АКУСТИКО-ЭМИССИОННЫЙ МОНИТОРИНГ ПРОЦЕССА ПОВРЕЖДЕНИЯ ОПОРНОЙ СТОЙКИ ПЛАНЕРА В УСЛОВИЯХ ЦИКЛИЧЕСКОГО НАГРУЖЕНИЯ

Ю.Г. Матвиенко¹, И.Е. Васильев^{1,*}, Д.В. Чернов¹, В.А. Панков²

¹Институт машиноведения им. А.А. Благонравова РАН, Россия 101990 Москва, Малый Харитоньевский пер., 4 ²Центральный аэрогидродинамический институт им. Н. Е. Жуковского (ЦАГИ), Россия 140180 г. Жуковский Московской обл., ул. Жуковского, 1 E-mail: *vie01@rambler.ru

> Поступила в редакцию 03.04.2019; после доработки 14.05.2019 Принята к публикации 24.05.2019

Структурно-феноменологический подход, применяемый для разделения и классификации сигналов акустической эмиссии на энергетические кластеры, совместно с параметрами частоты регистрации и весового содержания локационных импульсов в кластерах, позволяет при мониторинге в режиме реального времени отслеживать основные тренды накопления повреждений на разных структурных уровнях и отделять сигналы, генерируемые при разрушении конструкционного материала, от сопутствующих механических помех и электромагнитных шумов. Приведен пример применения новых критериальных параметров для определения момента отслаивания сбегов стрингеров от полок опорной стойки планера МС-21 в условиях проведения усталостных испытаний при симметричном цикле нагружения. С применением новых критериальных параметров, разработанных методик кластерного анализа, используемых в том числе для разделения локационных импульсов в поле спектральных характеристик, установлена взаимосвязь между процессом разрушения когезионных и адгезионных связей клеевого слоя на границе скрепления сбегов стрингеров с полками опорной стойки, и генерируемыми при этом акустическими сигналами их энергией, формой и спектром.

Ключевые слова: акустическая эмиссия, локационные импульсы, весовые параметры, частотные характеристики, структура материала, усталостное разрушение.

DOI: 10.1134/S0130308219080037

ВВЕДЕНИЕ

В Институте машиноведения РАН на протяжении ряда лет с применением метода акустической эмиссии (АЭ) проводились исследования по изучению возможности количественной оценки процесса накопления повреждений, определению остаточной прочности и степени деградации свойств конструкционных материалов, в том числе алюминиевых сплавов и композитов, в условиях воздействия различного вида статических и циклических нагрузок. Для проведения такой оценки был использован структурно-феноменологический подход, позволяющий установить перекрестные связи между процессом накопления повреждений и разрушения конструкционного материала, и генерируемыми при этом акустическими сигналами: их энергией, формой и спектром [1—6].

Для выбора универсальных критериальных параметров в качестве объектов исследования использовались не только конструкционно-подобные образцы (КПО) авиационных панелей [1, 2], но и физические модели: хрупкие оксидные тензоиндикаторы, наклеиваемые на поверхность различных конструкционных материалов, имитирующие структуру разрушения сэндвич-панелей и композитов, а также насыпной конус стеклогранулята [3], при формировании которого моделировался процесс усталостного накопления повреждений. На этих физических моделях и образцах, позволяющих создавать широкую вариабельность условий испытаний, видов прилагаемых нагрузок, механизмов разрушения структуры материала, проводилось тестирование и отбор наиболее информативных критериальных параметров, отражающих основные тренды и источники накопления повреждений на микро-, мезо- и макромасштабном уровнях, дающих возможность проводить оценку степени деградации материала и прогнозировать его остаточную прочность, выявлять источники событий АЭ, а также формы и спектры свойственных им локационных импульсов [4—6].

Как следует из публикаций различных исследовательских групп [7—17], применяемые методики кластерного анализа регистрируемых при АЭ-мониторинге импульсов, в том числе нейронных сетей, в сочетании со спектральным и вейвлет анализами их спектров, синхронной видеосъемкой накопления повреждений в структуре материала, фрактографией шлифов разрушений, дают возможность изучить основные процессы накопления повреждений на стадиях разрушения конструкционного материала и связать их с генерируемыми при этом импульсами АЭ.

Целью настоящей статьи является демонстрация применения разработанных в Институте машиноведения методик кластерного анализа [1, 2], спектральной диагностики [3, 6] и критериаль-

ных параметров [4—6] в условиях усталостных испытаний опорной стойки планера МС-21 для мониторинга в режиме реального времени процесса разрушения адгезионных связей клеевого слоя и динамики отслаивания сбегов стрингеров от полок опорной стойки.

УСТАЛОСТНЫЕ ИСПЫТАНИЯ ОПОРНОЙ СТОЙКИ И ДИАГНОСТИЧЕСКОЕ ОБОРУДОВАНИЕ

Объект исследования — опорная стойка планера МС-21, усталостные испытания которой выполняли в условиях циклического нагружения, имитирующего критические полетные режимы нагрузки. При симметричном цикле нагружения проводился АЭ-мониторинг процесса отслаивания сбегов стрингеров от опорных полок стойки. Частота нагружения составляла 0,5 Гц, максимальная амплитуда в течение первых 4629 циклов нагружения достигала 200 кH, а в последующих 863 циклах была повышена до 290 кH. В процессе циклических испытаний выполняли АЭ-мониторинг отслаивания полок стрингеров в области их сбегов от основания образца.

Рис. 1. Конструкция образца опорной стойки с расположением преобразователей АЭ вблизи верхнего (1-4) и нижнего (5-8) сбегов стрингеров, а также проволочного индикатора отслаивания (9).

На рис. 1 приведен эскиз конструкции образца опорной стойки с расположением ПАЭ вблизи сбегов стрингеров и проволочного индикатора отслаивания.

Преобразователи АЭ устанавливались в области верхнего и нижнего сбегов стрингеров. Расстояние между ближайшими ПАЭ по длине стрингеров составляло 170 мм и по ширине — 100 мм. При установке ПАЭ использовались стальные струбцины, которые для улучшения акустического контакта крепились к поверхности стойки через слой технического вазелина.

Для сбора и обработки регистрируемых массивов данных была использована восьмиканальная система A-Line 32D, изготовленная ООО «Интерюнис-ИТ». Локация источников событий АЭ в области сбегов стрингеров осуществлялась с применением резонансных преобразователей R15-а фирма Mistras (США). В качестве предусилителей регистрируемых сигналов применяли ПАЭФ-014, выпускаемые ООО «Интерюнис-ИТ». При планарной локации источников событий АЭ в области верхнего сбега стрингеров использовались ПАЭ с номерами 1—4, а для локации источников событий АЭ в области нижнего сбега стрингеров — с номерами 5—8.

Перед проведением циклических испытаний стойки выполнялось статическое нагружение, в ходе которого прилагаемая нагрузка ступенчато повышалась на 50 кН до максимального уровня P=200 кН. На каждой ступени при достижении максимального уровня нагрузки осуществлялась выдержка в течение 30 с, после чего образец разгружался. После проведения испытаний на статическое растяжение аналогичным образом выполнялись испытания на сжатие, в ходе которого уровень максимальной нагрузки достигал P=-200 кН. В ходе этих испытаний определялись оптимальные настройки системы АЭ, включающие порог дискриминации сигналов АЭ — $u_{th}=42$ дБ, полосу пропускания сигналов цифровыми фильтрами — Δf_p : 30—500 кГц и 100—300 кГц, среднюю групповую скорость цуга интерферирующих акустических волн $V_g=48$ мм/мкс при максимальном размере локационной решетки 840 мм, а также границы энергетических кластеров для разделения регистрируемых локационных импульсов в поле дескрипторов E_u-N_u/t_u , составляющие для кластера H: $E_u=60$ —85дБ, $N_u/t_u=10$ —300 кГц; для кластера C: $E_u=85$ —115 дБ, $N_u/t_u=30$ —250 кГц; для кластера B: $E_u=115$ —140 дБ, $E_u=115$ 0—180 кГц, отражающие процессы накопления повреждений материала на микро-, мезо- и макромасштабном уровнях.

На рис. 2 приведена схема размещения ПАЭ в диагностируемой зоне образца и редактор зон локации, а на рис. 3 — параметры градации событий АЭ, включающие размер локационных кла-

Рис. 2. Схема планарной локации опорной стойки и параметры планарной локации.

Рис. 3. Параметры кластеризации событий АЭ и амплитуды импульсов в кластерах.

стеров, соотношение между цветом кластеров и количеством регистрируемых событий, а также амплитудой импульсов в кластерах.

На 6928 с испытания образца после 3464 циклов нагружения произошел разрыв индикатора контроля отслаивания — проволоки, натянутой вблизи верхнего сбега стрингера (см. п. 9 на рис. 1) и система блокировки остановила испытательный стенд. В связи со сложностью выполнения ультразвукового контроля (УЗК) теневым методом в условиях стендовых испытаний опорной стойки, УЗК проводился уже после снятия образца опорной стойки с испытательного стенда с использованием дефектоскопа A1214 Expert. Проведенный визуальный осмотр сбега стрингеров не выявил каких-либо внешних нарушений, свидетельствующих об их отслаивании от полок опорной стойки. Поэтому система блокировки стенда была отключена и испытания продолжены. При уровне амплитуды $P_a = 200 \text{ kH}$ было выполнено еще 1499 циклов нагружения, после чего уровень амплитуды в циклах нагружения был повышен до $P_a = 290 \text{ kH}$. При этом уровне амплитуды было проведено 863 цикла нагружения опорной стойки. По завершению испытаний повторный осмотр также не выявил внешних признаков отслаивания сбегов стрингеров от полок опорной стойки. В результате последующих ультразвуковых исследований были выявлены три зоны отслаивания сбегов стрингеров от полок опорной стойки, приведенные на рис. 4.

Нижний сбег стрингеров

Рис. 4. Проволочный индикатор (a) и зоны отслаивания сбегов стрингеров (б—e) от полок опорной стойки, отмеченные штриховыми линиями, выявленные с применением УЗК.

РЕЗУЛЬТАТЫ АЭ-МОНИТОРИНГА ОТСЛАИВАНИЯ ПОЛОК СТРИНГЕРОВ

Процесс АЭ-мониторинга при усталостных испытаниях опорной стойки, выполняемых при симметричном цикле нагружения, можно разделить на пять этапов:

- 1) τ_0 — τ_1 =153—6928 с мониторинга при P_a = 200 кН продолжался до момента разрыва проволочного индикатора контроля отслаивания стрингеров, расположенного в области верхнего сбега;
- 2) τ_1 — τ_2 = 6928—7768 с время остановки испытаний после разрыва проволочного индикатора верхнего сбега стрингеров;
- 3) τ_2 — τ_3 = 7768—10248 с время продолжения испытаний при P_a = 200 кН после разрыва проволочного индикатора;
- 4) τ_3 — τ_4 = 10248—10513 с время остановки испытаний для перехода на новый уровень амплитуды цикла P_a =290 кH;
 - 5) τ_4 — $\tau_5 = 105\overset{q}{1}3$ —12242 с время продолжения испытаний при $P_a = 290$ кН.

На рис. 5 представлены результаты АЭ-мониторинга процесса отслайвания сбегов стрингеров от полок опорной стойки при усталостных испытаниях.

На рис. 5a приведены кривые накопления каналами АЭ-системы локационных импульсов. Всего в ходе испытаний было зарегистрировано $(N_{\Sigma})_{\pi}$ = 135678 АЭ-событий. Наиболее интенсивное накопление локационных импульсов каналами АЭ-системы регистрировалось в области нижнего сбега стрингеров (на рис. 5b — справа), в локационной зоне, образуемой ПАЭ № 5—№ 8. Как следует из кривых накопления сигналов АЭ на рис. 5a, в области верхнего сбега стрингеров (на рис. 5b — слева) — локационной зоне, образуемой ПАЭ № 1—№ 4, скорость накопления локационных импульсов была в 2-4 раза более низкой. Такая неравномерность накопление локационных импульсов обусловлена не только более интенсивным процессом отслаивания стрингеров от полок опорной стойки в области нижнего сбега, но как видно из графиков рис. 6, более активной регистрацией акустических сигналов, вызванных трением, вибрационным и ударным воздействием элементов оправки в области нижней траверсы нагружающего стенда при усталостных испытаниях опорной стойки.

Рис. 5. Результаты АЭ-мониторинга процесса отслаивания сбегов стрингеров от полок опорной стойки при усталостных испытаниях.

Большой массив регистрации помех АЭ вблизи нижнего сбега стрингеров, где были установлены преобразователи АЭ № 5— № 8, прежде всего обусловлен цифровыми фильтрами, применяемыми для этих ПАЭ, которые имели полосу пропускания сигналов $\Delta f_p = 30$ —500 кГц. Для преобразователей № 1—№ 4 использовались фильтры с полосой пропускания $\Delta f_p = 100$ —300 кГц, отрезающие низкочастотные шумовые сигналы.

Рис. 6. Импульсы массивов помех, выделенные в поле дескрипторов $E_{\rm u}$ — $N_{\rm u}/t_{\rm u}$ и зарегистрированные при усталостных испытаниях опорной стойки в областях верхнего (a) и нижнего (δ) захватов нагружающего стенда.

На рис. 56 представлены результаты координатной локации АЭ-событий, зарегистрированные в ходе циклических испытаний стойки с применением резонансных преобразователей R15- α . Наибольшая их плотность $N_{_{\rm I}} > 50$ ед/см², отмеченная согласно установленной градации АЭ-событий на рис. 3 кластерами красного цвета, была зарегистрирована в местах размещения ПАЭ вблизи верхнего (слева) и нижнего (справа) сбегов стрингеров.

На рис. 5e и e показана динамика изменения максимальной амплитуды и длительности ло-кационных импульсов, регистрируемых в ходе АЭ-мониторинга образца. В течение первых 1000 циклов нагружения опорной стойки до 2000 с испытания, выполняемом при $P_a = 200$ кН

на этапе т₀—т₁ АЭ-мониторинга, регистрировался постепенный рост максимальной амплитуды и длительности локационных импульсов, уровень которых в конце этого периода достигал соответственно: u_{∞} = 80 дБ, t_{ω} = 10 000 мкс. В интервале 2100—2450 с испытания ПАЭ № 5— № 8, установленные вблизи нижней траверсы нагружающего стенда, регистрировались высокоэнергетические импульсы большой амплитуды и длительности, вызванные ударным воздействием в результате ослабления винтовой стяжки крепления оправки в нижнем захвате опорной стойки. В период 2500—5000 с испытания продолжался рост параметров u_m и t_n локационных импульсов, регистрируемых всеми каналами АЭ-системы, что характерно для процессов масштабного нарушения адгезии и отслаивания сбегов стрингеров от полок опорной стойки. Максимальный уровень амплитуды и длительности локационных импульсов, достигающий соответственно: u_m =100—120 дБ, t_u = 30 000 мкс регистрировался после 2500 циклов нагружения в период 5000—6928 с мониторинга, а также на этапе τ_2 — τ_3 = 7768—10 248 с испытания опорной стойки. Как следует из рис. 5e, ϵ , наиболее интенсивное разрушение адгезионных связей и отслаивание сбегов стрингеров происходило после 2500 циклов нагружения на этапе $\tau_0 - \tau_1$ и после разрыва проволочного индикатора на этапе τ_2 — τ_3 мониторинга. При этом сигналы максимальной амплитуды и длительности регистрировались ПАЭ № 5—№ 8 в области нижнего сбега стрингеров, где их уровень соответственно превышал $u_m > 100$ дБ и $t_u \ge 30~000$ мкс. На заключительном этапе τ_4 — τ_5 в период 10 513—12 242 с испытания, проводившемся при амплитуде циклов нагружения P_a = 290 кH, значения этих параметров для основного массива локационных импульсов заметно снижались и не превышали соответственно: $u_m \le 90$ дБ, $t_u \le 15\,000$ мкс. Такой характер изменения уровня параметров регистрируемых локационных импульсов был вызван расширением области отслаивания сбегов стрингеров и переходом процесса в новые зоны, где когезионные и адгезионные связи клеевого слоя были разрушены в меньшей степени.

На рис. 5 ∂ , e показана динамика изменения частоты регистрации ω , и весового содержания локационных импульсов W_i в энергетических кластерах (i —H, C, B). Если в первые 200 циклов нагружения частота регистрации импульсов, относящихся к кластеру Н, практически вдвое превышала частоту регистрации в кластере C, а весовое их содержание соответственно составляло: $W_H = 77 \%$, $W_C = 23 \%$, то в дальнейшем характер регистрации и накопления локационных импульсов в кластерах кардинально изменились. Резко возрастают частота регистрации и весовое содержание локационных импульсов в среднем кластере и синхронно снижаются в нижнем. Уже после первой 1000 циклов нагружения на 2000 с испытания частота регистрации импульсов, относящихся к кластеру $C - \omega_C = 13 \, \Gamma$ ц, в два с половиной раза превышает в кластере $H - \omega_H =$ = 5 Гц, а весовое их содержание в этих кластерах выравнивается. В период 2000—5000 с испытания опорной стойки частота регистрации локационных импульсов в кластере C возросла до $\omega_C = 30 \, \Gamma \mathrm{L}$, тогда как в кластере H не превышала ω_H = 13 Гц. При этом уровень параметра W_C возрастал до 59—61 %, а параметра W_H снижался до 30 %. В этот период наблюдается заметный рост высокоэнергетических импульсов, частота регистрации которых достигает ω_{R} = 10 Γ ц, а весовое содержание — $W_{R} = 11$ %. Дальнейшее нагружение опорной стойки до момента разрыва проволочного индикатора, произошедшего на 6928 с испытания, характеризуется стабилизацией частоты регистрации и весового содержания локационных импульсов в кластере Н, незначительным падением этих параметров в кластере С и ростом в кластере В, максимальные значения которых за 505 с до остановки стенда составляли соответственно: $\omega_{R} = 13 \; \Gamma \text{ц}, \; W_{R} = 16 \; \%.$

На этапе мониторинга τ_2 — τ_3 после разрыва проволочного индикатора, в течение первых 200 с испытаний, при сохранении частоты регистрации локационных импульсов в кластере B на уровне $\omega_B=10$ —13 Γ ц величина параметра W_B на 7910 с повысился до 17 %. Такой уровень сохранялся до 8290 с испытания, после чего частота регистрации и весовое содержание высокоэнергетических импульсов начало заметно снижаться, достигая соответственно: $\omega_B=6$ Γ ц и $W_B=13$ % на 10129 с мониторинга. Падение уровня этих параметров в верхнем энергетическом кластере сопровождалось заметным ростом частоты регистрации локационных импульсов в кластерах H и C до $\omega_H=25$ Γ ц и $\omega_C=45$ Γ ц соответственно. При этом весовое их содержание в период 8290—10248 с испытания изменилось незначительно в пределах $W_H=29$ —32 %, $W_C=54$ —55 %.

На заключительном этапе мониторинга τ_4 — τ_5 , включающем 10 513—12 242 с испытаний, проводившемся при повышении амплитуды симметричного цикла до P_a = 290 кH, продолжилось снижение уровня критериальных параметров в кластере B соответственно до ω_B = 2—3 Γ ц и W_B = 11 %, сопровождаемое синхронным ростом величины этих параметров в кластере C соответственно до ω_C = 80—100 Γ ц и W_C = 57 % при неизменном уровне параметров ω_H = 25—30 Γ ц и W_H = 33 % в кластере H. Такой характер изменения уровня критериальных параметров на последнем этапе мониторинга свидетельствует о том, что в области сбегов стрингеров процесс нарушения

адгезии и отслаивания от полок опорной стойки начал расширяться и смещаться от краев к центру, вследствие чего уровень регистрации высокоэнергетических импульсов W_{B} стал снижаться и соответственно повысилось процентное содержание импульсов, относящихся к среднему энергетическому кластеру W_{C} .

На рис. 7 показаны результаты разделения на кластеры локационных импульсов по их спектральным характеристикам в поле параметров η —f на этапе постобработки результатов АЭ-мониторинга, отражающих соотношение пиковой плотности энергии Hf_m , регистрируемой на частоте f_m , к плотности энергии Hf_R на резонансной частоте f_R , преобразователя R15-а, в полосе пропускания цифрового фильтра $\Delta f=30$ —500 к Γ ц.

Рис. 7. Разделение локационных импульсов, зарегистрированных в процессе АЭ-мониторинга опорной стойки, на энергетические кластеры I—V в поле параметров $\eta - \Delta f$ с применением коэффициента парциальной плотности энергии $\eta = H_{f_m}/H_{f_R}$, выделяемой на пиковой частоте f регистрируемого максимума и частоте резонанса f_R =160 кГц ПАЭ R15- α в полосе пропускания цифрового фильтра Δf =30—500 кГц.

В поле параметров η — Δf все регистрируемые преобразователями R15- α в ходе A3-мониторинга локационные импульсы сформировали пять энергетических кластеров, отражающих в процессе циклического нагружения опорной стойки наличие A3-помех в виде вибраций,

Рис. 8. Формы (a) и спектры (b) АЭ-помех, регистрируемые от действия вибраций (1), трения сопрягаемых элементов оправки и захватов нагружающего стенда (2), ударных воздействий (3), электромагнитных шумов (4).

Рис. 9. Формы (a) и спектры (b) сигналов AЭ, регистрируемые в результате разрушения когезионных (1) и адгезионных связей (2) клеевого слоя, локального отслаивания (3) сбегов стрингеров от полок опорной стойки.

трения элементов оправки нагружающего стенда (кластер I), ударных воздействий и электромагнитных шумов (кластер II), и сигналов, возникающих в результате разрушения когезионных и адгезионных связей в клеевом слое на границе скрепления сбегов стрингеров с полками опорной стойки, и их локального отслаивания в области сбегов стрингеров (кластеры III—V). На рис. 8 и 9 приведены типичные формы и спектры импульсов, характерные для АЭ-помех (кластеры I—II) и сигналов (кластеры III—V), генерированных в процессе усталостного разрушения клеевого соединения на границе скрепления сбегов стрингеров с полками опорной стойки.

Необходимо подчеркнуть, что разделение на этапе постобработки зарегистрированного в ходе АЭ-мониторинга массива локационных импульсов на характерные для выделенных источников сигналов кластеры было получено при использовании преобразователей R15- α с резонансной частотой $f_R=160~\mathrm{k}\Gamma$ ц при полосе пропускания цифрового фильтра системы АЭ $\Delta f=30$ —500 к Γ ц. При использовании других ПАЭ с иной резонансной частотой и (или) полосой Δf пропускания цифрового фильтра границы кластеров выделенных источников АЭ-сигналов и помех в поле дескрипторов η —f могут заметно отличаться от приведенных на рис. 7, также как формы и спектры основных типов регистрируемых импульсов, показанных на рис. 8 и 9.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ АЭ МОНИТОРИНГА

Разработанные методики кластерного анализа, спектральной диагностики и новые критериальные параметры W_i и ω_i , используемые для мониторинга процесса накопления повреждений в структуре конструкционного материала и оценки остаточной прочности изделия, были успешно применены в условиях усталостных испытаний опорной стойки планера МС-21. При этом можно выделить следующие основные результаты исследований.

- 1. Представленные на рис. 5 результаты АЭ-мониторинга при циклическом нагружении опорной стойки наглядно отражают зоны наиболее интенсивного разрушения когезионных и адгезионных связей клеевого соединения, и динамику процесса отслаивания стрингеров от полок опорной стойки в области верхнего и нижнего сбегов стрингеров.
- 2. Выявлены не только зоны наиболее интенсивного разрушения клеевого соединения и отслаивания сбегов стрингеров от опорных полок, но и определен момент 6423 с мониторинга, когда частота регистрации и весовое содержание высокоэнергетических импульсов на этапе τ_0 — τ_1 достигло максимальных значений: $\omega_B = 13$ Гц, $W_B = 16$ %, что произошло за 505 с до разрыва проволочного индикатора и свидетельствовало об активном разрушении адгезионных связей клеевого слоя и локальном отслаивании сбегов стрингеров от опорных полок.
- 3. Как следует из рис. 5 θ , e, максимальная интенсивность процесса нарушения адгезии и отслаивания стрингеров в области верхнего и нижнего сбега регистрировалась на этапе τ_2 — τ_3 , когда частота регистрации локационных импульсов в кластере B находилась на уровне $\omega_B = 10$ —13 Γ ц,

а величина параметра $W_{\rm B}$ на 7910 с мониторинга повышалась до 17 % и сохранялась на этом максимальном уровне в течение 380 с испытания.

- 4. На заключительном этапе мониторинга τ_4 — τ_5 , проводившемся при повышении амплитуды цикла до P_a = 2900 кH, как следует из рис. 5 θ и e, активность регистрации высокоэнергетических импульсов заметно снижалась. Такой характер изменения тренда динамики параметров ω_B и W_B вероятно обусловлен тем, что зона локального отслаивания начала расширяться и смещаться от сбегов к центру стрингеров, где когезионные и адгезионные связи клеевого слоя, скрепляющего стрингеры с полками опорной стойки, были разрушены в меньшей степени и процесс отслаивания еще не перешел в активную фазу.
- 5. На фоне локационных импульсов, генерируемых в процессе нарушения адгезии и отслаивания сбегов стрингеров от полок опорной стойки, на рис. 6 в поле параметров $E_u N_u/t_u$ были выделены массивы помех АЭ, возникающих в результате вибрационного и ударного воздействия, трения элементов оправки стойки в нижнем захвате нагружающего стенда. Основной массив таких помех регистрировался ПАЭ № 5—№ 8, установленными вблизи нижних сбегов стрингеров, цифровые фильтры которых имели полосу пропускания $\Delta f = 30$ —500 кГц. Применение цифровых фильтров с полосой пропускания сигналов $\Delta f = 100$ —300 кГц в ПАЭ № 1—№ 5 дало возможность отсечь низкочастотные АЭ-помехи, что позволило более точно отображать динамику изменения частоты регистрации ω_i и весового содержания локационных импульсов W_i в энергетических кластерах H, C, B.
- 6. Спектральный анализ локационных импульсов, выполненный на этапе пост-обработки результатов АЭ-мониторинга в поле параметров η — Δf (см. рис. 7), отражающих соотношение пиковой плотности энергии H_{fm} , регистрируемой на частоте f_m , к плотности энергии H_{fR} на резонансной частоте $f_R = 160$ к Γ ц преобразователя R15- α , в полосе пропускания $\Delta f = 30$ —500 к Γ ц цифрового фильтра, позволил в условиях высокой шумовой нагрузки отделить сигналы, вызванные разрушением клеевого слоя и локального отслаивания сбегов стрингеров, от сопутствующих помех АЭ.

ЗАКЛЮЧЕНИЕ

Применение структурно-феноменологического подхода и новых критериальных параметров ω_i и W_i в ходе АЭ-мониторинга опорной стойки при усталостных испытаниях в условиях симметричного цикла нагружения позволило в режиме реального времени контролировать динамику процесса накопления повреждений и разрушения адгезионных связей клеевого соединения и точно установить момент начала активного отслаивания сбегов стрингеров от полок опорной стойки за 505 с до разрыва проволочного индикатора.

С применением новых критериальных параметров и разработанных методик кластерного анализа, используемых в том числе для разделения локационных импульсов в поле спектральных характеристик, установлена взаимосвязь между процессом разрушения когезионных и адгезионных связей клеевого слоя на границе скрепления сбегов стрингеров с полками опорной стойки, и генерируемыми при этом акустическими сигналами их энергией, формой и спектром. При этом сигналы, генерируемые в результате нарушения адгезии и отслаивания сбегов стрингеров от полок опорной стойки в условиях высокой шумовой нагрузки, удалось отделить от сопутствующих АЭпомех, возникающих в результате вибрационного и ударного воздействия, трения в механических соединениях, электромагнитных наводок.

Комплексное использование частотных ω_i и весовых W_i параметров регистрации локационных импульсов в энергетических кластерах H, C и B при AЭ-мониторинге исследуемых элементов конструкций позволяет получить более информативную картину повреждения и разрушения конструкционного материала на всех структурных уровнях.

Матвиенко Ю.Г., Васильев И.Е., Чернов Д.В. выражают благодарность Российскому научному фонду за оказанную финансовую поддержку (проект № 18-19-00351).

Матвиенко Ю.Г. и Панков В.А. благодарят Министерство образования и науки за оказанную финансовую поддержку (проект № RFMEFI62518X0044).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Матвиенко Ю.Г.*, *Васильев И.Е.*, *Панков А.В.*, *Трусевич М.А*. Ранняя диагностика зон повреждения и вероятного разрушения композиционных материалов с использованием хрупких тензоиндикаторов и акустической эмиссии // Заводская лаборатория. 2016. № 1. С. 45—57.
- 2. *Васильев И.Е.*, *Матвиенко Ю.Г.*, *Панков А.В.*, *Калинин А.Г.* Применение методики ранней диагностики повреждений при исследовании авиационной панели // Заводская лаборатория. 2019. № 6. С. 40—56.

- 3. Махутов Н.А., Иванов В.И., Васильев И.Е., Чернов Д.В. Моделирование опасных неустойчивых состояний при формировании насыпного конуса стеклогранулята // Проблемы безопасности и чрезвычайных ситуаций. 2019. № 1.
- 4. Васильев И.Е., Матвиенко Ю.Г., Елизаров С.В., Чернов Д.В. Способ мониторинга степени деградации структуры материала и определения остаточной прочности изделия / Патент № 2649081 РФ: МПК С 1 G01N 29/14 (2006.01). Патентообладатель Институт машиноведения РАН, № 2017109571. Заяв. 22.03.2017. Опубл. 29.03.2018. Бюл. № 5.
- 5. Матвиенко Ю.Г., Васильев И.Е., Чернов Д.В. Иванов В.И., Елизаров С.В. Критериальные параметры для оценки степени деградации композитных материалов при акустико-эмиссионном мониторинге изделий // Дефектоскопия. 2018. № 12. С. 3—11. 6. *Матвиенко Ю.Г., Васильев И.Е., Чернов Д.В.* Диагностика разрушений и повреждений акустико-
- эмиссионным методом // Приводы и компоненты машин. 2018. № 5. С. 13—18.
- 7. Степанова Л.Н., Рамазанов И.С., Чернова В.В. Вейвлет-анализ структуры сигналов акустической эмиссии при прочностных испытаниях образцов из углепластика // Контроль. Диагностика. 2015. № 7. C. 54—62.
- 8. Степанова Л.Н., Кабанов С.И. Анализ методов кластеризации сигналов акустической эмиссии / В кн. Научные проблемы реализации транспортных проектов в Сибири и на Дальнем Востоке. 2016. С. 191—192.
- 9. Степанова Л.Н., Батаев В.А., Чернова В.В. Исследование разрушения образцов из углепластика при статическом нагружении с использованием методов акустической эмиссии и фрактографии // Дефектоскопия. 2017. № 6. С. 26—33.
- 10. Suzuki H., Takemoto M. and Ono K. A Study of Fracture Dynamics in a Model Composite by Acoustic Emission Signal Processing // Journal of Acoustice Emission. 1993. V. II. № 3. P. 117—128.
- 11. Eaton M., Holford K., Featherston C. and Pullin R. Damage in Carbon Fibre Composites: The Discrimination of Acoustic Emission Signals Using Frequency // Journal of Acoustic Emission. 2007. V. 25. № 1. P. 140—148.
- 12. Hill E.K., Foti C.J., Leung N.Y., Palacios A.E. Neural network burst prediction in tall graphite epoxy vessels from acoustic emission data // Journal of Acoustic Emission. 2012. V. 30. P. 167—179.
- 13. Li L, Lomov S.V. and Yan X. Correlation of acoustic emission with optically observed damage in a glass epoxy woven laminate under tensile loading // Composite Structure. 2015. V. 123. P. 45—53.
- 14. Stankevych Olena, Skalsky Valentyn. Investigation and identification of fracture types of structural materials by means of acoustic emission analysis // Engineering Fracture Mechanics. 2016. V. 164. P. 24—34.
- 15. Saravanakumar K., Arumugam V. Effect of milled glass fibers on quasi-static indentation and tensile behavior of tapered laminates under acoustic emission monitoring // Engineering Fracture Mechanics. 2018. V. 201. P. 36—46.
- 16. Saeedifar Milad, Najafabadi Mehdi Ahmadi, Zarouchas Dimitrios, Toudeshky Hossein Hosseini, Jalalvand Meisam. Clustering of interlaminar and intralaminar damages in laminated composites under indentation loading using Acoustic Emission // Composites Part B. 2018. V. 144. P. 206—219.
- 17. Andreas J. Brunner. Acoustic emission analysis for identification of damage mechanisms in fiberreinforced polymer composites and structural integrity assessment: Selected examples and challenges / Progress in Acoustic Emission XVIII, JSNDI & III AE. 2016. P. 287—292.
- 18. El Mahi Abderrahim, Daoud Hajer, Rebiere Jean-Luc, Gimenez Isabelle, Taktak Mohamed and Haddar Mohamed. Damage mechanisms characterization of flax fibers-reinforced composites with interleaved natural viscoelastic layer using acoustic emission analysis // Journal of Composite Materials. Review. 2019. V. 0(0). P. 1—15.