УДК 620.179.15

АЛГОРИТМ ОЦЕНКИ ПОГРЕШНОСТЕЙ ПРИ РАСПОЗНАВАНИИ МАТЕРИАЛОВ В СИСТЕМЕ РЕНТГЕНОВСКОГО КОНТРОЛЯ, СОДЕРЖАЩЕЙ СЭНДВИЧ-ДЕТЕКТОРЫ ИЗЛУЧЕНИЯ

© 2022 г. В.А. Удод^{1,*}, С.П. Осипов^{2,**}, С.Ю. Назаренко²

¹Томский государственный университет, Россия 634050 Томск, пр. Ленина, 36 ²Томский политехнический университет, Россия 634050 Томск, пр. Ленина, 30 E-mail: *pr.udod@mail.ru; **osip1809@rambler.ru

Поступила в редакцию 03.12.2021; после доработки 21.12.2021 Принята к публикации 24.12.2021

Приводится описание предлагаемого нами алгоритма для статистического оценивания погрешности метода дуальных энергий, порождаемой квантовой природой излучения, применительно к системе рентгеновского контроля, содержащей сэндвич-детекторы. Продемонстрировано его действие на конкретном примере. Даны рекомендации по дальнейшему использованию алгоритма, в частности, для оптимизации структурных элементов сэндвич-детекторов излучения.

Ключевые слова: рентгеновское излучение, алгоритм, сэндвич-детектор, метод дуальных энергий, распознавание материалов, атомный номер.

DOI: 10.31857/S0130308222010043

ВВЕДЕНИЕ

Угроза совершения террористических актов послужила основанием к решению проблемы по созданию комплекса условий для обеспечения транспортной безопасности в сфере авиа и железнодорожных перевозок. Как следствие этого к настоящему времени разработан целый ряд методов обнаружения опасных грузов и недозволенных вложений. Одним из таких методов является метод дуальных энергий (МДЭ) [1—6]. Он позволяет распознавать различные материалы по их атомному номеру (эффективному атомному номеру), на основании чего делается заключение о принадлежности исследуемого предмета к классу опасных или безопасных предметов [4, 7, 8].

Современные рентгеновские системы, использующие МДЭ при проведении досмотрового контроля, можно условно разделить на несколько основных типов. В системах первого типа объект контроля (ОК) подвергается просвечиванию два раза — двумя сканирующими пучками излучения с разными максимальными энергиями (иными словами — при двух разных рабочих напряжениях, устанавливаемых для генерации рентгеновских лучей на рентгеновской трубке) [4]. При этом максимальные энергии (напряжения) подбирают так, чтобы при первом просвечивании ОК основным процессом взаимодействия излучения с радиационно-чувствительными элементами детекторов был фотоэффект, а при втором просвечивании — комптон-эффект. Такую схемную реализацию МДЭ можно условно назвать традиционной (классической).

В системах второго типа ОК просвечивается один раз, но при этом используется импульсный источник рентгеновского излучения, который в определенной последовательности создает импульсы с двумя разными максимальными энергиями [9]. Схемную реализацию МДЭ такого вида можно условно назвать схемой с «дуальным» (биэнергетическим) источником излучения.

В системах третьего типа ОК просвечивается один раз, но при этом для регистрации излучения используются сэндвич-детекторы. Структурно такие детекторы представляют собой многослойное образование. Чаще всего это композиция из двух детекторов, которые отстоят друг от друга по ходу падающего излучения и дополнительно разделены между собой поглотителем (фильтром), который устанавливается с целью усиления спектральных различий излучения, падающего на первый (по ходу распространения пучка) и второй детекторы [1, 4, 10—12]. Такую схемную реализацию МДЭ можно условно назвать схемой с «дуальным» (биэнергетическим) детектором излучения.

Точность (эффективность) МДЭ зависит от множества факторов, в том числе — от шумов выходных сигналов детекторов, которые вызваны квантовой природой рентгеновского излучения (квантовые шумы) [1, 4, 12, 13].

В [13] был разработан алгоритм для статистической оценки погрешности МДЭ, обусловленной квантовыми шумами, применительно к классической схеме реализации МДЭ. В настоящей работе предложен аналогичный алгоритм, но только применительно к схеме реализации МДЭ на основе использования сэндвич-детекторов излучения. Насколько нам известно, такие исследования, т.е.

разработка указанного алгоритма, в отечественной и зарубежной научно-технической литературе ранее не проводились.

ОПИСАНИЕ АЛГОРИТМА

Алгоритм представлен последовательностью следующих шагов.

- **Шаг 1.** Задается максимальная энергия E_0 квантов, испускаемых источником рентгеновского излучения — рентгеновским аппаратом, применяемым для просвечивания ОК (что равносильно заданию максимального напряжения на рентгеновской трубке).
- **Шаг 2.** Задается числовой (т. е. по числу квантов) энергетический спектр $g(E, E_0)$ излучения, генерируемого рентгеновским аппаратом.
- Шаг 3. Задаются материалы и параметры отдельных компонент сэндвич-детектора, имеющего структуру вида: передний детектор, т.е. первый по направлению падающего излучения детектор; промежуточный фильтр; задний детектор, т.е. второй по направлению падающего излучения детектор.
- **Шаг 4.** Задаются минимальное Z_{\min} и максимальное Z_{\max} значения атомного номера (эффективного атомного номера) Z материала ОК, подлежащего распознаванию. **Шаг 5.** Задаются минимальное d_{\min} и максимальное d_{\max} значения радиационной прозрачности
- OK.
- Шаг 6. Задается множество допустимых решений, т.е. задается множество контролируемых объектов, исследование которых с помощью МДЭ может быть обеспечено физико-техническими возможностями системы контроля:

$$D(Z, \rho H) = \{ (Z, \rho H) | Z_{\min} \le Z \le Z_{\max}; \quad d_{\min} \le d_{t1}(Z, \rho H) < d_{t2}(Z, \rho H) \le d_{\max} \}. \tag{1}$$

Здесь ρ — плотность материала ОК, г/см³; H — толщина ОК, см; ρH — массовая толщина ОК, Γ /см²; $d_1(Z,\rho H)$, $d_2(Z,\rho H)$ — теоретические значения радиационной прозрачности ОК, соответствующие первому (т.е. переднему) и второму (т.е. заднему) детекторам, которые вычисляются по формулам [14]:

$$d_{t1}(Z, \rho H) = \frac{\int_{0}^{E_0} g(E, E_0) \exp(-m(E, Z)\rho H) \overline{E}_{ab1}(E) \varepsilon_1(E) dE}{\int_{0}^{E_0} g(E, E_0) \overline{E}_{ab1}(E) \varepsilon_1(E) dE};$$
(2)

$$d_{12}(Z,\rho H) = \frac{\int_{0}^{E_{0}} g(E,E_{0}) \exp(-m(E,Z)\rho H - m(E,Z_{1})\rho_{1}H_{1} - m(E,Z_{f})\rho_{f}H_{f})\overline{E}_{ab2}(E)\epsilon_{2}(E)dE}{\int_{0}^{E_{0}} g(E,E_{0}) \exp(-m(E,Z_{1})\rho_{1}H_{1} - m(E,Z_{f})\rho_{f}H_{f})\overline{E}_{ab2}(E)\epsilon_{2}(E)dE},$$
(3)

где m(E, Z) — массовый коэффициент ослабления (МКО) излучения для материала ОК, см² /г; $\bar{E}_{ab}(E)$ — среднее значение поглощенной детектором энергии, соответствующее одному зарегистрированному кванту с энергией E, МэВ; $\varepsilon(E)$ — эффективность регистрации излучения детектором; нижний индекс «1» в формулах (2) и (3) означает, что соответствующий параметр относится к первому детектору (аналогично этому индекс «2» означает соответствие второму детектору, а индекс $\langle f \rangle$ — промежуточному фильтру).

Из (1) следует, что для определенного значения параметра Z минимальное $(\rho H)_{\min}(Z)$ и максимальное $(\rho H)_{\max}(Z)$ значения параметра ρH находятся из уравнений:

$$d_{t1}(Z,(\rho H)_{\max}(Z)) = d_{\min}, \ d_{t2}(Z,(\rho H)_{\min}(Z)) = d_{\max}.$$
(4)

Шаг 7. Задается множество тестовых ОК:

$$D_{t}(Z_{t},(\rho H)_{t}) = \{(Z_{t},(\rho H)_{t}) \in D(Z,\rho H) | Z_{t} \in M_{t}(Z); d_{t2}(Z_{t},(\rho H)_{t}) = d_{s2}; d_{s2} \in P(d_{t2}) \}.$$

Здесь индекс «t» означает «тестовый»; M(Z) — задаваемое множество тестовых материалов; $P(d_{t2})$ — задаваемое множество значений теоретической радиационной прозрачности d_{t2} для второго детектора (заметим, что в данном контексте прозрачность d_{t2} выступает как самостоятельный физический параметр); d_{s2} — определенное значение (уровень) прозрачности d_{t2} , которое в силу (1) должно удовлетворять неравенству $d_{\min} < d_{s2} \le d_{\max}$. Как следует из описания множества $D_t(Z_t, (\rho H)_t)$, массовая толщина $(\rho H)_t$ тестового ОК, материал которого имеет атомным номер Z_t , выбирается из условия:

$$d_{t2}(Z_t,(\rho H)_t) = d_{s2}$$
.

Такой выбор массовых толщин тестовых ОК объясняется тем, что объекты с теми или иными близкими свойствами распознать сложнее. В данном случае в роли такового свойства выступает равенство теоретических радиационных прозрачностей объектов для второго детектора.

Шаг 8. Вычисляется для каждого тестового ОК, т.е. для каждой пары $(Z_t, (\rho H)_t)$, прозрачность $d_{t_1}(Z_t, (\rho H)_t)$, соответствующая первому (переднему) детектору.

Шаг 9. Из множества $D_t(Z_t, (\rho H)_t)$ тестовых ОК выбирается один элемент и условно называется

«базовым» (основным), а соответствующие ему параметры обозначаются через Z_{tb} и $(\rho H)_{tb}$. **Шаг 10.** Выбирается значение $\sigma_b(\Phi_2)$ среднеквадратического отклонения (СКО) шума Φ_2 , который соответствует прозрачности $d_2(Z_{tb}, (\rho H)_{tb})$. Назовем его базовым СКО. **Шаг 11.** Рассчитывается, используя соответствующие формулы из [14], значение СКО $\sigma(\Phi_2)$

шума Φ_2 , который соответствует прозрачности $d_{\rho}(Z_{\rho}(\rho H)_{\rho})$:

$$\begin{split} & \sigma(\Phi_2) = \frac{\sigma(\Phi_2)}{\sigma_b(\Phi_2)} \sigma_b(\Phi_2) = \\ & = \frac{\sqrt{\int_0^{E_0} g(E, E_0) \exp(-m(E, Z_t)(\rho H)_t - m(E, Z_1)\rho_1 H_1 - m(E, Z_f)\rho_f H_f) \overline{E_{ab2}^2}(E) \varepsilon_2(E) dE}}{\sqrt{\int_0^{E_0} g(E, E_0) \exp(-m(E, Z_{tb})(\rho H)_{tb} - m(E, Z_1)\rho_1 H_1 - m(E, Z_f)\rho_f H_f) \overline{E_{ab2}^2}(E) \varepsilon_2(E) dE}} \cdot \sigma_b(\Phi_2). \end{split}$$

Здесь $\overline{E_{ab2}^2}(E)$ — средний квадрат поглощенной вторым детектором энергии для одного зарегистрированного кванта с энергией E, Мэ B^2 .

Шаг 12. Рассчитывается, используя соответствующие формулы из [14], значение СКО $\sigma(\Phi_1)$ шума Φ_1 , соответствующего прозрачности $d_{t1}(Z_t, (\rho H)_t)$:

$$\sigma(\Phi_{1}) = \frac{\sigma(\Phi_{1})}{\sigma_{b}(\Phi_{2})} \sigma_{b}(\Phi_{2}) = \frac{\sqrt{\int_{0}^{E_{0}} g(E, E_{0}) \exp(-m(E, Z_{t})(\rho H)_{t}) \overline{E_{ab1}^{2}}(E) \epsilon_{1}(E) dE}}{\sqrt{\int_{0}^{E_{0}} g(E, E_{0}) \exp(-m(E, Z_{tb})(\rho H)_{tb} - m(E, Z_{1}) \rho_{1} H_{1} - m(E, Z_{f}) \rho_{f} H_{f}) \overline{E_{ab2}^{2}}(E) \epsilon_{2}(E) dE}} \times \frac{\int_{0}^{E_{0}} g(E, E_{0}) \exp(-m(E, Z_{1}) \rho_{1} H_{1} - m(E, Z_{f}) \rho_{f} H_{f}) \overline{E}_{ab2}(E) \epsilon_{2}(E) dE}}{\sqrt{\int_{0}^{E_{0}} g(E, E_{0}) \exp(-m(E, Z_{1}) \rho_{1} H_{1} - m(E, Z_{f}) \rho_{f} H_{f}) \overline{E}_{ab2}(E) \epsilon_{2}(E) dE}} \times \sigma_{b}(\Phi_{2}).$$

Здесь $\overline{E_{ab1}^2}(E)$ — средний квадрат поглощенной первым детектором энергии для одного зарегистрированного кванта с энергией E, $M \ni B^2$.

Шаг 13. Разыгрываются значения шумов Φ_1 и Φ_2 . Как и в [13], для этого полагаем:

$$\Phi_1 \in N(0, \sigma(\Phi_1)); \Phi_2 \in N(0, \sigma(\Phi_2)).$$

Наряду с этим считаем, что Φ_1 и Φ_2 являются независимыми случайными величинами. Такое допущение следует из результатов корреляционного анализа выходных сигналов сэндвич-детектора [14]. Заметим также, что СКО $\sigma(F_1)$ и СКО $\sigma(F_2)$ могут быть соответственно интерпретированы как уровни квантового шума для первого и второго детекторов.

Шаг 14. Рассчитываются фактические (реальные) радиационные прозрачности для каждого тестового ОК:

$$d_1(Z_t,(\rho H)_t) = d_{t1}(Z_t,(\rho H)_t) + \Phi_1;$$

$$d_2(Z_t,(\rho H)_t) = d_{12}(Z_t,(\rho H)_t) + \Phi_2.$$

Шаг 15. Получаем для каждого тестового ОК оценки его параметров Z_t и $(\rho H)_t$ как решение относительно $(Z, \rho H) \in D(Z, \rho H)$ системы уравнений:

$$\begin{cases} d_{t1}(Z, \rho H) = d_1(Z_t, (\rho H)_t) \\ d_{t2}(Z, \rho H) = d_2(Z_t, (\rho H)_t) \end{cases}$$

Шаг 16. Действия, описанные на шагах 13—15, воспроизводятся n раз подряд, т.е. осуществляется n однотипных моделирований. В итоге формируется и сохраняется в памяти набор данных $(Z_i, (\rho H)_i)$ (i=1, 2, ..., n), где Z_i и $(\rho H)_i$ — оценки параметров Z_i и $(\rho H)_i$, тестового ОК, полученные в результате i-го моделирования (i=1, 2, ..., n).

Шаг 17. Для каждого тестового ОК рассчитываются среднее значение Z_m , среднеквадратическая m_z и относительная среднеквадратическая δ_z погрешности оценки Z_t :

$$Z_m = \frac{1}{n} \sum_{i=1}^n Z_i, \ m_Z = \sqrt{\frac{1}{n} \sum_{i=1}^n (Z_i - Z_t)^2}, \ \delta_Z = \frac{m_Z}{Z_t} \cdot 100 \%.$$

Принципиальное отличие вышеописанного алгоритма от его прообраза — алгоритма из [13] заключается в содержании шагов (этапов) 1—3. Кроме того, между ними имеется существенная разница и для шагов 6, 8, 11, 12, 15. Она обусловлена тем, что теоретические радиационные прозрачности ОК здесь и в [13] вычисляются по значительно отличающимся формулам, что вполне закономерно, т.к. классическая схемная реализация МДЭ сильно отличается от схемной реализации МДЭ с применением сэндвич-детекторов.

ПРИМЕР ИСПОЛЬЗОВАНИЯ АЛГОРИТМА

Шаг 1. Положим максимальную энергию E_0 = 160 кэB, что достаточно типично для ряда досмотровых систем [13].

Шаг 2. Числовой энергетический спектр излучения зададим по аналогии с [13] следующим образом:

$$g(E, E_0) = C \frac{E_0 - E}{E} \exp(-m(E, Z_g)(\rho H)_g).$$

Здесь C — постоянный множитель (согласно формулам, представленным на шагах 6, 11 и 12, можно считать, что C=1); $m(E,Z_p)$ — МКО излучения для поглотителя в виде выходного окна рентгеновской трубки толщиной 1,5 мм, изготовленного из силикатного стекла (SiO $_2$ [15]) с массовой толщиной (ρH) $_a$.

Шаг 3. В работе [1] представлен сэндвич-детектор вида: первый детектор из иодида цезия (CsI) толщиной 0,3 мм; промежуточный фильтр в форме пластины из меди (Cu) толщиной 0,7 мм; второй детектор из иодида цезия (CsI) толщиной 5 мм.

Нами были проведены предварительные расчеты, в ходе которых было установлено, что эффективность регистрации квантов излучения в диапазоне энергий от 0 до 125 кэВ для второго

детектора — 5 мм CsI составляет не менее 95 % и это значение плавно уменьшается до 81 % в диапазоне энергий от 130 до 160 кэВ. Поэтому для моделирования будем предполагать, что второй (задний) детектор характеризуется полным поглощением падающего излучения (детектор полного поглощения), т.е.

$$\varepsilon_2(E) = \overline{E}_{ab2}(E) / E = \overline{E_{ab2}^2}(E) / E^2 = 1.$$

Добавим к этому, что такое предположение вполне естественно, т.к. в этом случае происходит максимальное использование прошедшего через ОК излучения. Предположим также, по аналогии с [8], что преобладающим процессом взаимодействия излучения с первым (передним) детектором является фотоэффект, а значит

$$\overline{E}_{ab1}(E)/E = 1.$$

Таким образом, для проведения моделирования относительно сэндвич-детектора будем полагать, что он представляет собой композицию вида: первый детектор 0,3 мм CsI (с преобладающим процессом взаимодействия с излучением в виде фотоэффекта); промежуточный фильтр 0,7 мм Сu; второй детектор есть детектор полного поглощения.

 \mathbf{W} аг 4. Значения Z_{\min} и Z_{\max} зададим по аналогии с [13]:

$$Z_{\min} = 3(\text{Li}), Z_{\max} = 30(\text{Zn}).$$

Шаг 5. Значения d_{\min} и d_{\max} зададим по аналогии с [13]:

$$d_{\min} = 1/2^{16} \approx 1,526 \cdot 10^{-5}; d_{\max} = d_{t2}(Z_{Fe}, (\rho H_{\min})_{Fe}) = d_{t2}(26; 0,063) = 0,96894.$$

Здесь 2^{16} — число уровней квантования аналого-цифровых преобразователей (АЦП) с разрядностью m=16, которые используются в структуре измерительных каналов системы контроля (заметим, что применение АЦП с разрядностью m=16 является достаточно типичным для многих досмотровых систем); $Z_{\rm Fe}=26$ — атомный номер железа; (р $H_{\rm min}$) $_{\rm Fe}=0.063$ г/см 2 — массовая толщина ОК в виде стальной проволоки диаметром ($H_{\rm min}$) $_{\rm Fe}=0.08$ мм (такая проволока характеризует разрешение досмотрового интроскопа конвейерного типа TC-СКАН 6040, описанного в [16]).

Шаг 6. Формируем в соответствии с (1) множество допустимых решений:

$$D(Z, \rho H) = \{ (Z, \rho H) | 3 \le Z \le 30; 1,526 \cdot 10^{-5} \le d_{t1}(Z, \rho H) < d_{t2}(Z, \rho H) \le 0,96894 \}.$$
 (5)

Для проведения численного моделирования использовали дискретизацию множества (5). Для параметра Z, изменяющегося в диапазоне от 3 до 30, был выбран шаг дискретизации равный 0,1. Для параметра ρH , изменяющегося в диапазоне от $(\rho H)_{\min}(Z)$, до $(\rho H)_{\max}(Z)$, шаг дискретизации составил 0,1 г/см². При этом $(\rho H)_{\min}(Z)$ и $(\rho H)_{\max}(Z)$ находились, в соответствии с (4), а также с заданными на шаге 5 минимальным и максимальным значениями радиационной прозрачности ОК, из следующих уравнений:

$$d_{12}(Z,(\rho H)_{\min}(Z)) = 0.96894; d_{11}(Z,(\rho H)_{\max}(Z)) = 1.526 \cdot 10^{-5}.$$

Для полноты описания множества допустимых решений (5) на рис. 1 приведены графики функций $(\rho H)_{\min}(Z)$ и $(\rho H)_{\max}(Z)$, рассчитанные в системе MathCad по таблице целочисленных и некоторых нецелочисленных значений Z.

Проверим теперь взаимную однозначность отображения пар $(Z, \rho H)$ в пары (d_{t1}, d_{t2}) , т.е. проверим взаимную однозначность отображения R множества допустимых решений $D(Z, \rho H)$ во множество теоретических прозрачностей:

$$Q(d_{t1}, d_{t2}) = \{ (d_{t1}, d_{t2}) | 1,526 \cdot 10^{-5} \le d_{t1} < d_{t2} \le 0,96894 \}.$$

Такая проверка необходима для того, чтобы быть уверенным (в последующем), что именно квантовые шумы приводят к погрешности в оценке атомного номера, а не систематические погрешности, вызванные неоднозначностью данного отображения.

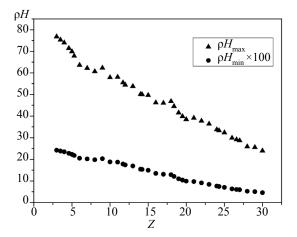


Рис. 1. Зависимости минимального ρH_{\min} и максимального ρH_{\max} значений массовой толщины ОК от эффективного атомного номера Z.

С этой целью следует вычислить и исследовать якобиан J преобразования переменных $(Z, \rho H)$ в переменные (d_{i1}, d_{i2}) :

$$J = \begin{vmatrix} \frac{\partial d_{i1}(Z, \rho H)}{\partial Z} & \frac{\partial d_{i1}(Z, \rho H)}{\partial (\rho H)} \\ \frac{\partial d_{i2}(Z, \rho H)}{\partial Z} & \frac{\partial d_{i2}(Z, \rho H)}{\partial (\rho H)} \end{vmatrix}.$$

Однако вычисление данного якобиана крайне затруднительно ввиду сложности аналитических зависимостей (2), (3), описывающих величины $d_{1}(Z, \rho H)$ и $d_{2}(Z, \rho H)$ как функции от переменных Z и ρH , и учитывая тот факт, что МКО излучения задаются не аналитически, а в дискретной форме — таблично. Вследствие этого оценим взаимную однозначность отображения R с помощью линий уровня.

Формирование линий уровня можно осуществлять в равной степени на основе функций $d_{t1}(Z, \rho H)$ или $d_{t2}(Z, \rho H)$. Для определенности будем использовать функцию $d_{t1}(Z, \rho H)$, т.е. теоретическую прозрачность ОК для первого детектора.

В аналитической форме линия уровня функции $d_{1}(Z, \rho H)$ имеет вид:

$$L(d_{10}) = \{(Z, \rho H) \in D(Z, \rho H) | d_{t1}(Z, \rho H) = d_{10} \},$$

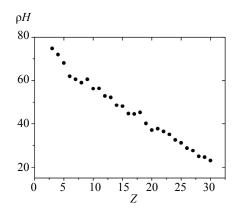
где d_{10} — некоторый уровень теоретической прозрачности ОК для первого детектора. Задавая разные значения параметра d_{10} будем получать разные линии уровня функции $d_{t1}(Z, \rho H)$. Далее, для всех элементов линии уровня $L(d_{10})$ вычисляются значения функции $d_{t2}(Z, \rho H)$ (теоретической прозрачности ОК для второго детектора). Эти значения символически обозначим так: $d_{\rho}(Z|L(d_{10}))$.

На рис. 2 в качестве примера приведена линия уровня $L(d_{10})$ при $d_{10} = 0,00002$ (рис. 2a), рассчитанная в системе MathCad, и соответствующие ей значения прозрачности $d_{c}(Z|L(d_{10}))$ (рис. 2δ).

На рис. 3—5 приведены графики функции $d_{l2}(Z|L(d_{10}))$ (от переменной Z) для различных линий уровня $L(d_{10})$. При этом уровень d_{10} изменялся дискретно от значения 0,00002 (что близко к минимальному значению прозрачности $d_{\min}=1/2^{16}\approx1,526\cdot10^{-5}$) до значения 0,75 (что близко к значению прозрачности $d_{t1}(26;0,063)=0,779$ для первого детектора для ОК из железа с массовой толщиной $(\rho H_{\min})_{\rm Fg}=0,063~{\rm r/cm}^2)$.

Как видно, графики на рис. 3—5 носят монотонный характер, что свидетельствует о взаимной однозначности отображения R множества допустимых решений $D(Z, \rho H)$ во множество теоретических прозрачностей $Q(d_{t1}, d_{t2})$.

Шаги 7, 8. Зададим следующее множество тестовых материалов $M_t(Z) = \{6;13;26\}$, т.е. в качестве таковых, по аналогии с [13], выберем углерод (C), алюминий (Al) и железо (Fe). Соответствующие этим материалам массовые толщины $(\rho H)_t$ и прозрачности $d_{t1}(Z_t,(\rho H)_t)$ для первого детектора приведены на рис. 6.



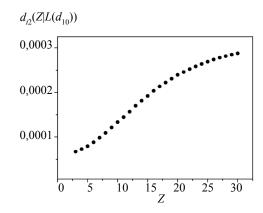
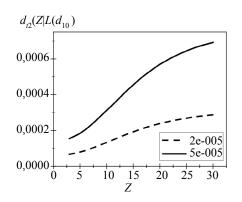


Рис. 2. Линия уровня $L(d_{10})$ при $d_{10} = 0,00002$ (a); значения прозрачности $d_{\mathcal{L}}(Z|L(d_{10})$ для данной линии уровня (6).



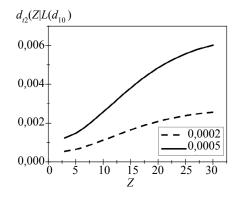
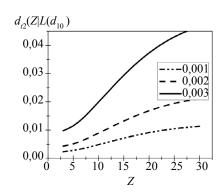


Рис. 3. Графики функции $d_{t2}(Z|L(d_{10})$ при $d_{10}=0,00002;\,0,00005;\,0,0002;\,0,0005.$



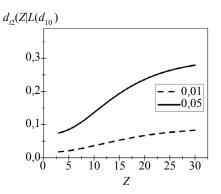


Рис. 4. Графики функции $d_{\Omega}(Z|L(d_{10})$ при d_{10} = 0,001; 0,002; 0,005; 0,01; 0,05.

Заметим, что все тестовые ОК включаются как отдельное подмножество во множество допустимых решений $D(Z, \rho H)$. Заметим также, что тестовый ОК может быть описан не только как пара $(Z_t, (\rho H)_t)$, но и как пара (Z_t, d_{s2}) . При этом монотонное уменьшение массовой толщины $(\rho H)_t$ эквивалентно монотонному увеличению радиационной прозрачности d...

эквивалентно монотонному увеличению радиационной прозрачности d_{s2} . **Шаг 9.** В качестве базового тестового ОК выберем углерод ($Z_{tb} = 6$) с массовой толщиной (ρH)_{tb} = 15,042 г/см², которая соответствует базовому значению теоретической радиационной прозрачности для второго (заднего) детектора равному $d_{b2} = 0,1$.</sub>

Шаг 10. Положим $\sigma_b(\Phi_2) = 0.0025$; 0.005; 0.01; 0.03.

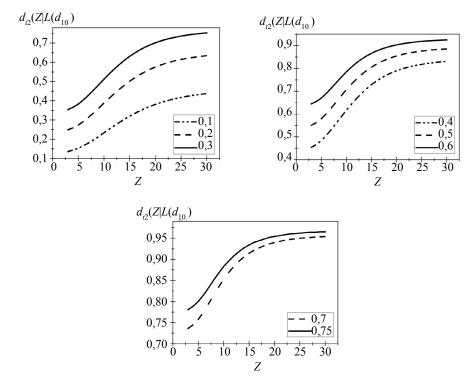


Рис. 5. Графики функции $d_{2}(Z|L(d_{10})$ при d_{10} = 0,1; 0,2; 0,3; 0,4; 0,5; 0,6; 0,7; 0,75.

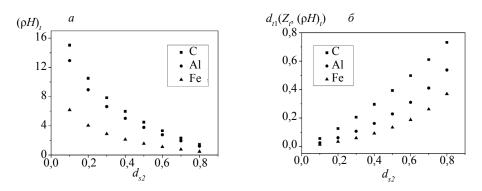


Рис. 6. Зависимость массовой толщины (рH), тестового ОК от радиационной прозрачности $d_{\varsigma 2}$ для разных тестовых ОК (a); зависимость прозрачности $d_{\varsigma 1}(Z_{\rho}(\rho H)_{
m f})$ тестового ОК от радиационной прозрачности $d_{\varsigma 2}$ для разных тестовых ОК (δ).

Шаги 11, 12. В табл. 1 представлены результаты вычисления значений СКО шумов Φ_1 и Φ_2 для тестовых ОК для всех выбранных (на шаге 10) базовых значений $\sigma_b(\Phi_2)$ СКО шума Φ_2 .

Шаги 13—17. Выполнение шагов 13—17 проводились с помощью математического программного обеспечения «MathCad» для n = 10000 моделирований. Соответствующие результаты отображены в табл. 2, а также на рис. 7.

Из этих результатов следует, что погрешность оценки атомного номера для разных материалов имеет сильную зависимость от квантовых шумов. Вместе с тем указанная погрешность:

строго возрастает при возрастании уровней шумов (что естественно и вполне закономерно);

для ОК из материала с низким атомным номером (углерод) имеет максимальное значение при минимальной массовой толщине ОК (что равносильно максимальному значению радиационной прозрачности ОК);

для ОК из материала со средним (алюминий) или высоким (железо) атомным номером имеет максимальное значение при максимальной массовой толщине ОК (что равносильно минимальному значению радиационной прозрачности ОК);

увеличивается при увеличении атомного номера материала ОК.

. Таблица 1 СКО шумов Φ_1 и Φ_2 для тестовых ОК при разных базовых значениях СКО шума Φ_2

Z_{t}	$\sigma_b(\Phi_2)$	СКО	d_{s2}							
			0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8
6	0,0025	$\sigma(\Phi_2)$	0,0025	0,0035	0,0043	0,0049	0,0055	0,006	0,0065	0,007
	0,005		0,005	0,007	0,0086	0,0099	0,011	0,0121	0,013	0,0139
	0,01		0,01	0,0141	0,0172	0,0198	0,0221	0,0242	0,0261	0,0278
	0,03		0,03	0,0422	0,0515	0,0594	0,0663	0,0725	0,0782	0,0835
	0,0025	$\sigma(\Phi_1)$	0,0009	0,0014	0,0017	0,002	0,0023	0,0026	0,0029	0,0031
	0,005		0,0018	0,0027	0,0035	0,0041	0,0047	0,0052	0,0057	0,0062
	0,01		0,0037	0,0055	0,0069	0,0082	0,0093	0,0104	0,0114	0,0124
	0,03		0,0111	0,0164	0,0207	0,0245	0,028	0,0312	0,0343	0,0372
	0,0025	$\sigma(\Phi_2)$	0,0026	0,0036	0,0044	0,005	0,0056	0,0061	0,0066	0,007
	0,005		0,0051	0,0072	0,0087	0,01	0,0111	0,0122	0,0131	0,014
	0,01		0,0102	0,0143	0,0174	0,02	0,0223	0,0243	0,0262	0,0279
	0,03		0,0307	0,043	0,0523	0,0601	0,0669	0,073	0,0786	0,0838
13	0,0025	$\sigma(\Phi_1)$	0,0007	0,0011	0,0014	0,0017	0,002	0,0022	0,0025	0,0028
	0,005		0,0014	0,0022	0,0028	0,0034	0,0039	0,0045	0,005	0,0056
	0,01		0,0029	0,0043	0,0056	0,0067	0,0078	0,009	0,0101	0,0113
	0,03		0,0086	0,013	0,0167	0,0202	0,0235	0,0269	0,0303	0,0339
26	0,0025	$\sigma(\Phi_2)$	0,0027	0,0037	0,0045	0,0051	0,0057	0,0062	0,0066	0,007
	0,005		0,0054	0,0074	0,009	0,0103	0,0114	0,0124	0,0133	0,0141
	0,01		0,0107	0,0149	0,018	0,0205	0,0228	0,0247	0,0265	0,0282
	0,03		0,0321	0,0446	0,0539	0,0616	0,0683	0,0742	0,0796	0,0845
	0,0025	$\sigma(\Phi_1)$	0,0006	0,0009	0,0011	0,0014	0,0016	0,0019	0,0022	0,0025
	0,005		0,0012	0,0018	0,0023	0,0028	0,0033	0,0038	0,0043	0,005
	0,01		0,0023	0,0035	0,0046	0,0056	0,0065	0,0076	0,0087	0,01
	0,03		0,007	0,0106	0,0137	0,0167	0,0196	0,0227	0,0261	0,0299

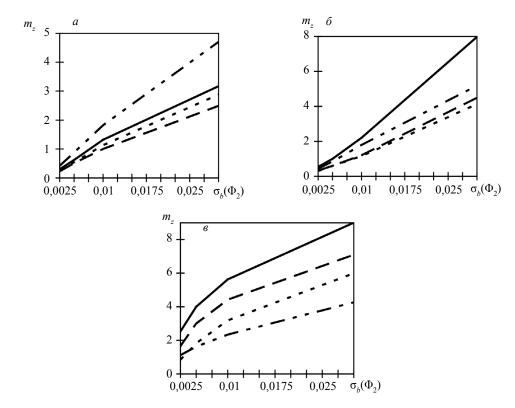
Из табл. 2 и рис. 7 вместе с тем вытекает, что погрешность m_z (как и δ_z) является немонотонной зависимостью от массовой толщины (радиационной прозрачности) ОК.

Аналогичная немонотонность оказалось присущей и для традиционной (классической) схемы реализации МДЭ, что объясняется, главным образом, поведением обратной зависимости $Z = Z(d_{t1}, d_{t2})$, т.е. зависимости атомного номера от радиационных прозрачностей ОК [13].

Таблица 2 Среднее значение Z_m , погрешности m_z и δ_z оценки атомного номера для разных тестовых ОК в зависимости от базового значения $\sigma_b(\Phi_2)$ СКО шума Φ_2

			d_{s2}								
Z_{t}	$\sigma_b(\Phi_2)$		0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	
6	0,0025	Z_m	5,99	5,99	5,99	5,96	5,85	5,98	6	5,99	
		m_z	0,3	0,24	0,23	0,41	0,77	0,31	0,3	0,42	
		δ_z ,%	4,95	3,94	3,78	6,93	13,21	5,15	5,05	6,94	
		Z_{m}	5,97	5,99	5,97	5,96	5,87	5,98	5,97	5,95	
	0,005	m_z	0,62	0,5	0,51	0,55	0,8	0,54	0,62	0,88	
		δ_z , %	10,45	8,3	8,54	9,29	13,57	9	10,41	14,75	
	0,01	Z_m	5,89	5,91	5,93	5,94	5,85	5,91	5,87	5,8	
		m_z	1,32	1,05	1	0,98	1,11	1,13	1,35	1,82	
		δ_z , %	22,34	17,83	16,83	16,58	19	19,11	23	31,45	
		Z_{m}	6,16	6	5,95	5,91	5,91	6,01	6,1	6,6	
	0,03	m_z	3,17	2,64	2,49	2,49	2,6	2,88	3,44	4,7	
		δ_z , %	51,5	44	41,8	42,07	44,02	47,87	56,32	71,1	
13	0,0025	Z_m	13,01	13,01	13,01	13,01	13	13	13,01	13,03	
		m_z	0,54	0,38	0,32	0,29	0,29	0,3	0,33	0,43	
		δ _z , %	4,12	2,95	2,48	2,25	2,19	2,28	2,55	3,31	
		Z_m	13,06	13,02	13,02	13,01	13,01	13,02	13,02	13,05	
	0,005	m_z	1	0,71	0,6	0,56	0,55	0,59	0,65	0,84	
		δ_z , %	7,69	5,48	4,59	4,27	4,2	4,53	5,01	6,44	
	0,01	Z_m	13,24	13,09	13,05	13,07	13,06	13,04	13,09	13,17	
		m_z	2,2	1,47	1,2	1,1	1,09	1,15	1,35	1,79	
		δ_z , %	16,62	11,25	9,17	8,4	8,34	8,8	10,32	13,56	
	0,03	Z_m	15,12	14,09	13,72	13,59	13,67	13,77	13,75	14,03	
		m_z	7,98	5,73	4,49	3,88	4	4,13	4,45	5,19	
		δ_z , %	52,75	40,68	32,73	28,57	29,25	29,97	32,33	36,96	
26	0,0025	Z_m	26,3	26,17	26,17	26,05	25,66	26,58	24,53	24	
		m_z	2,53	1,86	1,65	1,23	1,14	0,85	0,92	1,12	
		δ_z ,%	9,64	7,09	6,32	4,71	4,43	3,21	3,74	4,66	
	0,005	Z_m	26,39	26,41	26,48	25,98	25,45	26,12	24,61	23,53	
		m_z	4	3,27	3	2,17	1,81	1,82	1,57	1,62	
		δ_z , %	15,15	12,4	11,34	8,37	7,09	6,96	6,38	6,87	
	0,01	Z_m	25,91	26,28	26,36	25,66	25,05	25,65	24,38	22,84	
		m_z	5,63	4,76	4,42	3,36	2,95	3,18	2,55	2,34	
		δ_z , %	21,74	18,11	16,78	13,08	11,78	12,39	10,46	10,26	
	0,03	Z_m	23,66	24,69	24,89	23,96	24,08	24,41	22,82	20,93	
		m_z	9,01	7,72	7,09	5,75	5,84	5,99	4,92	4,26	
		δ_z , %	38,09	31,26	28,48	24,01	24,24	24,54	21,56	20,35	

Дефектоскопия № 1 2022



ЗАКЛЮЧЕНИЕ

В ходе выполненных исследований представлены аналитические описания множества допустимых решений и множества тестовых объектов контроля для метода дуальных энергий применительно к рентгеновским системам досмотрового контроля с сэндвич-детекторами излучения. Для данных систем создан алгоритм оценки погрешностей определения атомного номера, порожденных квантовым шумом, при распознавании материалов на основе метода дуальных энергий и прочилюстрировано его действие на конкретном примере.

Созданный алгоритм может быть использован в дальнейшем, в частности, для оптимизации сэндвич-детекторов излучения из условия минимума погрешности распознавания материалов, порожденной квантовым шумом.

СПИСОК ЛИТЕРАТУРЫ

- 1. Rebuffel V., Dinten J.M. Dual-energy X-ray imaging: benefits and limits // Insight-non-destructive testing and condition monitoring. 2007. V. 49. No. 10. P. 589—594. https://doi.org/10.1784/insi.2007.49.10.589
- 2. Chang C.H., Ni Y.C., Tseng S.P. Calculation of effective atomic numbers using a rational polynomial approximation method with a dual-energy X-ray // Journal of X-Ray Science and Technology. 2021. V. 29. No. 2. P. 317—330. https://doi.org/10.3233/xst-200790
- 3. Duvillier J., Dierick M., Dhaene J., Van Loo D., Masschaele B., Geurts R., Hoorebeke L.V., Boone M.N. Inline multi-material identification via dual energy radiographic measurements // NDT & E International. 2018. V. 94. P. 120—125. https://doi.org/10.1016/j.ndteint.2018.01.002
- 4. Огородников \vec{C} .A. Распознавание материалов при радиационном таможенном контроле на базе линейного ускорителя электронов / Дис. ... канд. техн. наук. Санкт-Петербург, 2002. 121 с.
- 5. Гавриш Ю.Н., Бердников Я.А., Спирин Д.О., Передерий А.Н., Сафонов М.В., Романов И.В. Программный комплекс для восстановления интроскопических изображений с использованием метода дуальной энергии // Problems of atomic science and technology. 2010. № 3. Series: Nuclear Physics Investigations (54). P. 123—125. URL: http://dspace.nbuv.gov.ua/handle/123456789/17029

- 6. *Gil Y., Oh Y., Cho M., Namkung W.* Radiography simulation on single-shot dual-spectrum X-ray for cargo inspection system // Applied Radiation and Isotopes. 2011. V. 69. No. 2. P. 389—393. https://doi.org/10.1016/j.apradiso.2010.11.011
- 7. Osipov S.P., Udod V.A., Wang Y. Identification of materials in X-Ray inspections of objects by the dual-energy method // Russian Journal of Nondestructive Testing. 2017. V. 53. No. 8. P. 568—587. https://doi.org/10.1134/S1061830917080058 [Ocunoв C.П., Удод В.А., Ван Я. Распознавание материалов методом дуальных энергий при радиационном контроле объектов // Дефектоскопия. 2017. № 8. С. 33—56.]
- 8. Osipov S.P., Usachev E.Y., Chakhlov S.V., Shchetinkin S.A., Kamysheva E.N. Selecting parameters of detectors when recognizing materials based on the separation of soft and hard X-ray components // Russian Journal of Nondestructive Testing. 2018. V. 54. No. 11. P. 797—810. https://doi.org/10.1134/ S1061830918110074 [Ocunoв C.П., Усачев Е.Ю., Чахлов С.В., Щетинкин С.А., Камышева Е.Н. Выбор параметров детекторов в методе распознавания материалов на основе разделения мягкой и жесткой составляющих рентгеновского излучения // Дефектоскопия. 2018. № 11. С. 60—71.]
- 9. Свистунов Ю.А., Ворогушин М.Ф., Петрунин В.И., Сидоров А.В., Гавришин Ю.Н., Фиалковский А.М. Развитие работ по созданию рентгеновских и ядерно-физических инспекционных комплексов в НИИЭФА им. Д.В. Ефремова // Problems of atomic science and technology. 2006. No. 3. P. 171—173. URL: http://dspace.nbuv.gov.ua/handle/123456789/111427
- 10. Fredenberg E. Spectral and dual-energy X-ray imaging for medical applications // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2018. V. 878. P. 74—87. https://doi.org/10.1016/j.nima.2017.07.044
- 11. *Iovea M., Neagu M., Duliu O.G., Oaie G., Szobotka S., Mateiasi G.* A Dedicated on-board dual-energy computer tomograph // J. Nondestruct Eval. 2011. V. 30. P. 164—171. https://doi.org/10.1007/s10921-011-0104-x
- 12. Khan S.U., Khan I.U., Ullah I., Saif N., Ullah I. A review of airport dual energy X-ray baggage inspection techniques: Image enhancement and noise reduction // Journal of X-Ray Science and Technology. 2020. V. 28. No. 3. P. 481—505. https://doi.org/10.3233/xst-200663
- 13. *Udod V.A.*, *Osipov S.P.*, *Wang Y*. Estimating the influence of quantum noises on the quality of material identification by the dual-energy method // Russian Journal of Nondestructive Testing. 2018. V. 54. No. 8. P. 585—600. https://doi.org/10.1134/S1061830918080077 [*Удод В.А.*, *Осипов С.П.*, *Ван Я*. Оценка влияния квантовых шумов на качество распознавания материалов методом дуальных энергий // Дефектоскопия. 2018. № 8. С. 50—65.]
- 14. *Udod V.A.*, *Vorobeichikov S.E.*, *Nazarenko S.Y.* Mathematical models of radiation transparency of test objects when using sandwich X-ray radiation detectors // Russian Journal of Nondestructive Testing. 2020. V. 56. No. 2. P. 161—170. https://doi.org/10.1134/S1061830920020096 [*V∂од В.А.*, *Воробейчиков С.Э.*, *Назаренко С.Ю*. Математические модели радиационных прозрачностей объекта контроля при использовании сэндвич-детекторов рентгеновского излучения // Дефектоскопия. 2020. № 2. С. 31—41.]
- 15. *Евстропьев К.С.* Химия кремния и физическая химия силикатов. М.: Промстройиздат, 1956. 124 с.
- 16. Открытый обзор продукции российских производителей специальных средств и техники для обеспечения общественной безопасности / Научно-технический информационный сборник. Вып. 1. М.: ФКУ НПО «СТиС» МВД России, 2018. 103 с.

Дефектоскопия № 1 2022