= ФИЗИЧЕСКАЯ ХИМИЯ РАСТВОРОВ =

УДК 547.979

ТЕРМОДИНАМИКА РАСТВОРЕНИЯ В ДМФА И ЭТАНОЛЕ МАКРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ НА ОСНОВЕ ФЕНИЛИНДЕНА-2 С ФРАГМЕНТАМИ НАФТИЛЕНДИАМИНА

© 2019 г. Г. Р. Березина^{*а*,*}

^аФедеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный химико-технологический университет", 153000, Иваново, Россия

**e-mail: berezina@isuct.ru* Поступила в редакцию 04.07.2018 г. После доработки 04.07.2018 г. Принята к публикации 11.09.2018 г.

Методом изотермического насыщения со спектрофотометрическим контролем концентрации определена растворимость соединений на основе 1-имино-2-фенил-1*H*-инден-3-амина с фрагментами 1,4-нафтилендиамина и 1,4-диаминонафтиленсульфокислоты в ДМФА и этаноле при 298–318 К. Обсуждены закономерности растворения продуктов конденсации состава 1:2, 2:1 и 2:2 в ДМФА и этаноле. Рассчитаны термодинамические параметры растворения синтезированных соединений.

Ключевые слова: макроциклические соединения, растворимость, термодинамические характеристики растворения, сольватация

DOI: 10.1134/S0044453719050054

Синтез веществ с практически полезными свойствами является одной из основных задач современной химии. Очевидно, что прикладному применению любых новых соединений предшествует всестороннее исследование их свойств. Макроциклы являются частицей этой обширной области научного поиска.

К настоящему времени синтезированы самые

разнообразные макроциклические соединения, их производные с простыми и сложными электронодонорными и электроноакцепторными заместителями в фенильных и бензольных ядрах [1–7].

Данная работа посвящена определению растворимости в ДМФА и этаноле в интервале температур 298–318 К ряда макроциклических соединений:

673

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Ланные элементного анализа получены на приборе CHNS-O Analyzer FlashEA 1112 Series. C целью определения оптических свойств измеряли спектры поглощения в УФ- и видимой областях (350-800 нм) на приборе HitachiU-2010. Измерения спектров соединений проводили в виде растворов соединений в различных растворителях при комнатной температуре (20-25°C). Инфракрасные спектры регистрировали с твердых образцов на приборе Avatar 360 FT-IRTSR в области 400-4000 см⁻¹. Для снятия ИК-спектров использовался метод таблетирования вещества с KBr. Содержание исследуемого образца 0.7-0.8% от массы KBr. ЯМР-исследования выполнены на приборе AVANCE III-500 производства Bruker BioSpin GmbH (Германия). Спектры ЯМР Н¹ растворов образцов регистрировали в ДМФА-d⁷.

N,N'-Бис[1-имино-2-фенил-1Н-инден-3-ил]-1,4нафтилендиамина (1). Смесь 0.05 г (0.11 ммоля) 2-фенилиндена-2 аминоимина И 0.018 Г (0.11 ммоля) 1.4 – нафтиленлиамина нагревали в 7 мл этилового спирта при кипении 27 ч. Выпавший при охлаждении реакционной массы осадок отфильтровали и высушивали при 80°С. Выход: 0.065 г (90% от теоретического), порошкообразное вещество коричневого цвета, растворимо в ацетоне, хлороформе, этаноле, ДМФА. ИКспектр: v, см⁻¹: 1088 (С-N); 1243 (С-С); 1513 (C=N); 1605 (C=C); 2921 (C-H); 3436, 3464 (N–H). Спектр ЯМР H¹, δ, м.д.: 7.85–7.79 м (8H); 7.49-7.43 м (6Н); 7.41 д (4Н, Ј 9.0 Гц); 7.13 с (4Н); 6.87 д (6Н, Ј 6.6 Гц).

Найдено, %:	C 81.2;	H 6.28;	N 8.49.
$C_{40}H_{28}N_4$			
Вычислено, %:	C 85.1;	Н 5.0;	N 9.9.

5,8-Бис([1-имино-2-фенил-1H-инден-3-ил]амино)-1-нафтиленсульфокислоты (2) получили аналогично из 0.1 г (0.23 ммоля) аминоимина 2-фенилиндена-2 и 0.054 г (0.23 ммоля) 1,4-диаминонафтиленсульфокислоты время реакции – 30.5 ч. Выход: 0.066 г (36.99% от теоретического), порошкообразное вещество коричневого цвета, растворимо в ацетоне, хлороформе, этаноле, ДМФА. ИК-спектр: v, см⁻¹: 720 (C–S); 757 (S–O); 1115 (C–C); 1118 (C–N); 1361 (S=O); 1544 (C=N); 1603 (C=C); 2908 (OH); 2922 (C–H); 3168 (N–H).

Найдено, %: С 72.24; Н 3.38; N 8.08; S 4.90; О 7.82. С₄₀H₂₇N₄SO₃

Вычислено, %: С 74.65; Н 4.20; N 8.71; S 4.97; О 7.47.

N¹-[(1,3)-3-(4-Амино-1-нафтиленил)имино]-2,3-дигидро-2-фенил-1Н-инден-1-илиден]-1,4-нафтилендиамина (**3**) получили аналогично из 0.05 г (0.23 ммоля) аминоимина 2-фенилиндена-2 и 0.0718 г (0.45 ммоля) 1,4-нафтилендиамина время реакции – 31 ч. Выход: 0.103 г (90% от теоретического), порошкообразное вещество коричневого цвета, растворимо в ацетоне, хлороформе, этаноле, ДМФА. ИК-спектр: v, см⁻¹: 1045 (C–N); 1205 (C–C); 1509 (C=N); 1658 (C=C); 2918 (C–H); 3419 (NH₂).

Найдено, %:	C 82.4;	H 6.26;	N 10.69.
$C_{35}H_{26}N_4.$			
Вычислено, %:	C 83.66;	H 5.18;	N 11.16.

8-Амино-5-[[(4-амино-5-сульфо-1-нафтиленил) имино]-2,3-дигидро-2 фенил-1H-инден-1-илиден] амино]-1-нафтиленсульфокислота (4) получили аналогично из 0.05 г (0.23 ммоля) аминоимина 2фенилиндена-2 и 0.108 г (0.45 ммоля) 1,4-диаминонафтиленсульфокислоты время реакции — 30 ч. Выход: 0.13 г (87% от теоретического), порошкообразное вещество коричнево-красного цвета, растворимо в ацетоне, хлороформе, этаноле, ДМФА, воде. ИК-спектр: v, см⁻¹: 489 (C–S); 619 (S–O); 999 (C–N); 1148 (C–C); 1384 (S=O); 1588 (C=N); 1616 (C=C); 2923 (C–H); 3240 (OH); 3417, 3480 (NH₂).

Найдено, %: С 62.73; Н 5.35; N 7.50; S 8.89; О 15.85. С₃₅Н₂₆N₄S₂O₆

Вычислено, %: C 63.44; H 3.93; N 8.46; S 9.67; O 14.50.

(Цикло-[бис-(1-имино-2-фенил-1Н-инден-3-ил)-1,4-нафтилена]) (5). Смесь 0.22 г (0.7 ммоля) 1,4нафтилендиамина, 0.3 г (0.68 ммоля) аминоимин 2-фенилиндена-2 нагревали в 7 мл ДМФА 43 ч. Выпавший при охлаждении реакционной массы осадок отфильтровали и высушивали при 100°С. Выход: 0.2 г (42% от теоретического), порошкообразное вещество темно-оранжевого цвета, т.пл. 150–152°С, растворимо в ацетоне, хлороформе, этаноле, ДМФА. ИК-спектр: v, см⁻¹: 1001 (С–С); 1361 (С–N); 1545 (С=С); 1629 (С=N); 2922 (С–Н); 3452 (N–H).

Найдено, %:	C 85.78;	H 4.77;	N 7.49.
$C_{50}H_{32}N_{4.}$			
Вычислено, %:	C 87.21;	H 4.65;	N 8.14.

(Цикло-[бис-(1-имино-2-фенил-1Н-инден-3-ил)-1,4-нафтиленсульфокислоты]) (6) получили аналогично из 0.25 г (0.57 ммоля) аминоимин 2-фенилиндена-2 и 0.27 г (0.57 ммоля) 1,4-диаминонафтиленсульфокислоты время реакции – 49 ч. Выход: 0.37 г (76.9% от теоретического), порошкообразное вещество коричневого цвета, растворимо в ацетоне, хлороформе, этаноле, ДМФА. ИК-спектр: v, см⁻¹: 655 (С-S); 755 (S–O); 1113 (S=O); 1259 (C-C); 1340 (C-N); 1503 (C=C); 1591 (C=N); 2848, 2918 (OH); 3452 (N-H).

Растворимость (равновесную концентрацию) соединений **1–6** определяли в интервале температур 298–318 К методом изотермического насыщения со спектрофотометрическим контролем концентрации [8].

Равновесную концентрацию раствора рассчитывали (как среднюю из трех опытов) из соотношения, приведенного ниже.

$$S = C_x = \frac{Dn}{\varepsilon l}$$

где S — растворимость синтезированных макроциклов, C_x — равновесная концентрация раствора, D — оптическая плотность раствора, n — число раз разбавления, l — толщина светопоглощающего слоя, см, ε — молярный коэффициент погашения, определенный как среднее из трех величин, полученных для растворов с известной концентрацией. В качестве аналитических были выбраны длины волн в максимуме полосы поглощения, представленные в табл. 1. Термодинамические характеристики процесса растворения макрогетероциклов рассчитывали из известных соотношений химической термодинамики [9]:

$$\Delta H^0 = 8.314(T_2T_1/T_2 - T_1)\ln(S_2/S_1),$$
 кДж/моль;
 $\Delta G^0 = -RT \ln S^0_{298},$ кДж/моль;
 $\Delta S^0 = (\Delta H^0 - \Delta G^0)/T,$ Дж/(моль K),

где S_1 и S_2 – значения равновесной растворимости при T_1 и T_2 соответственно, R – универсальная газовая постоянная, равная 8.314 Дж/(моль K).

Систематическая ошибка в определении растворимости, обусловленная погрешностью в определении молярного коэффициента погашения, составила 5%.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Макроциклические соединения **1–6** представляют собой порошкообразные вещества с различными оттенками коричневого цвета. Данные по растворимости приведены в табл. 1, а термодинамические параметры растворения в табл. 2.

Растворители ДМФА и этанол, выбранные для исследования, являются полярными: ДМФА – растворитель с ярко выраженной электронодонорной способностью (донорное число по Гутману DN = 26.6), этанол – растворитель с преимущественно электроноакцепторной функцией (AN = 37.1).

Природа растворителя определяет так называемый "выбор" центра сольватации. Центрами сольватации в молекуле макроциклов может быть сопряженная система π -электронов макрокольца в целом, а также различные функциональные заместители. Имеющиеся в молекуле макроцикла центры специфической и универсальной сольватации определяют ее специфику и поведение в растворе [10].

В результате сольватации образуются сольваты постоянного и переменного состава. Время жизни сольватов определяется характером и интенсивностью межмолекулярных взаимодействий. В соответствии с типами межмолекулярных взаимодействий выделяют неспецифическую и специфическую сольватации. Неспецифическая сольватация обусловлена ван-дер-ваальсовыми взаимодействиями. Специфическая сольватация проявляется вследствие электростатических взаимодействий, координационных и водородных связей [11].

Важнейшие термодинамические характеристики сольватации – энтальпия (ΔH_c) и энергия Гиббса (ΔG_c), связанные соотношением: $\Delta G_c = \Delta H_c - T\Delta S_c$, где ΔS_c – энтропия сольватации. Энтальпия сольватации определяет тепловой эффект внедрения молекулы растворенного вещества в растворитель, а энергия Гиббса определяет растворимость вещества.

Растворение вещества в растворителе сопровождается разрушением кристаллической решетки и сольватацией, это сказывается на энтальпии растворения, а изменение структурных параметров системы в целом отражается на энтропии растворения. Оба этих термодинамических параметра одинаково определяют суммарное изменение свободной энергии (изобарно-изотермического потенциала) в процессах сольватации.

Растворимость соединений **1–6** в ДМФА и этаноле составляет, в основном, 10^{-4} моль/л, за исключением растворимости в этаноле соединений состава 1 : 2 (3 и 4).

ДМФА–(CH₃)₂–NCHO диполярный растворитель, способный как к универсальной, так и специфической сольватации. Увеличение растворимости (1 < 2 < 5) в ДМФА – растворителя с выраженной протоноакцепторной функцией (DN ≈ 26) происходит вследствие изменения протонизации NH-связей за счет электронных эффектов *d* – цепи сопряжения. Наиболее благоприятны условия сольватации у соединения (**3**).

При рассмотрении характера изменения растворимости синтезированных макроциклических соединений можно сделать вывод, что несмотря на имеющиеся центры специфической сольвата-

Таблица 1. Положение (λ , нм) и интенсивность (lgɛ) полосы поглощения в электронных спектрах и политермическая зависимость равновесной растворимости ($S \pm 0.04$ ммоль/л) синтезированных соединений

Соеди-	Раство-	λнм	ام د	$S \pm 0$).04 ммо	оль/л
нение	ие ритель		ige	298 K	308 K	318 K
1	ДМФА	423	3.49	0.88	3.15	5.75
	Этанол	458	3.44	1.54	3.76	5.47
2	ДМФА	419	3.95	0.90	3.9	7.24
	Этанол	448	3.37	2.74	9.17	14.17
3	ДМФА	445	3.37	6.9	6.2	4.9
	Этанол	450	3.70	30.7	18.0	10.4
4	ДМФА	469	3.78	4.3	5.1	5.6
	Этанол	471	3.69	77.3	42.7	20.8
5	ДМФА	443	3.63	1.61	8.87	4.88
	Этанол	447	3.91	0.49	1.51	2.35
6	ДМФА	416	4.02	3.8	2.5	0.72
	Этанол	419	3.01	16.8	15.8	14.1

ции, они по-видимому, стерически экранированы от взаимодействия с молекулой ДМФА. ДМФА как полярный апротонный растворитель в ряде случаев лучше сольватирует соединения за счет универсальных ван-дер-ваальсовых взаимодействий.

Спирт, вследствие своей высокой структурированности за счет сетки H-связей является хорошим растворителем для соединений 3 и 4. В целом, растворимость растет в ряду соединений 5 < < 1 < 2 < 6 < 3 < 4, вследствие наличия в соединениях сульфогрупп.

Наиболее благоприятны условия сольватации в этаноле соединений **3** и **4** состава 1 : 2. Растворимость в этаноле на порядок выше, по сравнению с ДМФА, по-видимому, это связано с наличием специфической сольватации с образованием водородных связей этанол—молекула **2** или **4** соответственно. С энергетической точки зрения процесс перехода макроциклов в этанол, вследствие структурированности последнего оказывается более выгоден, чем в ДМФА, на что указывают рассчитанные нами значения энергии Гиббса (табл. 2).

У макроциклов существенный вклад в энергию межмолекулярных взаимодействий в кристаллической решетке вносят π - π -взаимодействия. Очевидно, что для осуществления взаимодействий этого типа межплоскостные расстояния молекул в кристалле должны быть минимальны. Отклонение молекулы макроцикла от планарности за счет функционального замещения или по иным причинам ослабляет межмолекулярные π - π -взаимодействия и уменьшает энергию кристаллической решетки соединения. Последнее должно приводить к уменьшению эндотермичности энтальпии растворения макроцикла.

Процесс растворения синтезированных макроциклических соединений имеет положительную температурную зависимость, за исключением соединений состава 1 : 2 (**3**, **4**) и макроцикла с сульфогруппами (**6**).

В результате взаимодействия соединений с этанолом за счет образования водородной связи растворимость 10⁻³ моль/л. При замыкании в цикл происходит перераспределение электронной плотности, и растворимость уменьшается на порядок. Процесс растворения соединений эндотермичен, происходит разупорядочивание системы, что сопровождается небольшим ростом энтропии растворения.

Исключение составляют соединения **3** и **4**. Процесс их растворения экзотермичен и происходит понижение энтропии растворения. Следовательно, упорядочивание системы за счет сольватации преобладает над разупорядочиванием за счет разрушения кристалла.

При растворении происходит переход между двумя кристаллическими формами, наблюдается высокая конформационная подвижность молекул в растворе и разрушение структуры растворителя.

Сопряженные макроциклические соединения имеют более низкие энергии межмолекулярных взаимодействий в кристалле, связанные с не-

Раствори- тель	ΔH^0	ΔG^0	ΔS^0	ΔH^0	ΔG^0	ΔS^0	ΔH^0	ΔG^0	ΔS^0
		1			2			3	
ДМФА	73.4 ± 16	17.40	188	81.5 ± 21	17.38	215	-13.6 ± 4	12.3	-87
Этанол	49.5 ± 13	16.04	112	64.1 ± 19	14.62	166	-42.7 ± 1	8.63	-172
		4			5			6	
ДМФА	10.5 ± 2	13.5	-11	66.7 ± 12	15.93	170	-66.2 ± 23	13.8	-269
Этанол	-51.9 ± 5	6.34	-195	61.2 ± 17	18.88	142	-6.95 ± 2	10.2	-58

Таблица 2. Термодинамические параметры растворения синтезированных макроциклических соединений 1–6 в ДМФА и этаноле при 298–318 К (ΔH^0 и $\Delta G^0 - \kappa Д ж/моль, \Delta S^0 - Д ж/(моль K)$)

плоской структурой и конформационной нежесткостью их молекул.

Невысокие величины ΔG , характеризующие суммарный вклад энтальпийной и энтропийной составляющих в процесс растворения, имеют примерно одинаковые значения, поэтому все молекулы имеют примерно одинаковую вероятность перехода из твердой фазы в раствор.

Таким образом, впервые оценена растворимость и термодинамические параметры растворения соединений **1–6** в ДМФА и этаноле в интервале температур 298–318 К.

Специфику и поведение в растворе исследуемых соединений определяют имеющиеся в молекуле центры специфической и универсальной сольватации.

Исследование проведено с использованием ресурсов Центра коллективного пользования научным оборудованием ФГБОУ ВО "ИГХТУ".

СПИСОК ЛИТЕРАТУРЫ

1. Березина Г.Р., Колесников Н.А., Смирнов Р.П. // Изв. вузов. Химия и хим. технология. 1989. Т. 32. Вып. 9. С. 42.

- Березина Г.Р., Воробьев Ю.Г., Смирнов Р.П., Сироткина В.В. // Журн. физ. химии. 2000. Т. 74. Вып. 10. С. 1782.
- 3. Куликов М.А., Воробьев Ю.Г., Berezina G.R., Степаненко В.А. // ЖОХ. 2004. Т. 74. Вып. 6. С. 1031.
- 4. Березина Г.Р., Воробьев Ю.Г. // ЖОХ. 2004. Т. 74. Вып. 3. С. 447.
- 5. Березина Г.Р., Воробьев Ю.Г., Воробьева С.М., Садова М.В. // Там же. 2005. Т. 75. Вып. 6. С. 1017.
- Березина Г.Р., Фомина И.С. // Изв. вузов. Химия и хим. технология. 2014. Т. 57. Вып. 8. С. 3.
- 7. *Березина Г.Р., Купцова К.Д., Березина Н.М. //* Журн. орган. химии. 2015. Т. 51. Вып. 2. С. 279.
- Березина Г.Р., Воробьев Ю.Г. // Журн. физ. химии. 2005. Т. 79. № 4. С. 680.
- 9. Васильев В.П. Термодинамические свойства растворов электролитов. М.: Высшая школа. 1982. С. 320.
- 10. *Крестов Г.А., Березин Б.Д.* Основные понятия современной химии. Л.: Химия, 1983. 102 с.
- Бургер К. Сольватация, ионные реакции и комплексообразование в неводных средах. М.: Мир, 1984. 256 с.