_____ ФИЗИЧЕСКАЯ ХИМИЯ ____ РАСТВОРОВ

УДК 542.61:544.344

ФАЗОВЫЕ И ЭКСТРАКЦИОННЫЕ РАВНОВЕСИЯ В СИСТЕМАХ ВОДА–АЛКИЛБЕНЗИЛДИМЕТИЛАММОНИЙ ХЛОРИД–АЗОТНАЯ КИСЛОТА ИЛИ ЕЕ СОЛИ

© 2019 г. А. Е. Леснов^{а, b, *}, О. С. Кудряшова^с, С. А. Денисова^d, Е. Ю. Чухланцева^a

^а Российская академия наук, Уральское отделение, Институт технической химии, Пермь, Россия

^b Пермский государственный аграрно-технологический университет им. академика Д.Н. Прянишникова, Пермь, Россия

^с Естественнонаучный институт Пермского государственного национального исследовательского университета, Пермь, Россия

^d Пермский государственный национальный исследовательский университет, Пермь, Россия *e-mail: lesnov_ae@mail.ru Поступила в редакцию 20.06.2018 г.

После доработки 20.06.2018 г. Принята к публикации 11.09.2018 г.

Изучены фазовые равновесия в расслаивающихся системах вода—алкилдиметиламмоний хлорид (катамин АБ)—азотная кислота или ее соли. Рассмотрено влияние природы высаливателей на процессы расслаивания систем. На примере извлечения хлоридных ацидокомплексов металлов из растворов HCl или H₂SO₄ в системе вода—катамин АБ–NH₄NO₃ показана возможность ее применения для жидкостной экстракции.

Ключевые слова: водные расслаивающиеся системы, гель-экстракция поверхностно-активными веществами, алкилбензилдиметиламмоний хлорид (катамин АБ) **DOI:** 10.1134/S0044453719050194

Проблеме повышения безопасности процессов жидкостной экстракции в настоящее время уделяется достаточно большое внимание [1]. Решить эту проблему можно используя водные системы без органического растворителя, расслаивающиеся в результате химического взаимодействия между компонентами раствора [2] или применяя поверхностно-активные вешества (ПАВ), образующие несмешиваемую с водными растворами солей фазу в результате высаливания [3]. Пригодные для процессов экстракции расслаивающиеся системы образуют ПАВ различной природы [4], в том числе катионные ПАВ – N-цетилпиридиний хлорид [5], алкилбензилдиметиламмоний хлорид (катамин АБ) [6], цетилтриметиламмоний бромид [7], Aliquat 336 [8], а также смеси анионных и катионных ПАВ-додецилсульфата натрия и цетилтриметиламмония бромида [9], додецилсульфата натрияи N-додецил-N-метилпипиридиний бромида [10], оксифоса Б и катамина АБ [11].

Катионные ПАВ в большинстве случаев являются структурными аналогами распространенных экстракционных реагентов — четвертичных аммониевых солей [12] и участвуют не только в процессах фазообразования, но и комплексооб-

разования, образуя ионные ассоциаты с ацидокомплексами металлов. Например, тиоцианатные комплексы кобальта, железа, цинка, меди количественно извлекаются в системе вода—катамин АБ—хлорид калия [13]. Преимуществом подобных систем является отсутствие в экстракционном процессе органических растворителей и других токсичных компонентов. Значительное содержание воды в обеих фазах позволяет экстрагировать гидрофильные соединения.

Создание экстракционных систем на основе ПАВ требует изучения влияния концентраций компонентов и природы высаливателя на фазовые равновесия. На примере систем вода-полиэтиленгликоль-высаливатель показано, что высаливающая способность солей щелочных металлов или аммония зависит от энергии гидратации аниона и в основном совпадает с рядом Гофмейстера [14]. Аналогичные результаты получены нами на примере неионных ПАВ-синтамидов [15] и анионного-оксифоса Б [16]. Однако в случае катионного ПАВ-катамина АБ, эта закономерность не выполняется. Лучшей высаливающей способностью обладают анионы с относительно низкой энергией гидратации, например, нитратионы.

Высали- ватель	Состав критической точки, мас. %			Смас %	5%
	вода	катамин АБ	соль	C, Mac. 70	5,70
LiNO ₃	95.5	3.5	1.0	от 2.2 до 80.5	81.2
NaNO ₃	97.1	2.0	0.9	от 1.8 до 47.0	57.7
NH ₄ NO ₃	88.7	10.0	1.3	от 1.0 до 66.5	76.3
$Ca(NO_3)_2$	93.6	5.7	0.7		64.5
$Al(NO_3)_3$	_	_	—	от 2.0 до 65.3	73.3
HNO ₃	—	—	—	от 4.4 до 37.0	—

Таблица 1. Некоторые свойства изотерм растворимости систем вода-катамин АБ-высаливатель

Обозначения: С – концентрация высаливателя в расслаивающихся смесях.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использован 50% водный раствор алкилбензилдиметиламмоний хлорида общей формулы [$C_nH_{2n+1}N^+(CH_3)_2CH_2C_6H_5$]Cl, где n = 10-18 (катамин АБ); ТУ 9392-003-48482528-99. ПАВ представляет собой вязкую, негорючую ($t_{c.восплам} =$ $= 354^{\circ}C$), прозрачную жидкость светло-желтого цвета неограниченно растворимую в воде. Остальные использованные реактивы квалификации "х. ч." и "ч. д. а.".

Изотермы растворимости систем вода-катамин АБ-азотная кислота или ее соли при 25°С построены с использованием метода сечений [17]. В качестве компонентов систем использованы NaNO₃, NH₄NO₃, LiNO₃ · 3H₂O, Al(NO₃)₃ · 9H₂O и 36% раствор азотной кислоты. Данные по растворимости солей в воде при 25°С взяты из справочника [18]. Количество кристаллизационной воды в кристаллогидратах контролировали методом термогравиметрии. Показатель преломления (n^{25}) равновесных жидких фаз измеряли на рефрактометре ИРФ-454Б. Критическая точка определена графически по правилу прямолинейного диаметра В.Ф. Алексеева.

Экстракцию проводили в делительных воронках, помещая в них 1 мл 50% раствора катамина АБ, 1 г нитрата аммония, 1.5 мл 0.1 моль/л раствора соли металла, рассчитанное количество раствора кислоты и доводили общий объем системы до 15 мл. Интенсивно встряхивали в течение 1 мин. После расслоения рафинат сливали, а экстракт растворяли в 50–70 мл дистиллированной воды, переносили в колбу для титрования, устанавливали необходимое значение рН и определяли степень извлечения ионов металлов комплексонометрически.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 93 № 5 2019

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Катамин АБ образует расслаивающиеся системы с KNO₃, NH₄NO₃, NaNO₃, Mg(NO₃)₂, LiNO₃, Al(NO₃)₃, Ca(NO₃)₂ и HNO₃. Обе фазы представляют собой прозрачные подвижные жидкости. Во всех случаях фаза ПАВ находится над водной и имеет характерное для ПАВ окрашивание.

На изотермах растворимости трехкомпонентных систем вода-катамин АБ-неорганический высаливатель установлены следующие фазовые области: L – гомогенная; L₁ + L₂ – двухфазного жидкого равновесия; L₁ + L₂ + S – монотектического равновесия; L + S – кристаллизации безводной соли или кристаллогидрата (рис. 1).

Фактически изученные системы являются условно трехкомпонентными, поскольку катамин АБ представляет собой смесь гомологов. Наличие гомологов с разной длиной углеводородного радикала оказывает влияние на физико-химические свойства системы с нитратом аммония. Значения показателя преломления жидких фаз смесей, точки состава которых лежат на предельной ноде отличаются в зависимости от соотношений компонентов. С увеличением соотношения вода:катамин АБ от 9:1 до 0:10 показатель преломления водной фазы незначительно увеличивается от 1.426 до 1.429 ($\Delta n = 0.003$). По-видимому, водная фаза в процессе расслаивания обогащается менее гидрофобными гомологами с более короткими углеводородными заместителями.

Топология ранее опубликованных нами диаграмм растворимости систем вода-катамин АБ-NaNO₃ [4] и вода-катамин АБ-Са(NO₃)₂ [19] аналогична.

Во всех системах области расслаивания имеют по одной критической точке (табл. 1) и прилегают к вершине воды, содержание которой в расслаивающихся смесях доходит до 98 мас. %. Возможность работы с разбавленными растворами является преимуществом данных систем для целей экстракции. Ноды в области расслаивания практически параллельны предельной ноде.

По высаливающей способности нитраты можно расположить в ряд:

 $LiNO_3 > NH_4NO_3 > Al(NO_3)_3 > NaNO_3$.

Наличие области двухфазного жидкого равновесия позволяет использовать изученные системы в процессах жидкостной экстракции. Оптимальная для экстракции смесь должна отвечать следующим требованиям: минимальное содержание ПАВ и соли; объем фазы ПАВ, достаточный для практических целей и обеспечивающий концентрирование извлекаемого вещества; сохранение расслаивания в разбавленных растворах; быстрое установление равновесия; невысокая вязкость фазы ПАВ.

Рис. 1. Диаграммы растворимости систем вода-катамин АБ-высаливатель при 25°С.

В изученных системах расслаивание сохраняется в широких интервалах соотношений компонентов. Однако работа с нитратами лития, алюминия или кальция осложнена тем, что данные соли гигроскопичны и при комнатной температуре существуют в виде кристаллогидратов. Кроме этого соли лития относительно дороги, а присутствие катионов кальция и алюминия будет затруднять дальнейшее комплексонометрическое определение ионов тяжелых металлов. Таким образом, наиболее перспективными для рассмотрения в качестве экстракционных являются системы с нитратами аммония и натрия.

В работе изучены экстракционные возможности системы вода-катамин АБ-NH₄NO₃. Состав равновесных жидких фаз системы вода—катамин АБ—нитрат аммония представлен в табл. 2. Из данных табл. 2 следует, что в фазе, обогащенной ПАВ (экстракте), содержатся значительные концентрации соли и воды, что отличает систему вода—катамин $AE-NH_4NO_3$ от традиционных экстракционных систем. Эта особенность позволяет извлекать гидрофильные соединения из водных растворов.

Изучено влияние кислотности среды на соотношение объемов фаз. Для этого в градуированную пробирку с притертой пробкой помещали 1 мл раствора катамина АБ, 1 г NH₄NO₃, создавали необходимую концентрацию кислоты или щелочи и доводили объем раствора до 15 мл. В отсут-

Концентрация компонентов, мас. %									
Водная фаза			Фаза ПАВ						
NH ₄ NO ₃	катамин АБ	вода	NH ₄ NO ₃	катамин АБ	вода				
4.5	1.1	94.4	2.6	28.0	69.4				
6.4	1.1	92.5	3.3	46.1	50.6				
8.3	1.1	90.6	3.9	69.2	26.9				

Таблица 2. Состав равновесных жидких фаз системы вода-катамин АБ-NH₄NO₃ при 25°С

ствии кислот или щелочей объем фазы ПАВ составил 1 мл, pH 5.6. Область расслаивания существует в достаточно широком интервале кислотности: до 12 моль/л HNO_3 , 11.5 моль/л H_2SO_4 и до 7.5 моль/л HCl. Объем фазы ПАВ при увеличении концентрации кислоты изменяется незначительно. Фаза ПАВ представляет собой прозрачную, подвижную жидкость бледно-желтого цвета, которая находится над водной фазой при всех изученных концентрациях неорганических кислот.

Расслаивание сохраняется в щелочной среде до концентрации 7.9 моль/л NaOH и 4.5 моль/л NH₃. При этом наблюдается небольшое уменьшение объема фазы ПАВ от 1.0 до 0.8 мл при введении NaOH. Фаза ПАВ представляет собой прозрачную, подвижную жидкость бледно-желтого цвета, которая находится над водной фазой. При высокой концентрации шелочи фаза ПАВ становится мутной.

Результаты экстракции ионов металлов в зависимости от концентрации HCl представлены на

Рис. 2. Распределение 1×10^{-4} моль ионов металлов в системе вода–катамин АБ– NH_4NO_3 –HCl.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 93 № 5 2019

рис. 2. В отсутствие неорганической кислоты экстракция большинства ионов металлов неколичественная. Введение HCl приводит к увеличению степени извлечения элементов. Наибольший интерес представляет экстракция хлоридных ацидокомплексов таллия(III) и кадмия, извлекающихся количественно при концентрации кислоты более 2 моль/л. Увеличение концентрации кислоты более 6 моль/л приводит к гомогенизации системы.

Введение H_2SO_4 приводит к увеличению экстракции большинства элементов (рис. 3). Наибольший интерес в этой системе представляет извлечение таллия(III). Для количественного извлечения весьма устойчивого тетрахлороталлата достаточно 0.5 моль/л концентрации H_2SO_4 .

Результаты экстракции ионов металлов в зависимости от концентрации HNO₃ представлены на рис. 4. Введение HNO₃ приводит к увеличению экстракции таллия(III). Для количественного извлечения весьма устойчивого тетрахлороталлата достаточно 0.5 моль/л концентрации HNO₃.

Экстракцию ионов металлов из кислых сульфатных и нитратных растворов, по-видимому, можно объяснить наличием хлорид-ионов в молекуле катамина АБ. Небольших концентраций хлоридов оказывается достаточно для образования устойчивых ацидокомплексов металлов, та-

ких, как $TlCl_4^-$, $CuCl_2^-$, которые извлекаются по анионообменному механизму в виде ионных ассоциатов с алкилбензилдиметиламмонием.

Расширить экстракционные возможности изученной системы можно путем дополнительного введения комплексообразующих реагентов. Введение в экстракционную систему 1 мл 0.001 моль/л

Рис. 3. Распределение 1×10^{-4} моль ионов металлов в системе вода-катамин АБ-NH₄NO₃-H₂SO₄.

Рис. 4. Распределение 1×10^{-4} моль ионов металлов в системе вода–катамин АБ–NH₄NO₃–HNO₃.

раствора таких красителей, как ализаринкомплексон, сулфарсазен, бромпирогалловый красный, 1-(2-пиридилазо)-2-нафтол, пирогалловый красный не меняет соотношения фаз. Органические реагенты практически полностью переходят в фазу ПАВ, которая приобретает интенсивную окраску. Водная фаза бесцветна.

Таким образом, расслаивающаяся система вода-катамин АБ-нитрат аммония, не содержащая токсичных и пожароопасных компонентов, может использоваться для экстракционного извлечения ионов металлов из водных растворов. Способность экстракта растворяться в воде позволяет исключить из процесса стадию реэкстракции.

Работа выполнена при финансовой поддержке Министерства образования и науки Российской Федерации (задания 4.5947.2017/6.7 и 5.6881.2017/8.9).

СПИСОК ЛИТЕРАТУРЫ

1. *Paleologos E.K.* The Application of Green Solvents in Separation Processes. Elsevier, 2017. 560 p.

- 2. Петров Б.И., Леснов А.Е., Денисова С.А. // Журн. аналит. химии. 2015. Т. 70. № 6. С. 563.
- 3. Леснов А.Е., Денисова С.А. // Вестн. Пермского унта. Сер. Химия. 2014. Вып. 1 (13). С. 79.
- Леснов А.Е., Денисова С.А., Кудряшова О.С. и др. // Журн. прикл. химии. 2010. Т. 83. № 8. С. 1379.
- Dobashi Y., Murakami Y., Fujiwara I. et al. // Solvent Extraction Research and Development – Japan. 2009. V. 16. P. 133.
- Кудряшова О.С., Бортник К.А., Чухланцева Е.Ю. и др. // Журн. неорган. химии. 2013. Т. 58. № 2. С. 290.
- Zeinab Farouk Akl // J. Radioanal. Nucl. Chem. 2016. V. 308. P. 693.
- 8. Yu. Yi-Jun, Su. Guan-Yong, Lam. Michael H.W. et al. // Chin. J. Anal. Chem. 2009. V. 37. № 12. P. 1717.
- 9. Teng H., Li N., Zhu X., Chen Y. // J. Dispersion Science and Technology. 2011. V. 32. Is. 6. P. 828.
- Dai C., Liu Y., Wang Sh. et al. // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2015. V. 468. P. 322.
- Елохов А.М., Богомолов Н.В., Денисова С.А. и др. // Изв. А Н. Сер. химическая. 2018. № 2. С. 206.
- 12. *Межов Э.А.* Экстракция аминами и четвертичными аммониевыми основаниями: справочник. М.: Энергоатомиздат, 1999. 376 с.
- Леснов А.Е., Денисова С.А., Чухланцева Е.Ю. и др. // Химия в интересах устойчивого развития. 2015. Т. 23. № 4. С. 361.
- Нифантьева Т.И., Матоушова В., Адамцова З., Шкинев В.М. // Высокомолекуляр. соединения. 1989. Т. 31. № 10. С. 2131.
- 15. Леснов А.Е., Головкина А.В., Кудряшова О.С., Денисова С.А. // Журн. физ. химии. 2016. Т. 90. № 8. С. 1200.
- 16. *Елохов А.М., Леснов А.Е., Кудряшова О.С. //* Журн. неорган. химии. 2017. Т. 62. № 9. С. 1274.
- Никурашина Н.И., Мерцлин Р.В. Метод сечений. Приложение его к изучению многофазного состояния многокомпонентных систем. Саратов: Саратовск. ун-т, 1969. 122 с.
- Коган В.Б., Фридман В.М., Кафаров В.В. Справочник по растворимости. Т. 1. Кн. 1. М.-Л.: АН СССР, 1962. 248 с.
- Кудряшова О.С., Леснов А.Е., Чухланцева Е.Ю. и др. // Вестн. Пермского ун-та. Серия химия. 2017. Т. 7. Вып. 2. С. 126.