyakov D.S., Ul'yanovskii N.V., Anikeenko E.A., Gorbova N.S. // Rapid Commun. Mass Spectrom. 2016. V. 30. P. 2099–2108. https://doi.org/10.1002/rcm.7686
- Radotić K., Kalauzi A., Djikanović D. et al. // J. Photochem. Photobiol. B. 2006. V. 83. P. 1–10. https://doi.org/10.1016/j.jphotobiol.2005.12.001

- Albinsson B., Shiming L., Lundquist K., Stomberg R. // J. Mol. Struc. 1999. V. 508. P. 19. https://doi.org/10.1016/S0022-2860(98)009132
- 13. Горбова Н.С., Косяков Д.С., Боголицын К.Г. // ИВУЗ "Лесной журнал". 2010. № 2. С. 129.
- 14. *Klessinger M., Michl J.* Excited states and photochemistry of organic molecules. VCH publishers, 1995. 537 p.
- 15. *Lakowich J.R.* Principles of fluorescence spectroscopy. New York: Kluwer. 1999, 698 p.
- Wang Q., Niu Y., Wang R. et al. // Chem. Asian J. 2018. V. 13. P. 1735–1743. https://doi.org/10.1002/asia.201800457
- Förster T. // Zeitschrift für Electrochemie. 1950. Bd. 54. № 1. S. 42–46. https://doi.org/10.1002/bbpc.19500540111
- Горбова Н.С. Кислотно-основные свойства родственных лигнину фенолов в системе вода-апротонный растворитель: Дис. ... к.х.н. Архангельск, 2002. 120 с.
- Manohara S.R., Kumar V.U., Shivakumariaiah, Gerward L. // J. Mol. Liq. 2013. V. 181. P. 97–104. https://doi.org/10.1016/j.molliq.2013.02.018

- 20. *Reichardt C*. Solvents and solvent effects in organic chemistry. Weinheim: Wiley-VCH, 2011. 629 p.
- 21. *Reichardt C.* // Chem. Rev. 1994. V. 94. P. 2319–2358. https://doi.org/10.1021/cr00032a005
- Ravi M., Soujanya T., Samanta A., Radhakrishnan T.P. // J. Chem. Soc. Faraday Trans. 1995. V. 91. P. 2739– 2742. https://doi.org/10.1039/FT9959102739
- Thiare D.D., Khnote A., Diop A. et al. // J. Mol. Liq. 2015. V. 211. P. 640–646. https://doi.org/10.1016/j.molliq.2015.07.071
- 24. Szczepanik B. // J. Mol. Struct. 2015. V. 1099. P. 209– 214. https://doi.org/10.1016/j.molstruc.2015.05.062
- 25. *Valeur B.* Molecular fluorescence. Principles and application. Weinheim: Wiley-VCH Verlag, 2002. 381 p.
- Tetteh S., Zugle R., Prosper Kwaku Adotey J., Quashie A. // J. Spectroscopy. 2018. V. 2018. Article ID 4193657. P. 1. DOI: 1155/2018/4193657