_____ ФИЗИЧЕСКАЯ ХИМИЯ ____ РАСТВОРОВ

УДК 544.01 : 544.012 : 544.015.5

ВЛИЯНИЕ РАСПРЕДЕЛЕНИЯ 4(2)-ОКТИЛАМИНОПИРИДИНОВ В СИСТЕМЕ ВОДА (HCl)/ХЛОРОФОРМ НА ЭКСТРАКЦИЮ ИОНОВ МЕТАЛЛОВ ИЗ ХЛОРИДНЫХ РАСТВОРОВ

© 2019 г. Н. А. Борщ^{*a*,*}, Л. С. Агеева^{*a*}, А. Ю. Фролова^{*a*}

^а Юго-Западный государственный университет, 305040, Курск, Россия

* *e-mail: nborsch@mail.ru* Поступила в редакцию 27.06.2018 г. После доработки 10.07.2018 г. Принята к публикации 11.09.2018 г.

Исследованы распределения 4(2)-октиламинопиридинов (4(2)-ОАП) как экстрагентов в системе $H_2O(HCl)/CHCl_3$ методами УФ- и ИК-спектроскопии, потенциометрии. Рассчитаны: константа ионизации монопротонированной формы 4-ОАП, логарифм константы распределения 4-ОАП и его хлорида, логарифм константы экстракции соляной кислоты. Эти константы сравниваются с аналогичными для 2-ОАП. Приведена изотерма ($20 \pm 2^{\circ}C$) экстракции HCl 0.1 М 4-ОАП в хлороформе. Обсуждены различие в химизме экстракции соляной кислоты 2- и 4-ОАП и специфика использования этих реагентов для экстракции металлов из хлоридных растворов.

Ключевые слова: 4(2)-октиламинопиридин, константа ионизации монопротонированной формы 4-октиламинопиридина, экстракция HCl 4-октиламинопиридином, константа экстракции HCl 4-октиламинопиридином, константа распределения 4-октиламинопиридина и его хлорида между хлороформом и водой

DOI: 10.1134/S0044453719050066

Впервые синтезированный [1, 2] и предложенный автором в качестве экстрагента для выделения и разделения платиновых металлов 2-октиламинопиридин (2-ОАП) [3–5] в настоящее время широко применяется для экстракции как платиновых, так и других редких и рассеянных металлов. Так, его использовали для экстракционного выделения Pd(II), Rh(III), Ir(III) и Ru(III) – [6–9] соответственно, а также Th(IV), Tl(III), Ga(III), In(III), La(III), Sm(III), Zr(IV), Mo(VI), Cr(VI), V(V), Bi(III), Pb(II), Hg(II) – [10–22] соответственно.

В зависимости от условий экстрагируются ионные ассоциаты с металлом в анионной части, нейтральные координационно-сольватированные соединения, а также соединения, содержащие амин во внешней и внутренней координационной сфере металла [3, 5].

Напротив, 4-октиламинопиридин (4-ОАП) в качестве экстрагента на металлы практически не исследовался: известна работа [23], в которой показана возможность количественного извлечения иридия (III, IV) 4-ОАП в хлороформе из солянокислых растворов с очень высокими коэффициентами распределения, предсказанная в [1]. Кроме того, предложена методика экстракционного выделения малых количеств платиновых металлов (Pd, Pt, Ph, Ir) из сложных по составу солянокислых растворов медно-никелевого производства растворами 4-ОАП в хлороформе с последующим определением методом атомноэмиссионной спектроскопии с индуктивно-связанной плазмой [24]. В настоящей работе в качестве первого этапа исследований 4-ОАП как экстрагента изучено его распределение в двухфазной системе $H_2O(HC1)/CHC1_3$. Полученные результаты исследований 4-ОАП обсуждаются совместно с аналогичными результатами для 2-ОАП, полученными автором ранее [2, 3].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Реактивы и оборудование. Использованы следующие реактивы: 4-аминопиридин (98%, Acros Organics); амид натрия (99%, Acros Organics); октил йодистый (98%, Acros Organics); диоксан ("ч.д.а."); хлороформ ("ч."); этиловый спирт (ректификат); гексан ("ч"); изопропиловый спирт ("х.ч."); уксусная кислота ("х.ч."); соляная кислота ("х.ч."); хлорная кислота ("ч.д.а."); гидрооксид калия ("ч.д.а."); бидистиллированная вода H₂O, полученная перегонкой на лабораторном дистилляторе. Для отбора объемов жидкостей использовали аналитическую мерную посуду, а для измерения массы веществ — аналитические весы "Невские ВСЛ-200/0.1А".

Потенциометрические измерения проводили при температуре 20 ± 2°С с использованием потенциометра "Мультитест КСЛ-101", стеклянного водородного и хлорсеребряного электрода сравнения, магнитной мешалки.

ИК-спектры регистрировали на ИК-Фурье спектрометре IS 10 Nicolet с приставкой СМАРТ (кристалл – германий).

МЕТОДИКА ЭКСПЕРИМЕНТА

Синтез 4-ОАП и его хлорида. 4-ОАП получали по реакции Чичибабина взаимодействием 4-аминопиридина (4-АП) и амида натрия в сухом диоксане с последующим алкилированием йодистым октилом [25]. 4-ОАП выделяли из реакционной массы экстракцией гексаном и перекристаллизовывали из гексана, затем из ацетона (99.9%, $t_{\text{пп}} =$ $= 64 \pm 0.2^{\circ}$ C). Брутто- и структурная формулы подтверждены данными элементного анализа, ИК- и ПМР-спектроскопии. Хлорид ОАП получали, встряхивая 100 мл 0.1 М раствора 4-ОАП с 100 мл 1 М раствора HCl. Органическую фазу отделяли и фильтровали через бумажный фильтр, после чего хлороформ испаряли под воздушной струей. Остаток сушили при $t = 60^{\circ}$ С. Выход – 95%. Содержание основного вещества по данным потенциометрического титрования — 99.8%.

Спектрофотометрические измерения. Навеску образца массой 5–10 мг и помещали на кристалл приставки СМАРТ, после чего регистрировали ИК-спектр. Для регистрации электронных спектров в УФ-области и измерения оптической плотности растворов использовали спектрофотометр UV-1800 (Shimadzu) и кварцевые кюветы (*l* = 1 см).

Опыты по распределению 4-ОАП между хлороформом и водой проводили в делительной воронке при $25 \pm 2^{\circ}$ С и времени контакта фаз 15 мин. Буферные растворы готовили на основе 0.01 М H₃PO₄, чтобы исключить экстракцию кислоты в органическую фазу. Концентрацию ОАП в CHC1₃, предварительно приведенным в контакт (15 мин) с буферным раствором того же состава, что и в опытах по распределению, поддерживали постоянной и равной 4.3×10^{-5} М.

Соляную кислоту экстрагировали 0.1 М раствором ОАП в СНС1₃ в пробирках с притертой пробкой при равных объемах органической и водной фаз и времени контакта 15 мин. Предварительно установлено, что равновесие достигается за 5 мин. Фазы разделяли центрифугированием. Равновесные концентрации компонентов рассчитывали по результатам потенциометрического титрования.

Потенииометрическое титрование использовали для определения содержания основного вещества в 4-ОАП и его хлориде, а также для определения равновесных концентраций компоненпри экстракции НСІ 4-ОАП. TOB Ппи определении концентрации НСІ и свободного 4-ОАП в органической фазе пробу титровали в растворах изопропилового спирта и уксусной кислоты соответственно растворами КОН и HClO₄ в этиловом спирте. Концентрацию соляной кислоты и хлорида 4-ОАП в водной фазе рассчитывали по олной потенииометрической кривой. на которой отчетливо обозначались два скачка потенциалов. При значительно большей концентрации HCl в водной фазе по сравнению с концентрацией хлорида 4-ОАП определение проводили из разных проб. В первой пробе находили суммарную концентрацию HCl, затем во второй пробе нейтрализовали основную часть HCl до pH 3-3.5 и оттитровывали остаток HCl и хлорида 4-ОАП; полученной потенциометрической кривой по рассчитывали концентрацию хлорида 4-ОАП, а по разности суммарного содержания HCl и содержания хлорида 4-ОАП рассчитывали содержание несвязанной кислоты.

Титрование проводили в стеклянном стакане вместимостью 100 мл, в который помещали 30 мл раствора 4-ОАП (хлорида 4-ОАП) в этиловом спирте (0.02 М) или пробу для определения компонентов при экстракции HCl, доведенную до объема 30 мл растворителем. Стакан устанавливали на магнитную мешалку, опускали стеклянный и хлорсеребряный электроды и титровали раствором щелочи или кислоты в зависимости от определяемого компонента. В процессе титрования измеряли значения ΔE , мв с точностью ± 1 мв в зависимости от прибавленного объема титранта. По данным измерений строили кривую титрования в координатах $\Delta E = f(V_{HC1})$. Точку эквивалентности находили как середину интервала скачка ΔE .

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Пиридин и его производные — сильные органические основания, поэтому экстракция металлов из растворов HCl возможна как по анионообменному, так и по координационно-сольватному механизму. Для понимания механизма экстракции весьма важно знание констант, характеризующих кислотно-основные свойства ОАП, константы распределения нейтральной молекулы и хлорида, константы экстракции соляной кислоты. Эти константы входят в константу экстракции иона металла. Протолитические свойства 4(2)-ОАП (Am), как бифункциональной молекулы, можно описать тремя константами кислотно-основного равновесия:

ВЛИЯНИЕ РАСПРЕДЕЛЕНИЯ 4(2)-ОКТИЛАМИНОПИРИДИНОВ

$$AmH_{2}^{+2} \leftrightarrow AmH^{+} + H^{+},$$

$$K_{1} = [AmH^{+}][H^{+}]/[AmH_{2}^{+2}],$$

$$AmH^{+} \leftrightarrow Am + H^{+},$$

$$K_{2} = [Am][H^{+}]/[AmH^{+}],$$

$$Am \leftrightarrow Am^{-} + H^{+},$$

$$K_{3} = [Am^{-}][H^{+}]/[Am].$$

Для понимания специфики экстракции ионов металлов из кислых и слабокислых растворов HCl предварительно изучены ИК-спектры 4-ОАП и его хлорида, а также УФ-спектры свободного амина и его протонированной формы в воде.

В ИК-спектре 4-ОАП, получаемого из 4-АП [25], появляются полосы поглощения валентных и деформационных колебаний $-CH_3$ и $-CH_2$ -групп октильного радикала при 2956, 2924, 2850 (v_{as} , v_s) и 1467, 1370, 725 (δ_{as} , δ_s) см⁻¹, которые отсутствуют в ИК-спектре 4-АП. Одновременно меняется структура полос валентных колебаний N–H, которая соответствует переходу от первичного к вторичному амину. Так, исчезают две полосы поглощения при 3433 и 3300 см⁻¹ (v_{as} , v_s) и взамен появляется одна новая при 3230 см⁻¹. При этом присутствуют все остальные полосы поглощения пиридинового кольца, претерпевающие небольшие сдвиги в сторону меньших частот.

Как и в случае 2-ОАП [2] при присоединении протона к молекуле 4-ОАП повышаются частоты колебаний ароматического кольца (v_{c-c} , δ_{cch}), появляется широкая полоса колебания v_{NH+} ("аммонийная полоса") в области более высоких частот 2600–3000 см⁻¹, а полоса v_{NH} аминогруппы уширяется и сдвигается в область более низких частот. Все это свидетельствует о присоединении протона по гетероциклическому азоту и образовании водородных связей противоиона (хлорида) как с "аммонийным", так и с протоном аминогруппы.

В УФ-спектре нейтральной и протонированной формы 4-ОАП (рис. 1) наблюдаются две полосы поглощения с максимумами при 254.5 и 213.2 нм и 274 и 209.6 нм, соответственно (π - π *переходы электронов). Присоединение протона к молекуле 4-ОАП приводит к сильному батохромному сдвигу (Δ = 19.5 нм) низкоэнергетического π - π *-перехода и гипсохромному сдвигу высокоэнергетического π - π *-перехода (Δ = 3.6 нм).

Из анализа УФ-спектров и сравнения с литературными данными следует, что введение октильного радикала в аминогруппу 4-аминопири-

Рис. 1. УФ-спектры растворов 4-ОАП (1.25×10^{-5} M, l = 1 см): 1 - 0.01 M HCl, 2 - 0.01 M NaOH.

дина (242.3 нм, р $K_2 = 9.18$ [26]) приводит к батохромному сдвигу низкоэнергетического $\pi - \pi^*$ перехода ($\Delta = 12.2$ нм) и повышению основности гетероциклического азота за счет индукционного эффекта.

Для описания процесса экстракции HCl достаточно знать константу ионизации монопротонированной формы K_2 , так как в этом случае протон присоединяется к азоту гетероцикла. Присоединение второго протона возможно лишь в очень кислых средах. Можно также не учитывать диссоциацию 4(2)-ОАП (K_3), так как известно, что аминопиридины, подобно пиразолам и амидинам, представляют собой очень слабые NH-кислоты и образуют натриевую соль только при действии амида натрия.

По УФ-спектрам выбирали длину волны для определения K_2 : максимальная разность между поглощением нейтральной и протонированной формы 4-ОАП наблюдается в интервале 240–270 нм. Для определения K_2 использовали спектрофотометрическую методику [27], по которой значения концентрационной константы (pK_2^C) для серии растворов с одинаковой концентрацией 4-ОАП и разными значениями pH рассчитывают по формуле: $pK_2^C = pH + lg(A - A_H)/(A_H - A)$, где A – оптическая плотность раствора с известным pH; A_H – оптическая плотность нейтральной формы (pH 12); A_{Π} – оптическая плотность протонированной формы (pH 2), определенные при одной и той же длине волны.

Для поддержания определенного значения pH использовали буферные растворы, которые готовили, смешивая 0.05 M раствор $Na_2B_4O_7 \cdot 10H_2O$ с 0.1 M HCl или 0.1 M NaOH. Для перехода к термодинамическому значению константы ионизации

Таблица 1. Результаты определения константы ионизации протонированного 4-октиламинопиридина: $20 \pm 2^{\circ}$ C, 1×10^{-4} M, длина кюветы 1 см, $\lambda = 240$ нм, $A_{\rm H} = 0.902$, $A_{\rm II} = 0.218$

pН	A	$-(A-A_{\rm H})$	$-(A_{\Pi}-A)$	$\frac{\lg(A-A_{\rm H})/(A_{\rm II}-A)}{\log(A-A_{\rm H})}$	pK_2^C
8.37	0.234	0.668	0.016	1.62	9.97
8.70	0.264	0.638	0.046	1.14	9.84
9.00	0.304	0.598	0.086	0.84	9.84
9.70	0.476	0.426	0.258	0.22	9.92
9.80	0.523	0.379	0.305	0.09	9.89

Таблица 2. Результаты определения коэффициентов распределения 4-ОАП в системе вода–хлороформ в зависимости от рН водной фазы ($\lambda = 300$ нм, $A_0 = 1.86$, $C_{\text{ОАП}} = 5 \times 10^{-5}$ М)

N⁰	pН	A	r	D	$-\lg D$
1	5.2	0.061	0.25	0.136	0.866
2	5.58	0.077	0.25	0.173	0.762
3	5.97	0.143	0.25	0.333	0.476
4	6.40	0.192	0.25	0.460	0.337
5	6.75	0.235	0.25	0.578	0.238
6	7.18	0.338	0.25	0.888	0.052

 (pK_2^T) учитывали влияние ионной силы раствора, создаваемой буферным раствором по формуле:

$$pK_2^T = pK_2^C - 0.505\sqrt{\mu}/(1 + 1.6\sqrt{\mu})$$

Среднее значение ионной силы, создаваемое буферным раствором, составило $\mu = 0.165$.

В табл. 1 приведены результаты, по которым рассчитывались средние значения *K*₂ 4-ОАП.

Средние значения констант составили: $pK_2^C = 9.89 \pm 0.07$; $pK_2^T = 9.77 \pm 0.07$ (P = 0.95, n = 5).

Рис. 2. Зависимость логарифма коэффициента распределения 4-ОАП между хлороформом и водой от pH.

Константа распределения между хлороформом и водой (K_D). Константа распределения длинноцепочечных аминов, как правило, велика. Поэтому определение таких констант в прямых опытах, т.е. путем спектрофотометрического измерения равновесных концентраций амина в водной и органической фазе затруднено. В этом случае уже нужно учитывать коэффициенты активности, а также ассоциацию амина в органической фазе. В случае аминопиридинов ассоциация особенно высока за счет образования водородных связей. Поэтому для определения константы распределения мы воспользовались уравнением:

$$\lg D = \mathrm{pH} + \lg K_D - \mathrm{p}K_\mathrm{a},$$

применимость которого показана при определении констант ионизации ряда гетероциклических аминов [27]. Коэффициенты распределения (D) в двухфазной системе определяли спектрофотометрически. При низкой концентрации ассоциацией 4-ОАП в органической фазе можно пренебречь, так как хлороформ способен к образованию прочных водородных связей с донорами электронов. Кроме того, активность амина в органической фазе можно приравнять к его концентрации. Результаты определения константы распределения 4-ОАП приведены в табл. 2.

Расчетные формулы:

$$Dr/(1 + Dr) = A/A_0; \quad D = A/r(A_0 - A),$$

где *r* – отношение объема органической фазы к водной.

На рис. 2 приведена зависимость $\lg D = f(pH)$, экстраполяцией которой на значение pH 0 можно определить $\lg K_D - pK_a = -3.04$. Откуда $\lg K_D = 9.77 - 3.04 = 6.73$.

Экстракцию соляной кислоты 0.1 М раствором 4-ОАП в хлороформе исследовали в интервале 0.05–12 М HCl. Изотерма экстракции ($25 \pm 2^{\circ}$ С) приведена на рис. 3. Как видно на рис. 3, количественная экстракция HCl 0.1 М 4-ОАП имеет место при концентрации 0.2–3 М HCl в водной фазе. При концентрации 6–10 М HCl в водной фазе протекает сверхстехиометрическая экстракция HCl с присоединением второй молекулы HCl за счет водородной связи. При концентрации соляной кислоты 12 М в водной фазе после экстракции образуется третья фаза, в которой концентрация HCl составляет 2.57 М.

Принимая во внимание полученные выше результаты, уравнение экстракции соляной кислоты по механизму нейтрализации можно записать в следующем виде:

$$Am_0 + H_B^+ + Cl_B^- \leftrightarrow [AmH^+Cl^-]_0$$

с константой экстракции:

ским значениям:

$$K_{\text{ex}}^{M} = 4.68 \pm 0.4, \quad K_{D}^{M}(\text{Cl}^{-}) = 1.54 \pm 0.12$$

(P = 0.95, n = 5).

12M

Как и в случае 2-ОАП, константа экстракции HCl включает в себя константу диссоциации протонированной формы амина, константы распределения нейтральной молекулы амина и его соли. При этом справедливы следующие уравнения [2]:

$$K_{ex} = \frac{K_D(Cl^-)}{K_a K_D(Am)},$$

$$\lg K_{ex} = \lg K_D(Cl^-) - \lg K_a - \lg K_D(Am),$$

$$\lg K_{ex} = \lg K_D(Cl^-) + pK_a - \lg K_D(Am),$$

K (C1⁻)

экстракции HCl по экспериментальным значениям входящих в нее констант, проверяя, таким образом, корректность выполненного эксперимента в целом, в нашем случае: 4.68 ≈ 1.54 + 9.77 --6.73 = 4.58. Как видно, наблюдается совпадение экспериментальной и рассчитанной констант экстракции в пределах погрешности эксперимента. Сравнивая результаты исследования экстрак-

ционного поведения 4-ОАП в двухфазной системе вода (HCl) – хлороформ с аналогичными для 2-ОАП [2], следует отметить, что $\lg K_{ex}$ в случае 4-ОАП заметно выше: 4.68 против 4.13. Как видно из вышеприведенных уравнений, это обусловлено, прежде всего, тем, что его р K_a более чем на два порядка выше: 9.77 против 7.35. Напротив, в случае 2-ОАП lg K_D (Cl⁻) более чем на порядок выше: 2.49 против 1.54, в то время как константа распределения свободного амина заметно ниже: 5.94 против 6.73.

Наблюдаемые сходство и различие в экстракционном поведении 2- и 4-ОАП в двухфазной системе вода (HCl) – хлороформ можно объяснить, если принять во внимание специфику строения и распределения электронной плотности в свободном амине и его катионе на примере простой и

Таблица 3.	Результаты опр	еделения конст	анты экстракци	и HCl и ко	нстанты расг	пределения хло	рида 4-ОАП

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ 2019 том 93 № 5

Равновесные концентрации компонентов в воде и хлороформе, М							
$[AmH^+]_{B}$	$[\mathrm{H}^+]_{\mathrm{B}}$	[Cl ⁻] _B	[Am] ₀	[AmH ⁺ Cl ⁻] ₀	$K_D^{\circ}(\text{Cl})$	$K_{\rm ex}^{\rm c}$	
0.0350	0.0017	0.0367	0.0487	0.0273	1.33	3.95	
0.0390	0.0017	0.0407	0.0273	0.0452	1.45	4.37	
0.0406	0.0017	0.0423	0.0080	0.0663	1.56	5.06	
0.0433	0.0033	0.0466	0.0016	0.0663	1.51	5.40	
0.0273	0.0620	0.0893	0.0007	0.0858	1.54	4.33	
	Средние	1.48 ± 0.12	4.62 ± 0.40				

 $K_D^T(\mathrm{Cl}^-) = K_D^C(\mathrm{Cl}^-)\gamma = \frac{[\mathrm{A}\mathrm{H}\mathrm{H}^+]_{\mathrm{B}}[\mathrm{Cl}^-]_{\mathrm{B}}\gamma_{\mathrm{Cl}^-}^{\mathrm{B}}\gamma_{\mathrm{A}\mathrm{m}\mathrm{H}^+}^{\mathrm{B}}}{[\mathrm{A}\mathrm{m}\mathrm{H}^+]_{\mathrm{B}}[\mathrm{Cl}^-]_{\mathrm{B}}\gamma_{\mathrm{Cl}^-}^{\mathrm{B}}\gamma_{\mathrm{A}\mathrm{m}\mathrm{H}^+}^{\mathrm{B}}}$

Здесь K_{ex}^T и K_{ex}^C , $K_D^T(\text{Cl}^-)$ и $K_D^C(\text{Cl}^-)$ – термодина-мические и концентрационные константы соответственно, γ – общий и индивидуальные коэффициенты активности соответствующих равновесных форм. По этим уравнениям из величин равновесных концентраций компонентов (табл. 3) рассчитывали концентрационные константы:

 $K_{\text{ex}}^{C} = 4.62 \pm 0.4, \quad K_{D}^{C}(\text{Cl}^{-}) = 1.48 \pm 0.12$ (P = 0.95, n = 5).

При учете коэффициентов активности компо-

нентов в водной фазе (коэффициентами активно-

сти амина и его соли в органической фазе, вили-

мо, можно пренебречь [28]) получены исправлен-

ные значения этих констант (K^{M}), которые незначительно отличаются от концентрацион-

ных и, по-видимому, близки к термодинамиче-

и константой распределения хлорида ОАП:
$$[AmH^+Cl^-]_0 \gamma^{\circ}_{AmH^+Cl^-}$$

 $K_{\text{ex}}^{T} = K_{\text{ex}}^{C} \gamma = \frac{[\text{AmH}^{+}\text{Cl}^{-}]_{0} \cdot \gamma_{\text{AmH}^{+}\text{Cl}^{-}}^{\circ}}{[\text{Am}]_{0}[\text{H}^{+}]_{\text{B}}[\text{Cl}^{-}]_{\text{B}} \cdot \gamma_{\text{H}^{+}}^{\text{B}} \cdot \gamma_{\text{Cl}^{-}}^{\circ} \cdot \gamma_{\text{Am}}^{\circ}}$

Рис. 3. Изотерма экстракции (20 ± 2°С) HCl 0.1 М 4-

используя которые можно рассчитать константу

ОАП в хлороформе.

Рис. 4. Предельные (резонансные) структуры нейтральной и протонированной молекулы 2-ОАП.

наглядной для химика концепции резонансных структур (рис. 4, 5).

Вклад пиридониминной структуры в свободном 2-ОАП, рассчитанный автором экспериментально по данным ЭСХА спектроскопии на атомах азота [1, 3], составляет 9% (степень делокализации – 18%), что приводит к значительно большей основности гетероциклического азота в сравнении с алкилпиридинами [2]. В случае 4-ОАП этот вклад может быть еще большим, так как его р K_a выше, чем у 2-ОАП, более чем на два порядка. Протонированный амин представляет собой электронодефицитную структуру, поэтому следует ожидать большую "глубину резонанса" в сравнении с нейтральной молекулой. Так, для хлорида 2-ОАП степень делокализации заряда, рассчитанная экспериментально по данным ЭС-ХА спектроскопии и химическим сдвигам протонов на атомах азота [1], составляет 56%. Зависимость константы распределения хлорида амина от "глубины резонанса" можно показать на следующем примере. Константу распределения хлорида амина можно представить в виде двухфазной константы устойчивости ассоциата: $K_D(Cl^-) =$ $= K_D(Am)\beta_{acc},$ где

$$\beta_{\text{acc}} = [\text{AmH}^{+}\text{Cl}^{-}]_{\text{B}} / [\text{AmH}^{+}]_{\text{B}} [\text{Cl}^{-}]_{\text{B}}$$

$$M \quad K_{\text{D}} = [\text{AmH}^{+}\text{Cl}^{-}]_{\text{b}} / [\text{AmH}^{+}\text{Cl}^{-}]_{\text{c}}.$$

Константа устойчивости ассоциата в водной фазе, определяемая из выражения $\Delta G = -RT \ln \beta_{acc}$, обусловлена, в основном, разностью энергий взаимодействия ионной пары и энергии гидратации катиона и аниона, причем в случае органического катиона большого размера основной вклад в энергию гидратации вносит гидратация неорганического аниона. В случае 4(2)-ОАП энергия взаимодействия ионной пары повышается за счет делокализации заряда. Поэтому двухфазная константа устойчивости хлорида 4-ОАП на порядок, а хлорида 2-ОАП на два порядка выше, чем в случае хлорида *n*-изооктиланилина [29], у которого, безусловно, степень сопряжения электронной пары на азоте и ароматического кольца меньше,

Рис. 5. Предельные (резонансные) структуры нейтральной и протонированной молекулы 4-ОАП.

чем у 2(4)-ОАП. Выигрыш в энергии делокализации в случае 2-ОАП по сравнению с *n*-изооктиланилином достигает 5.8 ккал/моль [1].

Стабилизация за счет делокализации заряда является, по-видимому, основной причиной, почему сверхстехиометрическая экстракция соляной кислоты 4-ОАП начинается после достижения концентрации HCl 6 моль/л и достигает максимально возможного значения для экстрагируемого ассоциата состава Am · 2HCl при концентрации HCl 10 моль/л. Присоединение второй молекулы HCl приводит к потере энергии делокализации. В случае 2-ОАП это приводит к дополнительной потере за счет разрыва энергетически выгодного цикла, основанного на водородных связях [1, 2]. Поэтому сверхстехиометрическая экстракция HCl 2-ОАП в сравнении с 4-ОАП начинается из более кислых растворов (9 моль/л) и не достигает максимально возможной величины даже из концентрированной HCl.

Как показано ранее для 2-ОАП [1, 30], степень делокализации заряда и, соответственно, энергия делокализации больше для анионов с высокой поляризуемостью. Для таких анионов также меньше энергия гидратации. Следовательно, в случае 4(2)-ОАП высокие двухфазные константы устойчивости следует ожидать для анионов с высокой поляризуемостью. В свою очередь отношение двухфазных констант устойчивости представляет собой константу обмена анионов в системе с катионным экстрагентом, т.е. $K_{ob(1,2)} =$ $= K_D(A_1)/K_D(A_2)$. Таким образом, при экстракции ионов металлов 4(2)-ОАП в виде ионных ассоциатов наибольшие константы обмена следует ожидать для металлосодержащих анионов с высокой поляризуемостью. По сравнению с другими азотсодержащими экстрагентами, применяемыми в качестве анионообменников, 4(2)-ОАП более избирательны по отношению к анионам с высокой поляризуемостью. При этом эта особенность, на наш взгляд, более выражена в случае 2-ОАП за счет, ожидаемо, большей "глубины резонанса" в органическом катионе. Напротив, при экстракции ионов металлов в виде нейтральных координационно-сольватированных соединений 4-ОАП в качестве экстрагента более предпочтителен, так как обладает большей электронной плотностью на донорном атоме азота.

Перечисленные особенности экстракционного поведения 4-ОАП в двухфазной системе вода (HCl)-хлороформ в сравнении с 2-ОАП подтвержлаются сравнением результатов исследования экстракции иридия (III) из солянокислых растворов с использованием этих экстрагентов [4, 23]. Экстракционное извлечение иридия из-за аномально высокой кинетической инертности его комплексов всегда представляло проблему. Тем не менее, оба экстрагента позволяют количественно извлекать иридий из кислых растворов с очень высокими коэффициентами распределения, однако в случае 4-ОАП это возможно из более кислых растворов в интервале 0.1-3 M HCl при значительно меньшей концентрации экстрагента. Экспериментально подтверждается высказанное автором предположение [1], что 4-ОАП может быть более эффективным экстрагентом для выделения и концентрирования иридия из сложных по составу растворов. Необходимы дальнейшие исследования 4(2)-ОАП в качестве экстрагентов для выделения и разделения платиновых и других редких и рассеянных металлов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Борщ Н.А.* Дис. ... канд. хим. наук. М.: ГЕОХИ РАН, 1979. 235 с.
- 2. *Борщ Н.А., Петрухин О.М.* // Журн. аналит. химии. 1978. Т. 33. № 9. С. 1805.
- 3. Борщ Н.А. / Теория и практика экстракционных методов. Отв. ред. Алимарин И.П., Багреев В.В. М.: Наука, 1985. С. 111.
- 4. *Борщ Н.А., Петрухин О.М.* // Журн. аналит. химии. 1978. Т. 33. № 11. С. 2181.
- 5. Борщ Н.А., Петрухин О.М., Соколов А.Б., Маров И.Н. // Журн. неорган. химии. 1981. Т. 26. № 3. С. 734.
- Suryavanshi V.J., Anuse M.A., Pawar R.R., Mulik G.N. // Analyt. Methods. 2015. V. 7. № 6. P. 2497. doi 10.1039/C4AY03045A
- Suryavanshi S.J., Patil M.M., Kokare A.N., Zanje S.B. et al. // J. Chinese Chem. Soc. 2016. V. 63. № 8. P. 694. doi.org/10.1002/jccs.201500541
- Suryavanshi V.J., Patil M.M., Zanje S.B. et al. // Separat. Sci. and Technology. 2016. V. 51. № 10. P. 1690. doi.org/10.1080/01496395.2016.1177076

- Suryavanshi V.J., Patil M.M., Mulik G.N. et al. // Rus. J. Inorg. Chem. 2017. V. 62. № 2. P. 257. doi 10.1134/S003602361702019X
- Kore G.D., Patil S.A., Anuse M.A., Kolekar S.S. // J. Radioanalyt. and Nucl. Chem. 2016. V. 310. № 1. P. 329. doi 10.1007/s10967-016-4857-7
- 11. Sandip V.M., Prakash P.W., Anuse M.A. // J. Serb. Chem. Soc. 2008. V. 73. № 4. P. 435. 102298/JSC0804435M.
- 12. Sandip V.M., Prakash P.W., M.A. Anuse: // J. Serb. Chem. Soc. 2010. V. 75. № 8. P. 1099. doi 10.2298/JSC090630072M
- 13. *Mahamuni S.V., Kolekar S.S., Wadgaonkar P.P., Anuse M.A.* // J. Iran. Chem. Soc. 2009. V. 6. № 1. P. 200. doi.org/10.1007/BF03246521
- 14. *Mandhare A.M., Anuse M.A., Kolekar S.S.* // Ind. J. Chem. Technology. 2011. V. 18. № 6. P. 475.
- Mandhare A.M., Han S.H., Anuse M.A., Kolekar S.S. // Arab. J. Chem. 2015. V. 8. № 4. P. 456. doi.org/ 10.1016/j.arabjc.2011.01.026
- 16. *Noronha L.E., Kamble G.S., Kolekar S.S., Anuse M.A.* // Ind. J. Chem. Technology. 2013. V. 20. № 7. P. 252.
- Noronha L.E., Kamble G.S., Kolekar S.S., Anuse M. A. // Inter. J. Chem. Scince Technology. 2013. V. 3. № 1. P. 15–24.
- Mane C.P., Mahamuni S.V., Kolekar S.S., et al. // Arab. J. Chem. 2016. V. 9. № 2. P. 1420. doi.org/ 10.1016/j.arabjc.2012.03.021
- Noronha L.E., Kamble G.S., Kolekar S.S., Anuse M.A. // Int. J. Analyt. and Bioanalyt. Chem. 2013. V. 3. № 1. P. 27.
- Mane C.P., Anuse M.A. // J. Chinese Chem. Soc. 2008.
 V. 55. P. 807. doi.org/doi 10.1002/jccs.200800121
- Mane C. P., Anuse M.A. // J. Hazard Mater. 2008. V. 152. № 3. P. 1146. doi.org/10.1016/ j.jhazmat.2007.07.119
- Rajehdre V., Kolekar S.S., Anuse M.A. // J. Saudi Chem. Soc. 2015. V. 19. № 1. P. 46. doi.org/ 10.1016/j.jscs.2011.12.016
- 23. Серегина И.Ф., Петрухин О.М., Формановский А.А., Золотов Ю.А. // Докл. АН СССР. 1984. Т. 275. № 2. С. 385.
- Серегина И.Ф., Бухбиндер Г.А., Шабанова Л.Н. и др. // Журн. аналит. химии. 1986. Т. 41. № 5. С. 861.
- 25. *Сидоренко С.В., Агеева Л.С., Борщ Н.А.* // Изв. Юго-Западного гос. ун-та. Серия: Техн. и технолог. 2017. Т. 7. № 1 (22). С. 117.
- 26. *Katritzky A.R., Logowski J.M.* Principles of Heterocyclic Cemistry. Nework. Academic Press. 1968.
- 27. *Альберт* Ф., *Сержент Е.* / Константы ионизации кислот и оснований. М.: Наука. 1964.
- 28. *Мазурова А.А., Гиндин Л.М. //* Журн. неорган. химии. 1965. Т. 10. С. 2559.
- 29. *Чернобров А.С.* Автореферат диссертации, к.х.н. Новосибирск. 1975.
- 30. *Борщ Н.А., Мальцева Н.Г. //* Журн. неорган. химии. 1982. Т. 27. № 9. С. 2355.