# = КОЛЛОИДНАЯ ХИМИЯ И ЭЛЕКТРОХИМИЯ =

УДК 577.3 577.34 544.52

# ВЛИЯНИЕ ИОНОВ Zn<sup>2+</sup> И Ca<sup>2+</sup> НА ФОТОПРОДУКЦИЮ ПЕРОКСИДА ВОДОРОДА В ЗАМОРОЖЕННЫХ ВОДНЫХ РАСТВОРАХ ПРОИЗВОДНЫХ АДЕНИНА

© 2019 г. Т. А. Лозинова<sup>*a*,\*</sup>, А. В. Лобанов<sup>*b*</sup>, А. В. Ландер<sup>*c*</sup>

<sup>а</sup> Российская академия наук, Институт биохимической физики им. Н.М. Эмануэля, Москва, Россия <sup>b</sup> Российская академия наук, Институт химической физики им. Н.Н. Семенова, Москва, Россия <sup>c</sup> Российская академия наук, Институт теории прогноза землетрясений и математической геофизики, Москва, Россия \* e-mail: fepr@sky.chph.ras.ru Поступила в редакцию 14.06.2018 г.

После доработки 14.06.2018 г. Принята к публикации 11.09.2018 г.

Определено содержание пероксида водорода в облученных ближним УФ при 77 К водных растворах  $2 \times 10^{-4}$  М аденина (A), аденозина (Ado) и аденозин-5'-дифосфата (ADP), содержащих NaCl (0.1 M), и идентичных растворах, содержавших добавки ZnCl<sub>2</sub> и CaCl<sub>2</sub>. Показано, что введение двухвалентных ионов металлов ( $2 \times 10^{-4}$  М) разнонаправленно влияет на выход  $H_2O_2$  в различных соединениях. В растворах A добавление ионов Zn<sup>2+</sup> приводит к увеличению выхода  $H_2O_2$  более, чем в 20 раз, добавление Ca<sup>2+</sup> – в 1.4 раза. В случае Ado при введении в растворы ионов Zn<sup>2+</sup> и Ca<sup>2+</sup> наблюдается снижение выхода  $H_2O_2$  в 2.2 и в 2.9 раза соответственно. Добавление Zn<sup>2+</sup> к растворам ADP приводит к увеличению выхода  $H_2O_2$  в исследованных системах с оценками интегральных интенсивностей сигналов ЭПР (Int<sub>S</sub>) облученных раствора, полученными методом моделирования), указывает на то, что основными продуцентами образования  $H_2O_2$  в исследованных системах являются агрегаты производных аденина, образующиеся при замораживании водных растворов.

*Ключевые слова:* производные аденина, фотолиз, пероксид водорода, ЭПР, пероксильные радикалы, ионы двухвалентных металлов

DOI: 10.1134/S0044453719050200

Образование  $H_2O_2$  в первичных биохимических системах может представлять значительный интерес для задач эволюционной биохимии [1, 2]. Данная работа является продолжением цикла исследований фотоиндуцируемого ближним УФоблучением образования пероксида водорода в замороженных водных растворах производных аденина.

В [3, 4] было показано, что при размораживании облученных ближним УФ при 77 К водных растворов производных аденина/АХ, где X = H для аденина (A), = рибоза для аденозина (Ado), = = рибозо-5'-дифосфат для аденозин-5'-дифосфата (ADP)/, содержавших 0.1 М NaCl, в образцах обнаруживается значительное количество H<sub>2</sub>O<sub>2</sub>. Облучение в тех же условиях производных других нуклеиновых оснований (исследовали гуанозин-5'-монофосфат, цитидин (Cyt) и тимин) приводило к образованию H<sub>2</sub>O<sub>2</sub> лишь в случае Cyt [4]. Однако, наблюдаемая продукция H<sub>2</sub>O<sub>2</sub> в растворах Суt оказывалась на 2–3 порядка ниже, чем в случае Ado. Таким образом, вероятно, что производные A обладают достаточно специфической по сравнению с производными других нуклеиновых оснований способностью к фотоиндуцируемому образованию пероксида водорода.

Ранее было обнаружено, что в спектрах ЭПР водных растворов производных нуклеиновых оснований, содержавших NaCl (0.1 M), облученных ближним УФ при 77 К (сигналы S), присутствует значительное количество пероксильных радикалов  $O_2^{-\bullet}$  и  $HO_2^{\bullet}$  ([5] и ссылки в этой работе). Показано, что при содержании исследуемых соедине-

ний  $1 \times 10^{-3}$  М суммарное количество пероксильных радикалов, присутствующих в облученных при 77 К образцах, составляет 20–40% от общего количества парамагнитных продуктов.

Сопоставление результатов определения  $H_2O_2$  с результатами анализа спектров ЭПР тех же об-

| Соеди-<br>ние | N | $C \times 10^4$ , M |                     | [H <sub>2</sub> O <sub>2</sub> ], | Int <sub>s</sub> , | Относительное содержание компонентов |                  |       |       |                                  |       |      |
|---------------|---|---------------------|---------------------|-----------------------------------|--------------------|--------------------------------------|------------------|-------|-------|----------------------------------|-------|------|
|               |   | M <sup>2+</sup>     | [MCl <sub>2</sub> ] | мкМ                               | усл. ед.           | $O_2^{-\bullet}$                     | $HO_2^{\bullet}$ | A•    | Ri    | $\operatorname{Cl}_2^{-\bullet}$ | AOH•  | ά    |
| А             | 5 | -                   | _                   | 28                                | 469                | 0.246                                | 0.105            | 0.341 | _     | 0.171                            | 0.072 | 0.06 |
| А             | 4 | Zn                  | 2                   | 588                               | 161                | 0.260                                | 0.130            | 0.289 | _     | 0.192                            | 0.055 | 3.65 |
| А             | 2 | Zn                  | 0.5                 | 425                               | 276                | 0.189                                | 0.149            | 0.332 | _     | 0.112                            | 0.138 | 1.54 |
| А             | 3 | Ca                  | 2                   | 40                                | 456                | 0.230                                | 0.129            | 0.394 | _     | 0.124                            | 0.051 | 0.09 |
| Ado           | 7 | _                   | _                   | 141                               | 448                | 0.276                                | 0.138            | 0.262 | 0.092 | 0.093                            | 0.084 | 0.31 |
| Ado           | 6 | Zn                  | 2                   | 65                                | 489                | 0.337                                | 0.076            | 0.207 | 0.141 | 0.080                            | 0.091 | 0.13 |
| Ado           | 4 | Ca                  | 2                   | 48                                | 538                | 0.316                                | 0.153            | 0.218 | 0.120 | 0.080                            | 0.074 | 0.09 |
| ADP           | 5 | _                   | _                   | 41                                | 268                | 0.253                                | 0.159            | 0.262 | 0.059 | 0.112                            | 0.081 | 0.15 |
| ADP           | 6 | Zn                  | 2                   | 72                                | 138                | 0.290                                | 0.109            | 0.225 | 0.120 | 0.107                            | 0.068 | 0.52 |

**Таблица 1.** Результаты определения  $H_2O_2$  и анализа спектров ЭПР в образцах AX + NaCl и AX + NaCl +  $M^{2+}$ 

Примечание. [AX] =  $2 \times 10^{-4}$  M, [NaCl] = 0.1 M. Облучение с светофильтром УФС-5,  $I_{hv}$  = 0.6. Время облучения – 16 мин. Приведены средние значения результатов, полученных в параллельных опытах, N – количество образцов.  $\alpha$  = [H<sub>2</sub>O<sub>2</sub>], мкM/Int<sub>S</sub>, условные единицы.

лученных образцов перед их размораживанием указывает на существенную роль ассоциации AX в процессе образования  $H_2O_2$  в рассматриваемых системах [6, 7].

Известно, что присутствие ионов двухвалентных металлов существенно увеличивает ассоциативные свойства нуклеотидов [8-13]. Однако, вопреки ожидаемому увеличению выхода Н<sub>2</sub>O<sub>2</sub>, добавление CaCl<sub>2</sub> в растворы Ado и ADP приводило к многократному падению выхода H<sub>2</sub>O<sub>2</sub> [6]. При соотношении концентраций ионов [Ca<sup>2+</sup>]/[Na<sup>+</sup>] = = 1 - 2: 10 наблюдаемое падение выхода H<sub>2</sub>O<sub>2</sub> составляло ~2 раза в растворах Ado и в определенных условиях превышало семикратное в растворах ADP. В [6] предположено, что одним из факобуславливающим данный эффект, торов, является большой ионный радиус Ca<sup>2+</sup> (0.103 нм [14]).

В данной работе приведены результаты исследования влияния комплексования AX с ионами  $Zn^{2+}$  на фотопродукцию  $H_2O_2$  в замороженных растворах AX + NaCl.

#### ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Использовали препараты A, Ado и ADP фирмы "Serva". ZnCl<sub>2</sub> был синтезирован сотрудником ИОНХ РАН А.С. Алиханяном, остальные реактивы – класса "х. ч.". Для приготовления растворов применяли воду, очищенную на установке Milliроге. Эксперименты выполняли в слабокислой среде (pH 6.6), доведение pH растворов до этой величины производили добавлением HCl и NaOH. В исследованных растворах  $[AX] = 2 \times 10^{-4}$  M, [NaCl] = 0.1 M.

Образцы замораживали в тефлоновых контейнерах быстрым погружением в жидкий азот и освобождали непосредственно перед освещением. Облучение производили ртутной лампой сверхвысокого давления ДРШ-1000 с светофильтром УФС-5 (стандартное значение 40%-го пропускания в диапазоне 260-400 нм). Интенсивность освещения I<sub>hv</sub> ограничивалась до ~0.6 от максимальной интенсивности источника облучения при помощи решеток, калиброванных на спектрофотометре, аналогично [6]. Это было связано с тем, что эффективность фотопродукции  $H_2O_2$ ,  $\alpha$ , определяемая как отношение количества образующегося пероксида [H<sub>2</sub>O<sub>2</sub>] (мкМ) к Int<sub>s</sub> (условные единицы), существенно снижается при увеличении *I*<sub>hy</sub> [6, 7].

Образцы облучали при 77 К (в жидком азоте) в кварцевом дьюаре. Спектры ЭПР регистрировали при 77 К на изготовленном в лаборатории ЭПРспектрометре (частота 9.5 ГГц). Мощность СВЧизлучения составляла  $W \approx 200$  мкВт и  $W \approx 2$  мВт, амплитуда модуляции – 2 Гс.

Количество параллельных образцов в различных опытах варьировало от 2 до 7 (табл. 1). При определении  $Int_s$  среднеквадратичная ошибка составляет ~33%.

Оценку вклада различных компонент в суммарные спектры ЭПР, регистрируемые в облученных образцах в области  $g \approx 2.00$ , выполняли на основании построения модельного сигнала по программе компьютерного моделирования DECO 2016. Эта программа является модификашией ранее использовавшихся версий: метолика расчета описана в [15]. Использовавшиеся при моделировании спектров индивидуальные (базисные) сигналы компонент, вносящих основной вклад в регистрируемые спектры облученных растворов АХ, показаны на рис. 1. Это – сигналы пероксильных радикалов:  $1 - O_2^{-\bullet}$ ,  $2 - HO_2^{\bullet}$ ,  $3 - HO_2^{\bullet}$ , 3 сигнал катион-радикалов аденина, принадлежащих, скорее всего, их депротонированной форме  $(pK_a < 4.2 [16]), A^{\bullet}, 4 - радикалов рибозы Ri^{\bullet} в$ Ado и ADP, локализованных, преимущественно на C5', 5 - C8OH-аддуктов аденина – AOH<sup>•</sup>, 6 сигнал  $\operatorname{Cl}_{2}^{-\bullet}$ , 7— сигнал стабилизированных в матрице электронов  $e^-$  и  $\delta$  – сигнал радикалов  $NO_2^{\bullet}$ , присутствие которого в спектрах обусловлено, по-видимому, возможными примесями нитратов в компонентах растворов. Хотя этот сигнал хорошо виден при высоких мощностях СВЧ-излучения (W), вклад сигналов радикалов NO<sup>•</sup><sub>2</sub> в сигналы S обычно не превышает ~5%. Параметры и

ния (w), вклад сигналов радикалов NO<sub>2</sub> в сигналы S обычно не превышает ~5%. Параметры и условия получения указанных базисных спектров приведены в [15, 17] и цитированных в них работах. Помимо перечисленных сигналов, в базисные системы включался сигнал дьюара.

Определение выхода различных парамагнитных продуктов производили по спектрам, зарегистрированным в условиях зависимости интегральной интенсивности всех компонент от  $W^{1/2}$ , близкой к линейной (W = 200 мкВт), аналогично выполнявшемуся в предшествующих работах.

После записи спектров ЭПР облученные образцы хранили в течение суток в жидком азоте вплоть до определения  $H_2O_2$ . Параллельно с облученными образцами в каждом из опытов выполняли определение  $H_2O_2$  в контрольных, не облучавшихся образцах, хранившихся то же время при 77 К.

Количественное определение  $H_2O_2$  проводили спектрально-иодометрическим методом [18]. С этой целью образцы после фотолиза размораживали при комнатной температуре, измеряли их объем, добавляли к ним 1 мл  $H_2SO_4$  (0.2 M), вытесняли растворенный кислород продувом CO<sub>2</sub>, после чего смешивали с 2 мл деаэрированного 5%-го водного раствора иодида калия и повторно подвергали продуву CO<sub>2</sub>. Выделение иода, образующего с избытком иодид-аниона комплексный анион  $I_3^-$ , регистрировали методом спектрофотометрии ( $\lambda_{max} = 351$  нм,  $\varepsilon = 26400$  M<sup>-1</sup>cm<sup>-1</sup>).



**Рис. 1.** Основные базисные спектры, использованные при моделировании сигналов ЭПР производных аденина:  $1 - O_2^{-\bullet}$ ,  $2 - HO_2^{\bullet}$ ,  $3 - A^{\bullet}$ ,  $4 - Ri^{\bullet}$ ,  $5 - AOH^{\bullet}$ ,  $6 - Cl_2^{-\bullet}$ ,  $7 - e^-$ ,  $8 - NO_2^{-\bullet}$ .

Пероксид водорода отсутствует в контрольных образцах ( $[H_2O_2] < 1 \text{ мкM}$ ). Среднеквадратичная ошибка определения  $H_2O_2$  в облученных образцах составляет ~24%.

## ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Результаты определения количества пероксида водорода в размороженных образцах АХ, облученных при 77 К с светофильтром УФС-5, приведены в табл. 1. Там же представлены результаты определения интегральных интенсивностей сигналов ЭПР в этих образцах перед размораживанием (Int<sub>s</sub>) и оценки вклада основных компонент в регистрируемые суммарные спектры. Примеры спектров ЭПР, регистрируемых в исследуемых облученных образцах при 77 К, и результаты их моделирования показаны на рис. 2.

Аденин. В образцах A + NaCl введение ZnCl<sub>2</sub> (2 × 10<sup>-4</sup> M) приводит при одинаковых условиях облучения к ~20-кратному увеличению выхода  $H_2O_2$  и к падению Int<sub>s</sub> сигналов ЭПР в ~2.9 раза (табл. 1, рис. 2). Снижение [ZnCl<sub>2</sub>] до 5 × 10<sup>-5</sup> M приводит к увеличению выхода  $H_2O_2$  по сравнению с образцами A + NaCl в ~15 раз и к падению Int<sub>s</sub> сигналов ЭПР в ~1.7 раза.

В аналогичных образцах A + NaCl, содержавших CaCl<sub>2</sub> ( $2 \times 10^{-4}$  M), также наблюдается увеличение выхода H<sub>2</sub>O<sub>2</sub>, однако, в значительно меньшей



**Рис. 2.** Примеры спектров ЭПР, регистрируемых в облученных растворах AX ( $2 \times \times 10^{-4}$  M);  $I_{hv} = 0.6$ ,  $t_{hv} = 16$  мин,  $W \approx 200$  мкВт. Экспериментальные спектры ЭПР – серые линии, модельные – обычно накладывающиеся тонкие черные линии. Под спектрами приведены результаты оценок вклада основных компонент сигналов (условные единицы): \* – сигнал дьюара, I-3: AX + 0.1 M NaCl; 4-6: AX + 0.1 M NaCl +  $2 \times 10^{-4}$  M ZnCl<sub>2</sub>; 7, 8: AX + 0.1 M NaCl +  $2 \times 10^{-4}$  M CaCl<sub>2</sub>. В рамках – выход пероксида водорода в соответствующих системах, в мкМ.

степени ~ в 1.4 раза; снижение Int<sub>s</sub> сигналов ЭПР практически отсутствует (различие в 1.03 раза).

Таким образом, комплексование A с  $Zn^{2+}$  оказывает, по-видимому, существенное влияние на фотопродукцию  $H_2O_2$  в рассматриваемых системах. Потенциальными центрами связывания A с металлами являются N1, N7 и N3 аденина [19, 20]. Основность этих атомов уменьшается в порядке N1 > N7 > N3. Вероятность связывания катионов металлов с этими атомами существенно зависит от типа металла. В случае A показана дихотомия связывания металлов с атомами N1 и N7 гетероцикла ([19] и ссылки в этой работе).

Взаимодействие A с  $Zn^{2+}$  в жидких водных/D<sub>2</sub>O растворах исследовано методами спектроскопии флуоресценции, ИК-, Рамановской спектроскопии, <sup>1</sup>H-ЯМР и потенциометрическими измерениями при рН 2, 7 и 9 в [21]. Показано, что комплексообразование A с  $Zn^{2+}$  происходит значительно эффективнее, чем с ионами Cd<sup>2+</sup>, что объясняется значительным различием ионных радиусов  $Zn^{2+}$  и  $Cd^{2+}$  (в растворе ~1:1.457 [14]). Соотношение ионных радиусов для  $Zn^{2+}$  и  $Ca^{2+}$  близко (~1:1.471).

**Ado**. В растворах Ado + NaCl при тех же концентрациях добавление  $ZnCl_2$  приводит к снижению выхода  $H_2O_2 \sim B 2.2$  раза и некоторому увеличению Int<sub>s</sub> (в 1.09 раза). Введение CaCl<sub>2</sub> в аналогичные растворы Ado + NaCl вызывает заметно более сильное падение выхода  $H_2O_2$  (~ в 2.9 раза) и увеличение Int<sub>s</sub> сигналов ЭПР ~ в 1.2 раза.

Основными центрами связывания металлов с рибозой нуклеозидов и нуклеотидов являются гидроксильные группы О2' и О3' [19]. В случае переходных металлов (Zn<sup>2+</sup>) кристаллографические данные показывают отсутствие связывания с рибозой [12, 20]. По современным данным [12], связывание переходных металлов с рибозой в растворах тем не менее происходит. Однако, отмечается, что сродство ионов переходных металлов к гидроксильным группам рибозы невелико [12]. Вероятно, что конформация рибозной группы Аdo

может различаться при связывании  $Ca^{2+}$  и  $Zn^{2+}$ . Предполагаемое различие может быть связано как с различием степени их связывания с Ado, так и с различием ионных радиусов  $Ca^{2+}$  и  $Zn^{2+}$ .

**ADP**. Добавление ZnCl<sub>2</sub> к растворам ADP + + NaCl приводит к увеличению выхода H<sub>2</sub>O<sub>2</sub> (в ~1.8 раза по сравнению с аналогичными растворами, не содержавшими ZnCl<sub>2</sub>) и к снижению Int<sub>s</sub> ~ в 1.9 раза. Наблюдаемое увеличение выхода H<sub>2</sub>O<sub>2</sub> оказывается значительно меньше, чем в аналогичных растворах A + NaCl, что может объясняться, в частности, сильным комплексованием ионов Zn<sup>2+</sup> с фосфатными группами, являющимися основными центрами связывания катионов металлов в нуклеотидах [9, 20]. (Для констант равновесия реакций M<sup>n+</sup> + ADP<sup>3-</sup>  $\leftrightarrow$  MADP<sup>(3-n)-</sup>, где M – ион металла, *n* – его валентность, величины lg *K* для ионов Na<sup>+</sup>, Ca<sup>2+</sup> и Zn<sup>2+</sup> составляют 1.12, 3.08 и 4.41, соответственно [13].)

В жидких растворах нуклеотидов наряду со связыванием ионов 2-валентных металлов (М<sup>2+</sup>) с фосфатными группами, показано образование "закрытых" комплексов, в которых  $M^{2+}$  связан также с гетероциклом аденина [9]. Доля таких комплексов в случае связывания ADP с Zn<sup>2+</sup> достаточно велика – ~31%, с Ca<sup>2+</sup> – всего ~9% [11]. При возможности ассоциации нуклеотидов (более высокие их концентрации и, вероятно, снижение температуры [22, 23]), ассоциация их в присутствии M<sup>2+</sup> возрастает вследствие возможности связывания иона металла с гетероциклом другой молекулы [10]. Вероятно, что образование H<sub>2</sub>O<sub>2</sub> может существенно зависеть от специфики конформаций рибозных групп нуклеозидов и нуклеотидов в присутствии различных двухвалентных металлов в ассоциатах.

Представляется весьма интересным, что в случаях, когда в присутствии двухвалентных металлов наблюдается увеличение выхода  $H_2O_2$  (A, ADP), наблюдается снижение Int<sub>s</sub> сигналов ЭПР (рис. 2, табл. 1). Напротив, в случае наибольшего падения выхода  $H_2O_2$  (Ado + NaCl + CaCl<sub>2</sub>) наблюдается некоторое увеличение Ints по сравнению с аналогичными растворами, не содержавшими CaCl<sub>2</sub>. Это согласуется с выводами [7] об эффективности в рассматриваемых системах пути генерации H<sub>2</sub>O<sub>2</sub>, происходящей без существенного выхода в среду пероксильных радикалов (канал I). Однако, мы не можем конкретизировать данное предположение на основании полученных результатов, хотя возможная связь между соответствующими величинами кажется очевидной.

В [3, 4, 6, 7] предполагается, что основной реакцией, приводящей к образованию  $H_2O_2$  может быть реакция

$$O_2^{-\bullet} + HO_2^{\bullet} + H_2O \rightarrow H_2O_2 + O_2 + OH^{-}.$$
 (1)

(Константа скорости этой реакции в водных растворах при комнатной температуре составляет  $k \approx 1 \times 10^8 \,\mathrm{M^{-1}\,c^{-1}}$  [24]). Основной конкурирующей реакцией является, по-видимому, взаимодействие ионов супероксида с радикалами А•:

$$O_2^{-\bullet} + A^{\bullet} + H^+ \rightarrow \Pi$$
родукты,  
 $k \approx 1.2 \times 10^9 \text{ M}^{-1} \text{ c}^{-1} [25].$ 

(Предполагаемыми продуктами этой реакции являются исходные молекулы O<sub>2</sub> и A.)

Предположение об образовании  $H_2O_2$  по реакции (1) было обусловлено корреляцией выхода  $H_2O_2$  с произведением  $[HO_2^{\bullet}] \times [O_2^{\bullet\bullet}]$ , наблюдав-

шейся при высоком содержании AX  $(1 \times 10^{-3} \text{ M})$  в растворах, содержавших NaCl (обычно 0.1 M), т.е. при высоких величинах Int<sub>s</sub> [4, 6].

В этих условиях расчет корреляции выхода  $H_2O_2$  с  $[HO_2^{\bullet}]$  по аллометрической зависимости  $y = C + Dx^2$  при  $Z \approx 1.7$  приводит к существенному увеличению коэффициентов детерминации по сравнению с линейной зависимостью [4]. Таким образом, вклад реакции

$$\mathrm{HO}_{2}^{\bullet} + \mathrm{HO}_{2}^{\bullet} \to \mathrm{H}_{2}\mathrm{O}_{2} + \mathrm{O}_{2} \tag{2}$$

в образование  $H_2O_2$  может также оказаться существенным, хотя в жидких водных растворах константа скорости реакции (1) превышает *k* реакции (2) более, чем на 2 порядка [24]. Однако, эти возможные пути (канал II), по-видимому, играют свои роли лишь в случаях высоких Int<sub>s</sub> сигналов ЭПР (~950, [4, 6]).

При низкой [AX] (2 × 10<sup>-4</sup> M) корреляции выхода  $H_2O_2$  с какими-либо компонентами сигнала S не наблюдается. Более того, в ряде случаев образование  $H_2O_2$  наблюдается вообще в отсутствие измеримых сигналов ЭПР в облученных образцах [7]. В случаях преобладания данного канала (канал I), выявляемого при снижении [AX] и  $I_{hv}$ , а также – при исключении NaCl из растворов [7]), вероятно, можно предположить также и другие пути образования  $H_2O_2$ :

$$HO_2^{\bullet} + H^{\bullet} \to H_2O_2, \quad k \ge 1 \times 10^{10} \text{ M}^{-1} \text{ c}^{-1} [26]$$
(3)

И

$$OH^{\bullet} + OH^{\bullet} \to H_2O_2,$$
  
 $k = 5.5 \times 10^9 \text{ M}^{-1} \text{ c}^{-1} [26].$ 
(4)

Помимо предполагаемого в определенных условиях взаимодействия фотоиндуцируемых в наших системах радикалов ОН<sup>•</sup> с молекулами H<sub>2</sub>O [15], фотопродукция радикалов HO<sup>•</sup><sub>2</sub> в присутствии Ado и ADP, по-видимому, может осуществляться при взаимодействии радикалов Ri<sup>•</sup> с О<sub>2</sub> [27]. Относительное содержание радикалов  $HO_2^{\bullet}$  (в отсутствие ZnCl<sub>2</sub>), действительно, несколько выше в растворах Ado и ADP, чем в растворах А (табл. 1). Небольшое количество Н<sup>•</sup>  $(Int_{H_{\bullet}} \leq 0.02Int_{S})$  наблюдалось в содержащих NaCl облученных растворах Ado и ADP, в отличие от растворов А, в [5]. Поэтому вклад реакции (3) в образование Н<sub>2</sub>О<sub>2</sub>, по-видимому, возможен.

Реакция (4) кажется маловероятной, посколь-

ку присутствие радикалов ОН<sup>•</sup> не регистрируется методом ЭПР ни в одной из исследованных систем, а представить себе одновременное появле-

ние лвух близко расположенных раликалов ОН• в облучаемых образцах трудно. Кроме того, образо-

вание ОН<sup>•</sup>, по-видимому, должно происходить вблизи молекул AX, а величина константы скорости реакции

$$A + OH^{\bullet} \rightarrow AOH^{\bullet}, \quad k = 6.1 \times 10^9 \text{ M}^{-1} \text{ c}^{-1} [26]$$

превосходит величину k для реакции (4).

В [7] на основании литературных данных ([28] и ссылки в этой работе) предположено, что определяющую роль в процессе образования H<sub>2</sub>O<sub>2</sub> может играть соотношение скоростей миграции фотоиндуцируемых в ассоциатах АХ состояний (эксимеров, экситонов, комплексов с переносом заряда и первичных продуктов ионизации – электронов и "дырок") и скорости возможного обратного транспорта электронов в процессах разделения заряда. Искажение конфигурации ассоциатов АХ, обусловленное связыванием АХ с 2валентными металлами, вероятно, может существенно влиять на соотношение соответствуюших скоростей.

Таким образом, результаты данной работы подтверждают существование в замороженных водных растворах АХ фотоиндуцируемого канала образования H<sub>2</sub>O<sub>2</sub>, обусловленного агрегацией АХ, и сопровождающегося минимальным выхолом в среду интермедиатных свободных радикалов (канал I). Этот канал является основным при невысоких величинах Int<sub>s</sub> (<550, табл. 1).

Возможное изменение конформации рибозной группы при связывании нуклеозида /нуклеотида А с двухвалентными металлами, по-видимому, оказывает существенное влияние на физикохимические свойства агрегатов АХ, обусловлен-

ные их стереохимическими особенностями. Вероятно, что именно вследствие этого влияния комплексование с ионами лвухвалентных металлов оказывает разнонаправленное действие на выход H<sub>2</sub>O<sub>2</sub> в исследуемых системах в случаях использования различных АХ.

Вклад канала II образования H<sub>2</sub>O<sub>2</sub>, обусловленного взаимодействием накапливаемых в ходе облучения пероксильных радикалов, существенен лишь при относительно высоких Int<sub>s</sub> (~900-1000 [4]). Дальнейшее увеличение Int<sub>s</sub> (высокие [AX] и *I*<sub>hy</sub>, увеличение длительности облучения), как правило, не приводит к значительному возрастанию выхода H<sub>2</sub>O<sub>2</sub> и вызывает снижение величины α, вероятно, вследствие вторичных фотоиндуцируемых реакций радикалов [4, 7].

Авторы выражают глубокую благодарность А.С. Алиханяну за предоставление ZnCl<sub>2</sub> и Е.Н. Дегтяреву за существенную помощь в экспериментальной работе.

## СПИСОК ЛИТЕРАТУРЫ

- 1. Шноль С.Э. Физико-химические факторы биологической эволюции. М.: Наука, 1979. 262 с.
- 2. Komissarov G.G., Lobanov A.V. //. Geochemistry International. 2014. V. 52. № 13. P. 1269.
- 3. Лозинова Т.А., Лобанов А.В., Ландер А.В. // Журн. физ. химии. 2015. Т. 89. № 8. С. 1329.
- 4. Лозинова Т.А., Лобанов А.В., Ландер А.В. // Там же. 2016. T. 90. № 11. C. 1739.
- 5. Лозинова Т.А., Ландер А.В. // Там же. 2015. Т. 89. № 5. C. 869.
- 6. Лозинова Т.А., Лобанов А.В., Ландер А.В. // Там же. 2017. T. 91. № 12. C. 2146.
- 7. Лозинова Т.А., Лобанов А.В., Ландер А.В. // Там же. В печати.
- 8. Scheller K.H., Sigel H. // J. Am. Chem. Soc. 1983. V. 105. P. 5891.
- 9. Sigel H. // Chem. Soc. Rev. 1993. V. 22. P. 255.
- 10. Sigel H. // Pure & Appl. Chem. 1998. V. 70. № 4. P. 969.
- 11. Bianchi E.M., Sajadi S.A.A., Sigel H. // Chem. Eur. J. 2003. V. 9. № 4. P. 881.
- 12. Metal Ions in Life Sciences. V. 11. / Eds. Sigel A., Sigel H., Sigel R. Dordrecht: Springer, 2013. P. 191.
- 13. Smith R.M., Martell A.E., Chen Y. // Pure Appl. Chem. 1991. V. 63. № 7. P. 1015.
- 14. Бугаенко Л.Т., Рябых С.М., Бугаенко А.Л. // Вестн. Моск. ун-та. Сер. 2. Химия. 2008. Т. 49. № 6. С. 363.
- 15. Лозинова Т.А., Ландер А.В. // Журн. физ. химии. 2014. T. 88. № 1. C. 120.
- 16. Kobayashi K. // J. Phys. Chem. B. 2010. V. 114. P. 5600.
- 17. Лозинова Т.А., Ландер А.В. // Биофизика. 2013. T. 58. № 3. C. 445.
- 18. Лобанов А.В., Рубцова Н.А., Веденеева Ю.А., Комиссаров Г.Г. // Докл. РАН. 2008. Т. 421. № 6. С. 773.

- 19. Lippert B. // Coord. Chem. Rev. 2000. V. 200–202. P. 487.
- 20. Зенгер В. Принципы структурной организации нуклеиновых кислот. М.: Мир, 1987. 583 с.
- 21. *Hamada Y.Z., Burkey T., Waddell E. et al.* // J. Appl. Solution Chem. and Modeling. 2013. V. 2. P. 77.
- 22. Van Holde K.E., Rossetti G.P. // Biochemistry. 1967. V. 6. № 7. P. 2189.
- 23. *Ferguson W.E., Smith C.M., Adams E.T., Barlow G.H.* // Biophys. Chem. 1974. V. 1. № 5. P. 325.
- 24. *Bielski B.H.J., Cabelli D.E., Arudi R.L., Ross A.B.* // J. Phys. Chem. Ref. Data. 1985. V. 14. № 4. P. 1041.
- Yoshimura A., Kato S. // Bull. Chem. Soc. Jpn. 1985.
   V. 58. № 5. P. 1556.
- 26. *Buxton G.V., Greenstock C.L., Helman W.P., Ross A.B.* // J. Phys. Chem. Ref. Data. 1988. V. 17. № 2. P. 513.
- 27. Boussicault F., Kaloudis P., Caminal C. et al. // J. Am. Chem. Soc. 2008. V. 130. № 26. P. 8377.
- 28. *Genereux J.C., Barton J.K.* // Chem. Rev. 2010. V. 110. P. 1642.