____ ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА __ И ТЕРМОХИМИЯ

УДК 544.31.031 : 546.881.5

ТЕРМОДИНАМИКА ИСПАРЕНИЯ ТРИХЛОРИДА ИТТРИЯ В ФОРМЕ МОЛЕКУЛ YCl₃ И Y₂Cl₆

© 2019 г. Е. Л. Осина^{*a*,*}, Л. Н. Горохов^{*a*}, С. Б. Осин^{*b*}

^а Российская академия наук, Объединенный институт высоких температур, Москва, Россия ^b Московский государственный университет имени М.В. Ломоносова, Химический факультет, Москва, Россия

> * *e-mail: j-osina@yandex.ru* Поступила в редакцию 07.06.2018 г. После доработки 25.09.2018 г. Принята к публикации 11.09.2018 г.

В результате критического анализа экспериментальных и теоретических данных о структуре и частотах колебаний мономерной и димерной форм молекул трихлорида иттрия выбраны значения молекулярных постоянных и рассчитаны термодинамические функции YCl₃ и Y₂Cl₆. Рассчитан состав пара трихлорида иттрия в температурном интервале 1317–1646 К, для которого в литературе приведены данные по общему давлению. Найдено, что в приведенном температурном интервале отношение давлений $P_{\rm д}/P_{\rm M}$, увеличивается от 0.15 до 0.21. По найденным парциальным давлениям рассчитаны величины энтальпии сублимации в форме мономерных и димерных молекул и энтальпии образования YCl₃(г) и Y₂Cl₆(г). Полученные величины введены в базу данных программного комплекса ИВТАНТЕРМО.

Ключевые слова: трихлорид иттрия, мономер, димер, термодинамические функции, состав пара, энтальпия сублимации, энтальпия образования

DOI: 10.1134/S0044453719050248

Данная работа является продолжением исследования термодинамических свойств тригалогенидов редкоземельных элементов [1-3]. Эти соединения представляют как общенаучный, так и все более расширяющийся практический интерес. Мономерные молекулы МХ₃ – основной компонент паров тригалогенидов редкоземельных элементов. Кроме того, в парах трихлоридов, трибромидов и трииодидов по масс-спектрометрическим данным содержится порядка нескольких процентов димерных молекул М₂X₆. В частности, так обстоит дело в случае трихлорида иттрия [4]. Поэтому для надежного определения термодинамических характеристик процессов парообразования тригалогенидов необходимо не только точное определение температурной зависимости общего давления насыщенного пара, но и исследование роли димерных молекул в широком интервале температур. Расчеты по разделению общего давления пара над тригалогенидами редкоземельных элементов провели Дудчик, Поляченок и Новиков [5]. К сожалению, для определения состава насыщенных паров авторам пришлось сделать много оценок, что могло привести к недостоверным результатам. В частности, расчеты для трихлорида иттрия привели к сильно заниженной оценке парциального давления димерных молекул, что противоречит масс-спектрометрическим данным [4].

Цель настоящей работы — во-первых, расчет термодинамических функций $YCl_3(\Gamma)$ и $Y_2Cl_6(\Gamma)$ на основе современных данных о структурных и энергетических свойствах. Ранее данные о термодинамических свойствах были получены только для YCl_3 [6]. Во-вторых, расчет состава пара трихлорида иттрия, P_{π}/P_{M} , и парциальных давлений мономерных и димерных молекул из экспериментальных данных по общему давлению пара трихлорида иттрия в широком интервале температур. В-третьих, расчет энтальпий сублимации и энтальпий образования мономерной и димерной форм паров трихлорида иттрия с использованием рассчитанных в данной работе таблиц термодинамических функций.

МОЛЕКУЛЯРНЫЕ ПОСТОЯННЫЕ И РАСЧЕТ ТЕРМОДИНАМИЧЕСКИХ ФУНКЦИЙ

Трихлорид иттрия YCl₃(г). Структура молекулы трихлорида иттрия экспериментально исследовалась методом газовой электронографии [7, 8], а также ИК-спектроскопии [6, 9, 10]. Авторы [9, 10] исследовали область частот валентных колеба-

Таблица 1. Молекулярные постоянные молекул YCl₃ и $Y_2Cl_6 (p_x = 1)$

Моле- кула	$I_A I_B I_C \times $ $\times 10^{117},$ $\Gamma^3 \text{ cm}^6$	v_1	v ₂	ν ₃	v_4	v ₅	ν_6	ν_7
YCl ₃	29.79×10^4	315	59	370(2)	78(2)			
Y_2Cl_6	260.4×10^5	370	262	384	267	217	389	355

Примечание. Число симметрии: σ (YCl₃) = 6, σ (Y₂Cl₆) = 4; p_x – статистический вес основного состояния; $v_8 = 257$, $v_9 = 121$, $v_{10} = 63$, $v_{11} = 34$, $v_{12} = 45$, $v_{13} = 51$, $v_{14} = 66$, $v_{15} = 97$, $v_{16} = 68$, $v_{17} = 79$, $v_{18} = 19$ см⁻¹.

ний, наблюдали в спектре одну полосу и в связи с этим сделали вывод о плоском строении молекулы трихлорида иттрия. Такая же структура симметрии D_{3h} определена в электронографических исследованиях [7, 8]. По данным спектроскопического исследования [6], молекула трихлорида иттрия пирамидальна (симметрия С_{3v}). Авторы [6] наблюдали в ИК-спектре поглощение при 370 см^{-1} , которое имело широкую уплощенную форму. Они предположили, что это поглощение можно считать результатом перекрывания колебаний v_1 и v_3 пирамидальной структуры. Аналогичный результат получен в той же работе [6] и для родственной молекулы LaCl₃, согласующийся с данными ее электронографического исследования [11]. В более позднем исследовании ИКспектров молекулы LaCl₃ авторы [12] признали ошибочным сделанное ими ранее в работе [6] предположение. Результаты квантово-химических расчетов [7, 13-15] подтверждают выводы экспериментальных исследований [7-10] о плоской структуре YCl₃, которая и принята в данной работе. Структурные параметры молекулы получены в работах [7, 8]. Электронографическое исследование [7] выполнено на высоком уровне с применением методики синхронного электронографического и масс-спектрометрического эксперимента. Для получения полной и достоверной информации электронографическое исследование дополнено авторами [7] квантово-химическими расчетами. В работе [7] при проведении тщательного структурного анализа было найдено, что пар над образцом трихлорида иттрия при температуре электронографического эксперимента 1312 К содержит 87% мономерных молекул YCl₃ и 13% димерных молекул $Y_2 Cl_6 (P_{II}/P_{II} = 0.15)$. Maccспектрометрические измерения, проводившиеся в той же работе, находятся в согласии с этим результатом. Произведение моментов инерции YCl₃, приведенное в табл. 1, рассчитано с межъядерным расстоянием r_{o} (Y–Cl) = 2.450 ± 0.007 Å [7], которое согласуется с учетом погрешности с

данными [8] и результатами теоретических расчетов [7, 13–15].

Колебательный спектр молекул YCl₃ изучен в газовой фазе [6, 9] и в ксеноновой матрице в [10]. В работе [6] кроме области частот валентных колебаний ($v_3 = 370 \text{ см}^{-1}$) изучена также область деформационных колебаний. В низкочастотной области ИК-спектра обнаружены три полосы при 78, 70 и 59 см⁻¹. По данным [6], поглощение при 70 см⁻¹ обусловлено присутствием на оптической подложке твердого трихлорида иттрия, образовавшегося при конденсации газообразного YCl₃. Полосы при 78 и 58.6 см⁻¹ были отнесены авторами [6] к частотам деформационных колебаний v₂ и v₄ соответственно. Результаты квантово-химических расчетов [7, 13-15] подтверждают принадлежность этих полос к молекуле YCl₃, но указывают на ошибочность принятого авторами работы [6] отнесения частот колебаний. Согласно данным [7, 13–15], правильным является обратное отнесение полос: $v_2 = 58.6$ и $v_4 = 78$ см⁻¹, которое принято в данной работе. В электронографическом исследовании [7] из экспериментальной величины эффективного сокращения 0.075 ± 0.033 Å для частоты неплоского колебания v2 получено значение 70 см⁻¹. Большая неопределенность в значении v2 [7] обусловлена существенной погрешностью в величине экспериментального значения r_o(Cl···Cl). Частоты колебаний, приведенные в табл. 1, приняты по данным [6] (v₂, v₃, v₄) и [13] (v₁). Для симметричной частоты валентного колебания V₁ введен корректирующий коэффициент (0.93), значение которого рассчитано из отношения соответствующей экспериментальной частоты колебания v_3 , приведенной в [9], к теоретическому значению [13].

Димер трихлорида иттрия Y₂Cl₆(г). Согласно электронографическим данным [7], молекула Y₂Cl₆ имеет конфигурацию с плоским четырехчленным циклом $Cl_b - Y - Cl_b - Y$ симметрии D_{2h} . Структурные параметры молекулы рассчитаны также теоретически DFT методом в работах [7, 14]. Произведение моментов инерции в табл. 1 вычислено с экспериментальными структурными параметрами: $r(Y-Cl_t) = 2.439(8), r(Y-Cl_b) = 2.659(2), \angle Cl_b - Cl_b$ $Y-Cl_b = 84.0(3.0), \ \angle Cl_t - Y-Cl_t = 116.6(2.0) \ (Cl_t - Y-Cl_t) = 116.6(2.0) \ (Cl_t$ концевой атом хлора, Cl_b – атом хлора в плоском четырехчленном цикле) [7]. Колебательные спектры Y₂Cl₆ экспериментально не изучены. Частоты колебаний рассчитаны в [7, 14]. В данной работе для молекул Y2Cl6 приняты результаты расчета [7]. Рекомендованные значения частот колебаний приведены в табл. 1.

Термодинамические функции. Термодинамические функции $YCl_3(r)$ и $Y_2Cl_6(r)$ вычисляли в приближении "жесткий ротатор—гармонический ос-

Т, К	φ ₁	φ ₂	$\phi_3 \times 10^{-4}$	$\phi_4 imes 10^{-1}$	φ ₅	φ ₆	φ ₇		
	YCl ₃								
298.15-1500	549.046	80.93453	-19.87992	6.685339	27.0295	-81.33047	126.6739		
1500-6000	555.7918	83.43602	-38.06639	7.989654	-1.035676	0.8761324	-0.3776776		
	Y ₂ Cl ₆								
298.15-1500	1000.166	181.4755	-51.9006	17.95052	10.76806	-14.58407	-0.471249		
1500-6000	1004.441	183.4733	-89.5503	19.72004	-1.551706	0.9919243	-0.3088271		

Таблица 2. Коэффициенты полиномов, аппроксимирующих значения $\Phi^{\circ}(T)$ для молекул YCl₃ и Y₂Cl₆ в температурных интервалах 298.15–1500 и 1500–6000 К

Таблица 3. Термодинамические функции YCl₃ и Y₂Cl₆

Т, К	$C_p^{\circ}(T)$	$\Phi^{\circ}(T)$	$S^{\mathrm{o}}(T)$	$H^{\circ}(T) - H^{\circ}(0)$	$C_p^{\circ}(T)$	$\Phi^{\circ}(T)$	$S^{o}(T)$	$H^{\circ}(T) - H^{\circ}(0)$		
	$Д$ ж моль $^{-1}$ K $^{-1}$			кДж моль ⁻¹	Дж моль $^{-1}$ K $^{-1}$			кДж моль ⁻¹		
		YCl ₃				Y ₂ Cl ₆				
298.15	77.668	285.667	349.328	18.980	170.586	417.365	550.591	39.721		
1000	82.594	371.190	447.293	76.103	181.692	600.665	766.012	165.346		
2000	83.005	425.231	504.716	158.970	182.608	718.515	892.339	347.648		
3000	83.082	457.716	538.390	242.022	182.779	789.633	966.419	530.359		

циллятор" в интервале температур 298.15–6000 К. Возбужденные электронные состояния при расчете термодинамических функций не учитывали, поскольку ион Y³⁺ имеет заполненную электронную конфигурацию ...4*s*²4*p*⁶. Результаты расчетов термодинамических функций так же, как и в работе [16], представлены полиномами. Ниже приведен полином, который аппроксимирует значения приведенной энергии Гиббса $\Phi^{\circ}(T) = S^{\circ}(T) - [H^{\circ}(T) - H^{\circ}(0)]/T$: $\Phi^{\circ}(T)$, Дж моль⁻¹ K⁻¹ = φ_1 + $\varphi_2 \ln X + \varphi_3 X^{-2} + \varphi_4 X^{-1} + \varphi_5 X + \varphi_6 X^2 + \varphi_7 X^3$ ($X = T/10^4$).

Для увеличения точности аппроксимации термодинамических функций температурный интервал 298.15—6000 К разбивали на два подынтервала: 298.15—1500 и 1500—6000 К. При этом в каждом подинтервале отклонение аппроксимированных значений приведенной энергии Гиббса $\Phi^{\circ}(T)$ от рассчитанных не превышало принятого максимально допустимым значения 0.02 Дж моль⁻¹ K⁻¹. Коэффициенты полиномов приведены в табл. 2. В табл. 3 приведены значения термодинамических функций YCl₃(г) и Y₂Cl₆(г) при температурах 298.15, 1000, 2000 и 3000 К.

Погрешности термодинамических функций обусловлены как погрешностями принятых значений молекулярных постоянных, так и методом расчета (жесткий ротатор—гармонический осциллятор) и составляют 4, 7, 9, 11 и 14, 21, 27 и 31 Дж моль⁻¹ К⁻¹ в приведенной энергии Гиббса

 $\Phi^{\circ}(T)$ при T = 298.15, 1000, 3000 и 6000 К для YCl₃ и Y₂Cl₆ соответственно.

В работе [7] проведен расчет потенциала неплоского колебания YCl₃ методом теории возмущений Меллера-Плессе, его форма отличалась от квадратичной формы гармонического потенциала, что свидетельствует о наличии ангармоничности неплоского колебания v₂. Расчет термодинамических функций YCl₃ с учетом потенциала из работы [7] привел к незначительным изменениям в их величинах. Расхождения с гармоническим приближением невелики, изменяются от 1.1 до 0 в интервале температур 298.15-3000 К и от -0.3 до -0.8 Дж моль⁻¹ К⁻¹ в интервале температур 3000-6000 К в значениях приведенной энергии Гиббса $\Phi^{\circ}(T)$, что позволяет считать величины термодинамических функций, рассчитанные нами в гармоническом приближении достаточно надежными.

Термодинамические функции YCl₃(г) были рассчитаны ранее в работе [6] в интервале температур 298.15–2000 К в предположении симметрии C_{3v} . Расхождения в значениях S°(*T*), рассчитанных в [6] и в данной работе не превышают 7 Дж моль⁻¹ К⁻¹ и объясняются в основном различием в принятой структуре молекулы. Расхождение во вращательной составляющей составило 5.6 Дж моль⁻¹ К⁻¹. Термодинамические функции Y₂Cl₆ рассчитаны впервые.

РАСЧЕТ СОСТАВА ПАРА И ПАРЦИАЛЬНЫХ Давлений мономерных и димерных молекул

Впервые экспериментальные данные по давлению пара трихлорида иттрия были получены в [17] при использовании эффузионного метода. В этой работе приведены величины давления пара твердого трихлорида в интервале 771-898 К. Как следует из работы [4], при таких температурах давление димерных молекул очень низкое и не будет играть заметной роли в процессе испарения. Давление пара выше точки плавления для ряда трихлоридов редкоземельных элементов, в том числе трихлорида иттрия, было измерено эффузионным методом в [18]. Результаты этой работы указывают на низкую точность определения давления пара. В частности, энтальпии испарения, рассчитанные по уравнению Клаузиуса-Клапейрона, могут различаться вдвое для близких по свойствам соединений. По указанным причинам работы [17] и [18] в дальнейшем не рассматриваются.

Надежные данные по давлению пара жидкого хлорида иттрия получены методом "точки кипения" [19]. В этой работе приведены результаты измерений давления пара в 21 температурной точке в интервале температур 1317—1649 К. Для этих данных в настоящей работе проведены расчеты состава пара, т.е. отношения давлений димерных и мономерных молекул $P_{\rm A}/P_{\rm M}$. Величины $P_{\rm A}/P_{\rm M}$ являются константами равновесия реакции:

$$\operatorname{YCl}_{3}(\kappa p., \mathfrak{K}) + \operatorname{YCl}_{3}(\Gamma) = \operatorname{Y}_{2}\operatorname{Cl}_{6}(\Gamma). \tag{1}$$

Необходимая для расчетов энтальпия реакции (1) была определена с помощью надежной опорной точки из работы [7]: $P_{\rm A}/P_{\rm M} = 0.15$ при температуре 1312 К, что позволило рассчитать энтальпию реакции (1) по уравнению:

$$\Delta_{\rm r} H^{\circ}(0) = T(\Delta_{\rm r} \Phi^{\circ}(T) - R \ln K_{\rm p}). \tag{2}$$

Расчеты такого рода, позволяющие определить энтальпии реакции по константе равновесия, измеренной в каждой температурной точке исследуемого интервала, получили в литературе название расчетов "по третьему закону термодинамики", поскольку приведенная энергия Гиббса $\Phi^{\circ}(T)$ вычисляется с использованием абсолютных значений энтропии $S^{\circ}(T)$ [20]. Термодинамические функции YCl₃(кр., ж), необходимые для расчетов, были взяты из работ [21, 22]. Значение энтальпии реакции (1), равной разности энтальпий сублимации трихлорида иттрия в форме Ү2- $Cl_6(\Gamma)$ и YCl₃(Γ), получено равным $\Delta_r H^{\circ}(0 \text{ K}) = 70.2 \pm$ \pm 8 кДж моль⁻¹. Погрешность этой величины обусловлена главным образом погрешностью термодинамических функций участников реакции (1). Найденная величина $\Delta_{\mu} H^{\circ}(0 \text{ K})$ позволяет рассчитать отношение парциальных давлений димера $Y_2Cl_6(\Gamma)$ и мономера $YCl_3(\Gamma)$ в любой температурной точке. Расчеты по этим данным показали, что в температурном интервале 1317—1649 К отношение парциальных давлений $P_{\rm a}/P_{\rm m}$ возрастает от 0.15 до 0.21. На основании этих расчетов по давлению над трихлоридом иттрия из работы [19] были рассчитаны значения парциальных давлений $YCl_3(\Gamma)$ и $Y_2Cl_6(\Gamma)$. Полученные величины парциальных давлений $YCl_3(\Gamma)$ и $Y_2Cl_6(\Gamma)$. Полученные величины парциальных давлений $YCl_3(\Gamma)$ и димера $Y_2Cl_6(\Gamma)$. Средние значения для 21 измерения приведены ниже (кДж моль⁻¹):

$$YCl_{3}(\kappa p.) = YCl_{3}(\Gamma):$$

$$\Delta_{s}H^{\circ}((3), 0 \text{ K}) = 288.6 \pm 5;$$

$$\Delta_{s}H^{\circ}((3), 298.15 \text{ K}) = 287.0 \pm 5;$$

$$2YCl_{3}(\kappa p.) = Y_{2}Cl_{6}(\Gamma):$$

$$\Delta_{s}H^{\circ}((4), 0 \text{ K}) = 358.8 \pm 10,$$

$$\Delta_{s}H^{\circ}((4), 298.15 \text{ K}) = 357.4 \pm 10.$$
(4)

Погрешности принятых энтальпий сублимации оценены с учетом погрешностей парциальных давлений, связанных с погрешностью измерений общего давления пара и неточности использованных в вычислениях термодинамических функций $YCl_3(кр., ж)$, $YCl_3(г)$ и $Y_2Cl_6(г)$. Полученные величины энтальпий сублимации мономерных и димерных молекул трихлорида иттрия, приводят к величине энергии диссоциации димерных молекул (д) на мономерные (м):

$$D_0(\mathfrak{A} = 2\mathfrak{M}) = 2\Delta_s H^{\circ}((3), 0 \mathrm{K}) - \Delta_s H^{\circ}((4), 0 \mathrm{K}) =$$

= 218.4 ± 12 кДж моль⁻¹.

Для расчета энтальпий образования молекул $YCl_3(\Gamma)$ и $Y_2Cl_6(\Gamma)$ с использованием полученных величин энтальпий сублимации необходим выбор надежного значения энтальпии образования YCl₃(кр.). Критический анализ литературных данных по энтальпии образования кристаллического трихлорида иттрия проведен в работе [23]. Разброс величин энтальпии образования составляет от -973.6 [24] до -1018.4 кДж моль-1 [23]. Авторы [23] объясняют более низкие значения наличием примесей, которые могут приводить к образованию гидридов, карбидов, оксидов и т.д. В работе [23] измерения проведены с металлическим иттрием высокой чистоты и получено значение $\Delta_{\rm f} H^{\circ}$ (YCl₃ кр., 298.15) = -1018.4 ± 2.6 кДж моль⁻¹, которое принято в нашей работе. Результаты более поздней работы [25] (-1005.8 ± 2.5 кДж моль⁻¹) представляются менее надежными. Авторы [25] не обсуждали вопрос чистоты использованного образца металлического иттрия и не процитировали работу [23]. Комбинация полученных в настоящей работе величин энтальпий сублимации с энтальпией образования YCl₃(кр.) [23] дает следующие значения энтальпий образования молекул YCl₃ и Y₂Cl₆ (кДж моль⁻¹):

$$\begin{split} &\Delta_{\rm f} H^{\circ}({\rm YCl}_3,\,{\rm r},\,0) = -730.7\pm8;\\ &\Delta_{\rm f} H^{\circ}({\rm YCl}_3,\,{\rm r},\,298.15) = -731.4\pm8;\\ &\Delta_{\rm f} H^{\circ}({\rm Y}_2{\rm Cl}_6,\,{\rm r},\,0) = -1679.8\pm12;\\ &\Delta_{\rm f} H^{\circ}({\rm Y}_2{\rm Cl}_6,\,{\rm r},\,298.15) = -1679.6\pm12. \end{split}$$

Величина энтальпии образования $Y_2Cl_6(\Gamma)$ получена впервые; значение энтальпии образования $YCl_3(\Gamma)$ существенно уточнено.

Таким образом, в результате критического анализа литературных данных для мономерных и димерных молекул трихлорида иттрия, YCl₃(г) и Y₂Cl₆(г), выбраны надежные значения молекулярных постоянных и проведены расчеты термодинамических функций. Большие расхождения, выявленные при сравнении термодинамических функций YCl₃(г) с литературными данными [6], привели к необходимости пересчета термохимических величин трихлорида иттрия, приведенных в работах [4-6]. Проведенная обработка литературных данных по давлению насыщенного пара позволила рассчитать состав пара трихлорида иттрия в широком интервале температур. Получены новые значения энтальпии сублимации и энтальпии образования трихлорида иттрия в форме молекул YCl₃(г). Для Y₂Cl₆(г) аналогичные термохимические величины получены впервые.

СПИСОК ЛИТЕРАТУРЫ

- 1. Осина Е.Л., Гусаров А.В. // ТВТ. 2015. Т. 53. № 6. С. 858.
- 2. Осина Е.Л., Горохов Л.Н. // Там же. 2017. Т. 55. № 4. С. 631.
- 3. *Осина Е.Л., Ковтун Д.М. //* Журн. физ. химии. 2018. Т. 56. № 5. С. 697.
- 4. McKinley J.D. // J. Chem. Phys. 1965. V. 42. P. 2245.
- 5. Дудчик Г.П., Поляченок О.Г., Новиков Г.И. Термодинамика процессов парообразования трихлори-

дов редкоземельных элементов, иттрия и скандия // Депон. рукопись. № 2343-70. 1970. г. Минск.

- Konings R.J.M., Booij A.S. // J. Mol. Struct. 1992. V. 271. № 3. P. 183.
- *Reffy B., Marsden C.J., Hargittai M. // J. Phys. Chem.* A. 2003. V. 107. P. 1840.
- 8. Акишин П.А., Наумов В.А., Татевский В.М. // Кристаллография. 1959. Т. 4. С. 194.
- 9. Селиванов Г.К., Секачев Ю.Н., Мальцев А.А. // Журн. физ. химии. 1973. Т. 47. № 8. С. 2182.
- 10. Перов П.А., Недяк С.В., Мальцев А.А. // Вестн. МГУ. Сер. 2. Химия. 1975. Т. 16. № 3. С. 281.
- 11. Spiridonov V.P., Gershikov A.G., Lyutsarev V.S. // J. Mol. Struct. 1990. V. 221. P. 79.
- Kovacs A., Konings R.J.M., Booij A. S. // Chem. Phys. Lett. 1997. V. 268. P. 207.
- 13. Соломоник В.Г., Марочко О.Ю. // Журн. физ. химии. 2000. Т. 74. № 12. С. 2296.
- 14. Zhang Y., Zhao J., Tang G., Longgen L. // Spectrochimica Acta Part A. 2005. V. 62. P. 1.
- Marsden C.J., Smart B.A. // Aust. J. Chem. 1993. V. 46. № 5. P. 749.
- 16. Осина Е.Л. // ТВТ. 2017. Т. 55. № 2. С. 223.
- 17. *Пашинкин А.С., Дробот Д.В., Шевцова З.Н. и др. //* Журн. неорган. химии. 1962. Т. 7. № 12. С. 2811.
- Moriarty J.L. // J. Chem. Eng. Data. 1963. V. 8. № 3. P. 422.
- 19. Дудчик Г.П., Поляченок О.Г., Новиков Г.И. // Журн. неорган. химии. 1969. Т. 14. С. 3165.
- 20. Гурвич Л.В., Вейц И.В., Медведев В.А. и др. Термодинамические свойства индивидуальных веществ. Т. 1. Кн. 1, 2. М.: Наука, 1979.
- Толмач П.И., Горбунов В.Е., Гавричев К.С., Горюшкин В.Ф. // Журн. физ. химии. 1990. Т. 64. № 4. С. 1088.
- 22. Белов Г.В., Иориш В.С., Юнгман В.С. // ТВТ. 2000. Т. 38. С. 209.
- 23. Xiang-Yun W., Tian Zhu J., Goudiakas J., Fuger J. // J. Chem. Thermodynamics 1988. V. 20. P. 1195.
- Spedding F.H., Flynn J.P. // J. Am. Chem. Soc. 1954.
 V. 76. P. 1474.
- 25. Oppermann H., Ehrlich S., Hennig C. // Z. Naturforsch. 1997. B. 52. S. 305.