УДК 620.179.16:534.8

ЗЕРКАЛЬНЫЙ СПОСОБ ИЗМЕРЕНИЯ ДИАГРАММ НАПРАВЛЕННОСТИ В ДОПОЛНИТЕЛЬНОЙ (АЗИМУТАЛЬНОЙ) ПЛОСКОСТИ НАКЛОННЫХ ПЬЕЗОПРЕОБРАЗОВАТЕЛЕЙ

© 2019 г. Н.Н. Коновалов^{1,*}, Р.Х. Рафиков^{2,**}, М.Н. Преображенский^{3,***}

¹АО НТЦ «Промышленная безопасность», Россия 109147 Москва, Таганская, 34А ²Северная дирекция тяги — структурное подразделение дирекции тяги, филиал ОАО «Российские железные дороги», Россия 150003 Ярославль, ул. Республиканская, 3/7 ³Ярославский государственный университет им. П.Г. Демидова, Россия 150003 Ярославль, Советская, 14/2

E-mail: *knn5@mail.ru; **rafis-89@mail.ru; ***mnpnrr@mail.ru

Поступила в редакцию 25.09.2018; после доработки 14.03.2019; принята к публикации 22.03.2019

Предложен новый зеркальный способ измерения диаграмм направленности наклонных пьезопреобразователей в дополнительной (азимутальной) плоскости.

Проведены измерения диаграмм направленности в дополнительной плоскости для преобразователей с углами ввода от 34 до 70° зеркальным способом на стальном образце с плоскопараллельными поверхностями. Установлено, что для преобразователей с углами призмы, близкими к первому критическому (угол ввода 34°), наблюдается расширение угла раскрытия диаграммы направленности в дополнительной плоскости, что может быть объяснено участием в ее формировании преломленной продольной (головной) волны. Показано, что измерения диаграммы направленности в дополнительной плоскости пьезоэлектрических преобразователей эффективно можно проводить в диапазоне азимутальных углов ±15° от направления акустической оси.

Ключевые слова: пьезоэлектрический преобразователь, диаграмма направленности, зеркальный способ, дополнительная (азимутальная) плоскость.

DOI: 10.1134/S0130308219050014

введение

Пьезопреобразователи (ПЭП) являются неотъемлемой частью системы ультразвукового контроля и в значительной степени определяют его эффективность. Характеристики и возможности аппаратуры ультразвукового контроля во многом определяются параметрами преобразователей. Как показано в [1, 2] параметры контроля — чувствительность, шаг сканирования, погрешность измерения координат и условных размеров обнаруженных дефектов — зависят от характеристик диаграммы направленности (ДН) ПЭП. Их необходимо знать не только при разработке новых технологий контроля, но и для решения таких практических задач, как определение расстояния между искусственными отражателями при проектировании настроечных образцов. Количество применяемых при ультразвуковом контроле ПЭП велико, поэтому целесообразно создание автоматизированных систем, позволяющих с минимальным субъективным участием исполнителя и низкой стоимостью оперативно измерять их диаграммы направленности.

Теоретическому и экспериментальному исследованию влияния различных факторов на изменение характеристик направленности ПЭП посвящено значительное число работ [1—7], выполненных в период интенсивного развития методов ультразвуковой дефектоскопии. Интерес к методам измерения этих параметров проявляется и в настоящее время [8—11]. ДН ПЭП, согласно [12], это графическое представление характеристики направленности акустического поля в дальней зоне в декартовых или полярных координатах. Различают ДН ПЭП в основной и дополнительной плоскостях [4, 13—15]. Основная плоскость — это плоскость, проходящая через акустическую ось преобразователя перпендикулярно поверхности контролируемого изделия, дополнительная плоскость, которая проходит через акустическую ось перпендикулярно основной. Нормативнотехнической документацией не предусмотрена проверка параметров акустического поля в дополнительной плоскости. Возможно, это связано с тем, что для преобразователей с круглой пьезопластиной диаграмма направленности в дополнительной плоскости не зависит от угла призмы [4, 13], кроме того, ее измерение представляет определенные технические сложности.

Измерение ДН в дополнительной плоскости ПЭП с углами ввода от 34 до 58° при отражении от угла, образованного ненаправленным отражателем в виде вертикального цилиндрического отверстия и донной поверхностью плоскопараллельного образца, проведено в [16, 17]. При этом, как отмечалось в [13, 16—19], сложности возникают при измерениях для ПЭП с углами ввода больше 57°, что связано с резким уменьшением коэффициента отражения от угла между вертикальным отверстием и

U — амплитуда эхосигнала; γ — угол, отсчитываемый от акустической оси преобразователя-приемника в плоскости, перпендикулярной к плоскости падения луча, град.

донной поверхностью образца. Так, в [16, 17] для ПЭП с углом ввода 58° измерения удалось провести в диапазоне азимутальных углов γ = ±4° от направления акустической оси (рис. 1).

Целью настоящей работы является разработка способа, позволяющего проводить измерения ДН в дополнительной плоскости ПЭП с углами ввода больше 57° в диапазоне азимутальных углов $\gamma = \pm 15^{\circ}$. Для достижения поставленной цели сформулированы следующие основные задачи:

измерить ДН в дополнительной плоскости ПЭП с углами ввода 42, 50 и 58° предложенным способом. Рассчитать угловую зависимость поля $\Phi(\gamma)$ в дополнительной плоскости излучения. Сравнить полученные результаты;

измерить ДН в дополнительной плоскости ПЭП с углами ввода от 34, 50, 58, 60, 65 и 70° предложенным и апробирующими способами. Экспериментально оценить возможность применения зеркального способа для ПЭП с углами ввода больше 57°. Оценить отличие полученных результатов от «точных» ДН.

МЕТОДИЧЕСКАЯ ЧАСТЬ РАБОТЫ

Для измерения ДН в дополнительной плоскости ПЭП с углами ввода больше 57° используют образцы с тороидальным пазом [13, 14] (рис. 2). Изготовление таких образцов представляет технологические сложности, поэтому в данной работе предложен новый зеркальный способ измерения ДН на излучение (излучателя) в дополнительной плоскости ПЭП при использовании стальной плиты с двумя плоскопараллельными поверхностями (рис. 3).

В данной работе использовали преобразователи с углами ввода от 34 до 70° в качестве излучателей и преобразователь П131-2,5-0-90 с переменным углом ввода (рис. 4) в качестве приемника, который настраивался на соответствующий угол ввода излучателя. Смещение приемника осуществлялось так, чтобы точка выхода луча, находящаяся на его контактной поверхности, перемещалась по окружности радиусом R (см. рис. 3), а проекция акустической оси была

направлена к точке выхода излучателя. Радиус рассчитывался как

1

$$R = 2e = 2d \operatorname{tga}_0,\tag{1}$$

где *в* — расстояние от проекции точки выхода луча на донную поверхность до точки падения луча на донную поверхность образца, мм; α_0 — угол ввода преобразователя-излучателя, град; *d* — толщина стальной плиты, мм.

Рис. 2. Образцы с тороидальным пазом для измерения ДН в дополнительной плоскости ПЭП с углами ввода больше 57°.

Рис. 3. Зеркальный способ измерения ДН в дополнительной плоскости наклонных ПЭП:

И — преобразователь-излучатель; П — преобразователь-приемник (П — начальное, П' — конечное положения); R — радиус перемещения точки выхода луча преобразователя-приемника, мм; у — координата точки выхода луча преобразователя-приемника; γ — угол, отечитываемый от акустической оси преобразователя-приемника в плоскости, перпендикулярной к плоскости падения луча, град; в — расстояние от проекции точки выхода луча на донную поверхность до точки падения на донную поверхность образца, мм; М — точка падения луча на донную поверхность образца.

Следует отметить, что путь ультразвукового луча R должен быть не менее двух ближних зон испытуемого преобразователя, то есть толщина плиты d не может быть малой.

Длина ближней зоны преобразователя определяется по формуле

$$L_{5} = a^{2} / \lambda = a^{2} f / C, \qquad (2)$$

где *а* — размер пьезоэлемента, мм; *f* — частота, МГц; *с* — скорость ультразвуковой волны в металле, м/с (составляет 27 мм для примененных ПЭП ($a = 6 \text{ мм} (6 \times 10^{-3} \text{ м}), f = 2,5 \text{ МГц}, C = 3260 \text{ м/с})$). При толщине стальной плиты d = 30 мм путь ультразвукового луча $R = 2d/\cos\alpha$ (для $\alpha = 34^{\circ}$, R = 72 мм; для $\alpha = 70^{\circ}$, R = 175 мм), то есть условие выполняется.

Измерения проводили специальным автоматизированным устройством при использовании модулей обработки сигналов на базе современных микропроцессоров [17], которое было подключено к стенду измерения ДН ПЭП (см. рис. 4) при механизированном перемещении приемника с шагом один градус, обеспечивая надежный акустический контакт и повторяемость результатов в процессе каждого измерения.

Рис. 4. Установка для измерения ДН ПЭП в дополнительной плоскости:

1 — излучатель; 2 — стальная плита с двумя плоскопараллельными поверхностями; 3 — приемник; 4 — нижняя, верхняя направляющие с делениями, соответствующими углам ввода ПЭП; 5 — каретки фиксаторов ПЭП; 6 — фиксаторы ПЭП; 7 — лимб, соединенный с передачей «винт/гайка», регулирующей перемещение приемника; 8 — рейка перемещения фиксатора излучателя; 9 — двухкоординатный сканер; 10 — устройство обработки.

Основные технические характеристики установки измерения ДН в дополнительной плоскости наклонных ПЭП приведены в табл. 1.

Основные технические характеристики						
Количество каналов (генератор/приемник)	1					
Диапазон синтезируемых частот генератора	1—10 МГц					
Дискретность синтезатора	25 нс					
Количество импульсов заполнения	2048 (любой полярности)					
Напряжение питания синтезатора	50, 100, 150, 200 B					
Частота следования зондирующих импульсов	50—150 Гц					
Зона контроля	1000 мкс					
Задержка зоны контроля	51—400 мкс					
Динамический диапазон приемника	50 мкВ—50 В					
Диапазон регулировки ВРЧ	80 дБ					
Точность измерения временных интервалов	не менее 25 нс					
Количество независимых стробов	2					
Габаритные размеры	135×123×68 мм					
Напряжение питания	12 B					

МЕТОДИКА ИЗМЕРЕНИЙ

Излучатель *1* неподвижно расположен на контактной поверхности стальной плиты *2* с двумя плоскопараллельными поверхностями. Преобразователь-приемник *3* выставляют с помощью «лимба» *7* на контактной поверхности стальной плиты *2* в положение, при котором амплитуда сигнала максимальна. При смещении приемника *3* вправо, а затем влево определяются значения углов α_{\min} и α_{\max} , при которых еще возможно измерение амплитуд сигналов (рис. 5). Затем, перемещая приемник *3* по поверхности стальной плиты (*2*) в пределах значений $\alpha_{\min} - \alpha_{\max}$ по окружности, измеряют координату *у* точки выхода луча приемника при перемещении ее по окружности радиусом *R*. Результаты измерений *N*(*y*), дБ записываются в память. Таким образом, данным способом получается зависимость усиления сигнала при изменении положения приемника относительно начального. Далее устройство обработки производит расчеты по следующему алгоритму: для каждой координаты *y* вычисляет текущий угол $\gamma = \arcsin(y/R)$, где $\gamma -$ угол, отсчитываемый от акустической оси преобразователя в плоскости, перпендикулярной к плоскости падения луча, град, записывает в память значения $N_1(\gamma)$, дБ; рассчитывает значения $N_2(\gamma) = N_1 - N_1$ макс; выводит диаграмму $\Phi(\gamma) = 10^{(N_2/20)}$ на экран индикаторного устройства или на внешнее устройство с помощью VGA/USB-портов.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 5 показаны результаты измерения ДН для ПЭП с углами ввода 42, 50 и 58° и расчета угловой зависимости поля Φ(γ) в дополнительной плоскости излучения по формуле, приведенной в [4]

$$\Phi(\gamma) = \Phi_0(\gamma) \times D_\mu(\gamma) \times \Phi_1(\gamma), \tag{3}$$

$$\Phi_0(\gamma) = \frac{2I_1 \left[k_{lt} a \sqrt{m^2 \sin^2 \gamma + \sin^2 \beta \left(\cos \gamma \cos \beta - \sqrt{1 - m^2 \sin^2 \gamma - \cos^2 \gamma \sin^2 \beta^2} \right)} \right]}{k_{lt} a \sqrt{m^2 \sin^2 \gamma + \sin^2 \beta \left(\cos \gamma \cos \beta - \sqrt{1 - m^2 \sin^2 \gamma - \cos^2 \gamma \sin^2 \beta} \right)^2}},$$

где

Таблица 1

 I_1 — функция Бесселя первого порядка; $m = c_{11}/c_{12}$ — показатель преломления по поперечной волне; β — угол падения плоской волны на границу раздела; γ — угол, отсчитываемый от акустической оси преобразователя в плоскости, перпендикулярной к плоскости падения луча, град; a — радиус пьезопластины преобразователя; k — волновое число;

$$\Phi_{1}(\gamma) = \sqrt{1 - \frac{\sin^{2}\beta}{m^{2}}} \cos\gamma \left(\cos\beta + \frac{\sin^{2}\beta\cos\gamma}{\sqrt{1 - m^{2}\sin^{2}\gamma - \cos^{2}\gamma\sin^{2}\beta}}\right), D_{lt}$$
— коэффициент прозрачности.

Рис. 5. Сравнение ДН ПЭП с углами ввода 42, 50 и 58°, а также расчетная диаграмма для угла ввода 58°: *U* — амплитуда эхосигнала; *γ* — угол, отсчитываемый от акустической оси преобразователя в плоскости, перпендикулярной к плоскости падения луча, град.

Результаты хорошо согласуются с ДН ПЭП, которые получены по предложенному способу и расчетным путем. Для разработанного способа измерений характерно отсутствие статистически значимой случайной составляющей в результатах измерений.

Оценка отличия полученных результатов от «точных» ДН осуществлялась следующими апробирующими способами.

Первый способ заключается в сканировании «точечным», то есть малым в волновом смысле вспомогательным УЗ-приемником (электромагнитоакустическим преобразователем), по дуге, лежащей в плоскости цилиндрического образца со скошенными основаниями под углами ввода преобразователей (рис. 6), содержащей акустическую ось испытуемого преобразователя. Второй заключается в сканировании по двум координатам с регистрацией эхосигналов в совмещенном режиме от дна калибровочного полусферического стального образца UCB111 радиусом 100 мм, а затем с определением по ним пространственного спектра голограмм с последующим расчетом ДН ПЭП.

Рис. 6. Схема измерения ДН на цилиндрическом образце со скошенными под углами α основаниями.

Рис. 7. Роботизированный комплекс для паспортизации преобразователей UR-5 ООО «АКС» и калибровочный полусферический образец.

Измерения проведены роботизированным комплексом для паспортизации преобразователей (РКПП) UR-5 ООО «Акустические контрольные системы» (рис. 7), с точностью шага сканирования ±0,1 мм [19].

На рис. 8 представлены результаты измерений ДН в дополнительной плоскости для ПЭП с углами ввода 34, 50, 58, 60, 65 и 70°, полученные предложенным и апробирующими способами, описанными выше.

Рис. 8. Диаграммы направленности в дополнительной плоскости преобразователей с углами ввода 34° (кривые 1**, 2*), 50° (кривая 3***), 58° (кривые 4**, 5*), 60° (кривая 6***), 65° (кривая 7***) и 70° (кривые 8*, 9***).

Сведения по измерениям ДН в дополнительной плоскости ПЭП приведены в табл. 2.

Таблица 2

№ ДН		1	2	3	4	5	6	7	8	9	
Угол ввода α, град			34		50	58		60	65	70	
Способы измерения ДН в дополнительной плоскости	цилиндрический образец	*		x			х			х	
	зеркальный способ	**	х			х					
	роботизированный комплекс для паспортизации ПЭП UR-5	***			х			х	х		x

Сведения по измерениям ДН в дополнительной плоскости зеркальным и апробирующими способами

На рис. 9 видно, что угол раскрытия ДН на уровне 0,707 уменьшается с увеличением угла ввода преобразователя. Как следует из графика для преобразователей в диапазоне углов ввода 34—42° (что соответсвует углам призмы, близким к первому критическому), угол раскрытия ДН на уровне

Рис. 9. Зависимость угла раскрытия ДН на уровне 0,707 от угла ввода:

1 — зеркальный способ; 2 — с применением цилиндрического образца со скошенными основаниями под углами ввода преобразователей;
3 — с применением роботизированного комплекса для паспортизации преобразователей UR-5; Δγ_{0,707} — угол раскрытия диаграммы направленности на уровне 0,707, град; α₀ — угол ввода преобразователя, град.

0,707 Δγ_{0,707} уменьшается с примерно 14° для ПЭП с углом ввода 34° до примерно 7° для ПЭП с углом ввода 70°. Это может быть связано с участием в формировании ДН в дополнительной плоскости преобразователей с углами призмы в районе первого критического преломленной продольной головной волны (ГВ), наличие которой у всех преобразователей подтверждается наблюдением отраженной продольной волны от вогнутой цилиндрической поверхности стандартного образца СО-3Р при увеличении усиления.

Отличие измеренных ДН ПЭП зеркальным способом от апробирующих составляет 1-2 ° (или 15 %). Диапазон изменения угла γ в [15] составлял примерно ±4°, в то время как при использовании зеркального способа измерения ДН ПЭП можно эффективно проводить в диапазоне азимутальных углов ±15° от направления акустической оси.

ЗАКЛЮЧЕНИЕ

Таким образом, экспериментальные оценки ДН в дополнительной плоскости для преобразователей с различными углами ввода от 34 до 70° показали возможность применения зеркального способа измерения ДН в дополнительной плоскости.

Проведена оценка отличия полученных результатов от «точных» ДН апробирующими способами их измерения. Степень отличия полученных зависимостей связана с тем, что плоскость сканирования вспомогательного приемника отклонена от дополнительной плоскости и составляет примерно 1-2° (или 15 %) от «точных» ДН. Это следует учитывать при измерениях ДН предложенным способом.

Угол раскрытия ДН на уровне 0,707 уменьшается с примерно 14° для ПЭП с углом ввода 34° до примерно 7° для ПЭП с углом ввода 70°.

Показано, что измерения ДН ПЭП можно эффективно проводить в диапазоне азимутальных углов ±15° от направления акустической оси.

Авторы статьи выражают благодарность заместителю директора ООО «Акустические контрольные системы», д.т.н., профессору Виктору Гавриловичу Шевалдыкину за ценные советы при подготовке статьи.

СПИСОК ЛИТЕРАТУРЫ

1. Гурвич А.К., Кузьмина Л.И. Справочные диаграммы направленности искателей ультразвуковых дефектоскопов. Киев: Техника, 1980. 103 с.

2. Гурвич А.К., Кусакин Н.А. О допустимом разбросе числовых характеристик диаграммы направленности наклонных преобразователей // Дефектоскопия. 1984. № 11. С. 60—66.

3. *Гурвич А.К.* Влияние поглощения на диаграмму направленности наклонных искателей // Дефектоскопия. 1967. № 1. С. 23—28.

4. *Дианов Д.Б.* Исследование направленности призматических преобразователей // Дефектоскопия. 1965. № 2. С. 8—22.

5. Гурвич А.К. Диаграммы направленности наклонных искателей // Дефектоскопия. 1966. № 2. С. 3—9.

6. Перевалов С.П. Диаграммы направленности искателей с околокритическими углами // Дефектоскопия. 1981. № 2. С. 96—101.

7. Воронков В.А., Ермолов И.Н. Диаграммы направленности наклонных преобразователей // Дефектоскопия. 1990. № 5. С. 80—82.

8. Бобров С.В. Диаграммы направленности прямых ЭМАП для возбуждения сдвиговых волн с горизонтальной поляризацией // Контроль. Диагностика. 2012. № 8. С. 21—26.

9. Воронков И.В. Теоретическое и экспериментальное исследование диаграммы направленности линейного наклонного преобразователя с фазированной решеткой // Тезисы докл. XX Всерос. научнотехн. конф. по неразрушающему контролю и технической диагностике (Москва, 3—6 марта 2014 г.). М.: Изд. дом «Спектр», 2014. С.117—118.

10. Базулин А.Е., Базулин Е.Г. Об измерении угла ввода пьезоэлектрического преобразователя на стандартном образце СО-3 // Дефектоскопия. 2010. № 2. С. 57—62.

11. Базулин А.Е. Разработка алгоритмов и оборудования для измерения параметров ультразвуковых пьезоэлектрических преобразователей: Автореф. дис. ...канд. физ.-мат. наук. М., 2010.

12. Ланге Ю.В., Воронков В.В. Контроль неразрушающий акустический. Термины и определения / Справочник. М.: Авторское издание, 2003. 120 с.

13. Неразрушающий контроль / Справочник в 7 томах под ред. В.В. Клюева. Т. 3. И.Н. Ермолов, Ю.В. Ланге. Ультразвуковой контроль. М.: Машиностроение, 2004. 864 с.

14. *Щербинский В.Г.* Технология ультразвукового контроля сварных соединений. Санкт-Петербург: СВЕН, 2014. 495 с.

15. *Гурвич А.К. Кузьмина Л.И.* Справочные диаграммы направленности искателей ультразвуковых дефектоскопов. К.: Texnika, 1980. 104 с.

16. Коновалов Н.Н., Рафиков Р.Х., Преображенский М.Н. Диаграммы направленности наклонных пьезопреобразователей в дополнительной плоскости // Контроль. Диагностика. 2016. № 5. С. 26—30.

17. Коновалов Н.Н., Рафиков Р.Х., Преображенский М.Н., Богданов М.Г. Построение диаграмм направленности наклонных пьезопреобразователей в дополнительной плоскости / Труды сессии РАН и деловой программы форума «Территория NDT 2016». Сборник научных трудов. М.: Изд. дом «Спектр», 2016. 308 с.

18. Коновалов Н.Н., Рафиков Р.Х., Преображенский М.Н., Шалопьев В.В. Построение диаграммы направленности пьезоэлектрических преобразователей эхо-сигналов от ненаправленных отражателей. Академия ГПС МЧС России // Технологии техносферной безопасности. 2015. Вып. 4 (62). 5 с. http:// agps-2006.narod.ru/ttb/2015-4/44-04-15.ttb.pdf

19. Новый автоматизированный робот по паспортизации преобразователей Компании ООО «Акустические Контрольные Системы». [Электронный pecypc] https://www.youtube.com/ watch?v=fkDbzkD1L5s