—— КРАТКИЕ СООБЩЕНИЯ **——**

УЛК 59:574

ВЕСЕННИЙ ЗООПЛАНКТОН ПОЙМЕННЫХ ОЗЕР: РАЗНООБРАЗИЕ, СТРУКТУРА И ОСОБЕННОСТИ ФОРМИРОВАНИЯ В СВЯЗИ С ИЗМЕНЧИВОСТЬЮ ГИДРОЛОГИЧЕСКОГО РЕЖИМА

© 2022 г. В. Н. Подшивалина^{а, b, *}

^a Государственный природный заповедник "Присурский", Россия 428034 Чебоксары, пос. Лесной, 9 ^b Чувашский государственный университет им. И.Н. Ульянова, Россия 428015 Чебоксары, Московский просп., 15 *e-mail: verde@mail.ru

> Поступила в редакцию 07.09.2020 г. После доработки 02.02.2021 г. Принята к публикации 13.12.2021 г.

Ключевые слова: зоопланктон, пойменные озера, режим проточности, режим поемности, биоразнообразие. Среднее Поволжье

DOI: 10.31857/S036705972203009X

Пойменные озера разнообразны, широко представлены в долинах рек и являются типичными элементами пойменных ландшафтов. Изза особенностей гидрологического режима в пойменных условиях накапливается аллохтонное и автохтонное вещество и водоемы быстро мелеют и трансформируются [1], что делает их удобными объектами для изучения сукцессий, поскольку в поймах есть озера на разных этапах развития [1]. Для эволюционного развития пойменных экосистем и поддержания их устойчивости важны режим поемности, последствия жизнедеятельности бобра и антропогенной нагрузки [2-7]. Состав фауны отражает качество вод пойменных озер [8, 9], но представления об этом основаны преимущественно на данных о летних сообществах. Более полную картину о функционировании экосистем пойменных озер, их сукцессионном развитии, а также о значении половодья и других факторов в формировании состава и структуры их экосистем можно получить при сравнении сообществ в разнотипных по гидрологическому режиму условиях непосредственно в весенний период, когда поемность проявляется наиболее ярко. Весенние зоопланктоценозы представляют интерес как переходный этап между зимними и летними в сезонной сукцессии. Однако мало известно о том, насколько особен их состав по сравнению с зимними и летними сообществами. Цель настоящей работы - оценить разнообразие и структуру весеннего зоопланктона пойменных озер с различным гидрологическим режимом.

Материал собран весной 2007 г. в течение около двух недель после исчезновения ледового покрова, в 2-3 точках центральной части семи малых озер, расположенных в пойме нижнего тече-

ния р. Суры. Это один из крупных притоков р. Волги на территории Среднего Поволжья в зоне лесостепи. Озера расположены в охранной зоне Государственного природного заповедника "Присурский". Для сравнения использованы данные о зимних [10] и летних (2003-2015 гг., собственные материалы) сообществах зоопланктона. По площади [11] озера относятся к категориям озерки и маленькие озера с очень малой средней глубиной (табл. 1). Котловина глубокого оз. Большое Щучье осложнена карстово-суффозионными процессами [12]. Изученные озера — проточные, имеющие приток и становящиеся проточными только во время весеннего половодья за счет подъема уровня воды в понижениях поймы и соседних водоемах и заполнения проток. Согласно [13], озера Старица, Вилки, Базарское и Башкирское возникли и существуют благодаря эрозионной деятельности поемных половодных потоков. Озеро Б. Щучье, вероятно, имеет такое же происхождение, однако поддержание его эволюционной молодости обусловлено карстово-суффозионными процессами. Озеро Тереховое в последнее десятилетие претерпевает стремительную деградацию, превращаясь в группу озер, что, согласно [13], соответствует группе водоемов, которые обязаны существованием преимущественно влиянию материковых факторов. Генезис оз. Абачи не выяснен. Большинство водоемов заливаются весенними полыми водами только при очень больших паводках, которые случаются раз в 10-15 лет. Ежегодный разлив р. Сура охватывает лишь оз. Тереховое. Водоемы практически не подвергаются антропогенному воздействию.

Отбор и обработку проб (процеживание с учетом особенностей биотопа 50–100 л воды через

		,					
Показатель	Абачи*	Старица*, **	Большое Щучье**	Вилки*	Группа озер Тереховое*	Базарское*	Башкир- ское**
Координаты: с.ш., в.д.	54°56′54″,	54°57′39″,	54°59′23″,	54°59′29″,	54°59′16″	54°55′58″,	54°58′44″,
	46°36′47″	46°35′57″	46°35′40″	46°35′02″	46°34′41″	46°36′39″	46°35′45″
Площадь, κm^2	0.026	0.392	0.061	0.016	>0.005	0.156	0.101
Глубина средняя, м	_	1.97	2.97	1.13	_	1.14	1.27
Объем, тыс. м ³	_	772	182	186	_	150	127.7
Глубина максималь-	_	6.0	11.4	2.7	_	4.1	3.0
ная, м							
Проточность	Проточное	Имеет при-	Слабо про-	Проточное (Атратка)		Проточное только весной	
	(Абачка)	ток	точное				
		(Абачка)	(Атратка)				
Периодичность весен-	Только при больших паводках, раз в 10–15 лет			Ежегодно	Только при больших павод-		
него залития						ках, раз в 10—15 лет	
Зарастаемость, %	До 80	20-30	10-15	30-40	До 100	40-50	До 80

Таблица 1. Характеристика исследованных озер (пойма нижнего течения р. Суры)

планктонную сеть с размером ячеи 68 мкм и фиксация 4%-ным формалином) осуществляли согласно [14]. Значимость видов в сообществе оценивали на основе обилий с использованием функции рангового распределения, согласно которой натуральным номерам і соответствуют относительные численности (n_i/N) видов в ранжированном по убыванию ряду [15]. Сходство сообществ по составу оценивали с помощью индекса Чекановского-Съеренсена [16]. Экологические группы организмов по способу передвижения и захвата пищи определяли согласно [17]. Для оценки разнообразия и выравненности сообществ использовали индекс Шеннона, вычисленный на основе данных о численности [18]. Индекс сапробности рассчитывали по [19, 20]. Средние значения показателей приведены с ошибкой средней, а также с указанием уровня значимости средней [21].

Весенние сообщества в озерах с разной проточностью и поемностью. Весной выявлены холодолюбивые, эвритермные и теплолюбивые группы видов зоопланктона. Элементы зимней (криофильной) фауны (по [22]) немногочисленны (Keratella cochlearis macracantha (Lauterborn, 1898). Conochiloides natans (Seligo, 1900), Polyarthra dolichoperta Idelson, 1925). Истинных криофильных форм (представителей рода Notholca) не обнаружено. Причем они также не были отмечены в подледный период [10]. Незначительна доля типично летних теплолюбивых видов рода Thermocyclops. Так, доля взрослых особей встречающегося во всех водоемах T. oithonoides (Sars, 1863) составила 0.1-2.8% суммарной численности. По численности и биомассе доминируют эвритермные формы. В озерах Б. Щучье, Башкирское, Старица, Тереховое доминируют науплиальные и копеподитные стадии развития веслоногих рачков, преимущественно *Mesocyclops leuckarti* (Claus, 1857), составляя более половины суммарной численности. В относительно более проточных озерах Базарское и Вилки обильны (62.8 и 73.4% суммарной численности соответственно) коловратки *Synchaeta pectinata* Ehrenberg, 1832, в остальных водоемах составляющие менее 10%.

Таким образом, в составе весеннего зоопланктона одновременно присутствуют разные по температурным предпочтениям формы, но наибольшее развитие получают эврибионтные. Раннее появление теплолюбивых видов может быть обусловлено поздним замерзанием водоемов, теплой зимой [22], а также прогревом воды весной под прозрачным льдом. Термофильные веслоногие рода *Thermocyclops* отмечены в наиболее мелководных озерах с высоким обилием отмерших макрофитов, в том числе проточных и становящихся проточными только весной. Возможно, что проточность, ускоряя перемешивание вод, способствует быстрой смене зимних сообществ на весенне-летние.

Показатели обилия относительно невысокие, варьируют в широких пределах (табл. 2) и соответствуют олиго- и мезотрофным озерам [23, 24]. По биомассе в большинстве озер преобладают веслоногие ракообразные, кроме оз. Базарское, где преобладают коловратки. В оз. Старица относительно высока доля ветвистоусых.

В большинстве озер существенную долю в биомассе (16.8—56.1%) составляет смешанная по способу питания и передвижения группа ювенильных веслоногих ракообразных. Добывающие

^{*} Данные по [31].

^{**} Данные любезно предоставлены А.Н. Александровым.

Таблица 2. Численность (N) , биомасса (B) и соотношение $(\%)$ основных таксономических групп зоопланктона
в суммарной биомассе весной

Озера	N, тыс. экз/м ³	<i>B</i> , Γ/м ³	Rotifera	Copepoda	Cladocera					
Проточные, заливаемые только сильными паводками										
Абачи	7.2	0.080	2.0	92.3	5.7					
Старица	14.5	0.027	25.1	39.3	35.6					
Большое Щучье	2.7	0.002	21.0	67.2	11.8					
Вилки	60.2	0.091	39.9	57.7	2.4					
Проточные, заливаемые ежегодно весной										
Тереховое	1.5	0.002	25.8	74.2	0.0					
Становящиеся проточными ежегодно весной										
Базарское	27.1	0.016	82.5	17.5	0.0					
Башкирское	21.8	0.098	5.6	83.4	11.0					

пишу в толще воды первичные фильтраторы заметно (11.8% суммарной биомассы) представлены в глубоководном слабопроточном оз. Б. Шучье, а в остальных озерах составляют 0-3.2%. На плавающих вертикаторов приходится пятая часть биомассы в озерах Б. Щучье и Базарское. Вторичные фильтраторы преобладают в непроточном оз. Старица. Ползающе-плавающие собиратели отмечены в озерах Абачи, Башкирское, Тереховое (33.2, 12.5 и 19.1% суммарной биомассы соответственно). Сообщества отдельных озер значимо (по критерию Вилкоксона, p < 0.02) отличаются по трофической структуре.

Преобладание веслоногих ракообразных в суммарной биомассе демонстрирует сходство с зоопланктоценозами участков малых рек с медленным течением воды [25]. Характерные весной для мелководных озер [26] коловратки доминируют только в становящемся проточным лишь весной оз. Базарское. Добывающие пищу в толще воды формы (первичные фильтраторы, вертикаторы, а также хищники) в большинстве водоемов составляют существенную часть биомассы зоопланктона (более 33.2%), но в становящихся проточными только весной озерах это выражено в большей степени (64.9–98.4%). Предпочитающие детрит собиратели наиболее обильны в заросших и проточном водоемах (12.5-19.1% и 33.2% соответственно; в остальных озерах — менее 0.6%, p < 0.02), вторичные фильтраторы — в имеющем приток водоеме (35.4%; в остальных озерах 0-5.9%, p < 0.02).

В целом наибольшие видовое богатство и биомасса зоопланктона присущи весенним сообществам ежегодно становящегося проточным только весной оз. Башкирское. Подобные закономерности установлены и для периода летней межени [3].

Весенние сообщества как промежуточные между зимними и летними. В целом разнообразие сообществ весной ниже (индекс Шеннона 2.29 ± 0.26 ,

p < 0.01), чем в летнюю межень (2.81 \pm 0.30, p < 0.01). Весенние сообщества становящегося проточным только весной оз. Башкирское имеют наименьшее по сравнению с другими водоемами сходство состава фауны с зимней [10] и летней (индекс Чекановского-Съеренсена составил 0.05 и 0.10 соответственно). Зимой в водоеме встречаются как специфические криофильные виды K. cochlearis macracantha, K. hiemalis, так и холодолюбивые генерации круглогодичных форм P. dolichoptera и *K. quadrata* (O.F. Müller, 1786), последняя из которых отмечена и весной. Для не подвергающихся весеннему затоплению озер Б. Щучье и Старица сходство весенней фауны с зимней (0.38 и 0.33 соответственно) и летней (0.50 и 0.33) оказалось выше за счет большего количества круглогодично встречающихся форм (ветвистоусые Bosmina longirostris (O.F. Müller, 1776) и коловратки K. quadrata, K. irregularis (Lauterborn, 1898) (в обоих водоемах), *K. cochlearis macracantha*, *P. dolichoptera* (оз. Старица) и *Filinia longiseta* (Ehrenberg, 1834) (оз. Б. Щучье)). Вероятно, в связи с появляющейся весной проточностью в оз. Башкирское складываются особые сообщества. Уникальность его весенней фауны определяется разнообразием малочисленных видов (видовое богатство в этот период — 33 вида) при минимальных уровнях сапробности. Сообщество представлено наибольшим (10) количеством форм по способу передвижения и добывания пищи (в остальных озерах 4-8) с высоким разнообразием (индекс Шеннона по численности составил 2.79, что соответствует значениям для олиготрофных озер [27]). Весной особые условия обеспечивают наличие разнотипных ниш, благодаря чему уровень разнообразия высокий. После половодья застой вод и развитие растительности приводят к повышению трофности вод, что благоприятствует развитию коловраток и мелких ветвистоусых. В оз. Б. Щучье в связи с отсутствием такого возмущающего весеннего половодного стока весной наблюдается иная структура сообщества с бедным видовым составом при высокой сапробности.

Таким образом, в пойменных озерах состояние весеннего зоопланктона в сезонной сукцессии может определяться особенностями половодного режима. Резко отличающиеся от зимних и летних сообществ зоопланктоценозы формируются в условиях временной проточности, обусловленных весенним паводком. Весеннее половодье создает уникальные (дополнительные) условия для развития редких для экосистемы малочисленных форм, возможно, внося вклад в поддержание биоразнообразия сообществ на более высоком уровне. Это соответствует выявленной закономерности [28] большей экологической неоднородности планктонного сообщества при увеличении разнообразия пространственно-временных условий среды в водоеме. Весеннее половодье в ежегодно затапливаемых озерах - сезонное явление, и реакция экосистем на него не является переходом через критическое состояние [29]. В ежегодно становящихся проточными озерах весной в зоопланктоне бурно развиваются виды-эксплеренты, большую часть года малочисленные и редко встречающиеся.

Следовательно, весенний зоопланктон пойменных озер разного типа сочетает черты медленнотекущих малых рек и мелководных озер. Развивающиеся весной сообщества в большинстве водоемов менее разнообразны, чем в летний период. Одновременно весенний паводок и возникающая в связи с этим проточность становятся дополнительным фактором увеличения разнообразия сообщества в заросшем непроточном в течение большей части вегетационного периода водоеме. Уникальность состава фауны в таком водоеме в весенний период выше, чем в постоянно проточных, не подвергающихся ежегодному затоплению соседних объектах поймы.

Автор выражает большую признательность Е.В. Осмелкину, И.В. Алюшину, А.В. Димитриеву, Г.Н. Исакову, А.Н. Александрову за помощь в сборе материала, а также А.В. Крылову, Н.Г. Шевелевой за обсуждение результатов работы.

Авторы подтверждают отсутствие конфликта интересов.

При использовании животных в качестве объектов исследования соблюдались применимые этические нормы.

СПИСОК ЛИТЕРАТУРЫ

- 1. Сукцессии животного населения в биоценозах поймы реки Оби. Новосибирск: Наука, 1981. 264 с.
- Дробот В.И. Зоопланктонные сообщества водоемов поймы реки Большая Кокшага // Научные тр. Государственного природного заповедника "Большая Кокшага". 2007. № 2. С. 80–110.

- 3. *Крылов А.В., Жгарева Н.Н.* Влияние поемности на летний зоопланктон малых озер // Изв. РАН. Серия географич. 2016. № 1. С. 58–66.
- 4. *Twombly S., Lewis W.M.* Factors regulating cladoceran dynamics in a Venezuelan floodplain lake // Journal of Plankton Research. 1989. V. 11. № 2. P. 317. https://doi.org/10.1093/plankt/11.2.317
- 5. Górski K., Collier K.J., Duggan I.C. et al. Connectivity and complexity of floodplain habitats govern zooplankton dynamics in a large temperate river system // Freshwater Biology. 2013. V. 58. № 7. P. 1458—1470. https://doi.org/10.1111/fwb.12144
- 6. *Dembowska E.A.*, *Napiórkowski P.* A case study of the planktonic communities in two hydrologically different oxbow lakes, Vistula River, Central Poland // Journal of Limnology. 2014. V. 74. № 2. P. 346—357. https://doi.org/10.4081/jlimnol.2014.1057
- Кононова О.Н. Трофическая структура зоопланктона малых пойменных озер бассейна р. Вычегда // Изв. Коми научного центра УрО РАН. 2010. № 3. С. 32–36.
- 8. Баянов Н.Г., Фролова Е.А. Фауна гидробионтов Керженского заповедника // Труды Государственного природного заповедника "Керженский". Нижний Новгород, 2001. С. 251–286.
- 9. *Kazakov S., Kerakova M., Ihtimanska M.* Ecological status of shallow lakes in the Bulgarian Danube River floodplain according to the ecoframe approach testing a system for integrated ecological quality assessment // Acta Zool. Bulg. 2014. V. 66. Suppl. 7. P. 191–196.
- Яковлев В.А., Кондратьева Т.А., Халиуллина Л.Ю. и др. Биоразнообразие и гидробиологические особенности озер охранной зоны заповедника "Присурский" в зимний период 1999—2000 гг. // Научные труды ГПЗ "Присурский". Чебоксары—Атрат: КЛИО, 2005. Т. 12. С. 7—10.
- 11. Захаренков И.С. О лимнологической классификации озер Белоруссии // Биологические основы рыбного хозяйства на внутренних водоемах Прибалтики. Минск, 1964. С. 175—176.
- 12. Александров А.Н., Осмелкин Е.В., Подшивалина В.Н. К вопросу о динамике котловин пойменных озер нижнего течения реки Сура (на примере оз. Большое Щучье) // Экологический сборник 5: Труды молодых ученых Поволжья. Тольятти: ИЭВБ РАН, "Кассандра", 2015. С. 7—10.
- Ласточкин Д.А. Опыт классификации поемных водоемов равнинной реки // Рефераты работ учреждений. Отдел биологических наук АН СССР. 1941—1943, 1943.
- 14. Методика изучения биогеоценозов внутренних водоемов. М.: Наука, 1975. 240 с.
- 15. *Федоров Е.Д., Кондрин Е.К., Левич А.П.* Ранговое распределение фитопланктона Белого моря // Докл. АН СССР. 1977. Т. 236. № 1. С. 264—267.
- 16. *Песенко Ю.А*. Принципы и методы количественного анализа в фаунистических исследованиях. М.: Наука, 1982. 288 с.
- Чуйков Ю.С. Методы экологического анализа состава и структуры сообществ водных животных. Экологическая классификация беспозвоночных,

- встречающихся в планктоне пресных вод // Экология. 1981. № 3. С. 71-77.
- 18. *Мэгарран Э.* Экологическое разнообразие и его измерение. М.: Мир, 1992. 182 с.
- 19. *Sladeček V.* Rotifers as indicators of water quality // Hydrobiologia. 1983. V. 100. № 2. P. 169–201. https://doi.org/10.1007/BF00027429
- Sladeček V. System of water quality from biological point of view // Erhebnisse der Limnologie. Stuttgart, 1973. P. 1–218.
- 21. Зайцев Г.Н. Математическая статистика в экспериментальной ботанике. М.: Наука, 1984. 424 с.
- Ривьер И.К. Холодноводный зоопланктон озер бассейна Верхней Волги. Ижевск: Издатель Пермяков С. А., 2012. 390 с.
- Китаев С.П. Основы лимнологии для гидробиологов и ихтиологов. Петрозаводск: Карельский научный центр РАН, 2007. 395 с.
- 24. *Крючкова Н.М.* Структура сообществ зоопланктона в водоемах разного типа // Продукционно-гид-

- робиологические исследования водных экосистем. Л.: Наука, 1987. С. 184—198.
- Крылов А.В. Зоопланктон равнинных малых рек. М.: Наука, 2005. 263 с.
- Столбунова В.Н. Зоопланктон озера Плещеево. М.: Наука, 2006. 152 с.
- 27. *Андроникова И.Н.* Структурно-функциональная организация зоопланктона озерных экосистем разных трофических типов. СПб.: Наука, 1996. 189 с.
- 28. *Ривьер И.К.* Особенности планктоценозов озер в разные экологические периоды (подледный и открытой воды) // Труды ИБВВ РАН. 2016. Вып. 74 (77). С. 59—76.
- 29. Экосистемы в критических состояниях / Под ред. Пузаченко Ю.Г. М.: Наука, 1989. 155 с.
- 30. Осмелкин Е.В., Суин М.В., Александров А.Н., Подшивалина В.Н. Морфометрические показатели ряда озер Государственного природного заповедника "Присурский" и его охранной зоны // Научные труды Государственного природного заповедника "Присурский". Чебоксары—Атрат: Перфектум, 2012. Т. 27. С. 61—68.