— МАТЕМАТИКА —

УДК 515.122.5

ОБ УПЛОТНЕНИЯХ НА 6-КОМПАКТНЫЕ ПРОСТРАНСТВА

© 2022 г. А. Е. Липин^{1,2,*}, А. В. Осипов^{1,2,**}

Представлено академиком РАН С.В. Матвеевым Поступило 15.04.2022 г. После доработки 16.05.2022 г. Принято к публикации 10.08.2022 г.

В работе доказывается следующий результат. Пусть полное метрическое пространство X веса w(X) и множество $H \subseteq X$ таковы, что $w(X) < |H| < \mathfrak{c}$. Тогда не существует непрерывной биекции подпространства $X \setminus H$ на σ -компактное пространство. Как следствие, не существует непрерывной биекции подпространства $X \setminus H$ на польское пространство. Таким образом, доказано, что метрические компакты не являются a_{τ} -пространствами ни для какого несчетного кардинального числа τ . Этот результат является ответом на вопрос, поставленный Е.Г. Пыткеевым в работе (O свойствах подклассов слабо диадических компактов, Cиб. мат. журнал.).

Ключевые слова: уплотнение, польское пространство, компакт, σ -компактное пространство, a_{τ} -пространство

DOI: 10.31857/S2686954322050149

1. ВВЕДЕНИЕ

В работе [6] И.Л. Раухваргер доказала, что для всякого метрического компакта X и любого счетного множества $H \subseteq X$ существует уплотнение (т.е. непрерывная биекция) подпространства $X \setminus H$ на метрический компакт.

Пусть τ — кардинальное число.

- Компактное пространство X называют a_{τ} -пространством, если для любого $H \in [X]^{\leq \tau}$ существует уплотнение пространства $X \setminus H$ на компакт [3]. В частности, a_{ω} -пространство называется a-пространством.
- Компактное пространство X называют стро- $\varepsilon um\ a_{\tau}$ -пространством, если для любого $H \in [X]^{\leq \tau}$ существует уплотнение пространства $X \setminus H$ на компакт, которое продолжается до непрерывного отображения на X [3]. В частности, строгое a_{ω} -пространство называется строгим a-пространством.

Любой метрический компакт является строгим a-пространством [6]. Различные свойства a_{τ} -пространств и строгих a_{τ} -пространств можно найти в работах [1–4].

В работе [1] был предложен следующий вопрос.

В о п р о с 1. Предположим, что X — метрический компакт. Для каких τ , $\omega < \tau < \mathfrak{c}$, X — (строгое) a_{τ} -пространство?

Основной результат работы — доказательство следующего утверждения.

Теорема 1. Пусть X — полное метрическое пространство и для множества $H \subseteq X$ выполняется $w(X) < |H| < \mathfrak{c}$. Тогда подпространство $X \setminus H$ невозможно уплотнить на σ -компактное пространство.

Отметим, что в предположении континуумгипотезы посылка теоремы 1 несовместна, так что в этом случае теорема тривиальна (как, впрочем, и вопрос 1).

Е.Г. Пыткеев доказал, что любое сепарабельное метрическое пространство мощности $\mathfrak c$ можно разбить на два множества мощности $\mathfrak c$, каждое из которых не уплотняется на полное пространство ([8], Предложение 2). Таким образом, по теореме 1 и результату Пыткеева, мы получаем ответ на вопрос 1: метрические компакты не являются a_{τ} -пространствами ни для какого несчетного кардинального числа τ .

¹ Федеральное государственное бюджетное учреждение науки Институт математики и механики

им. Н.Н. Красовского Уральского отделения Российской академии наук, Екатеринбург, Россия

² Уральский федеральный университет, Екатеринбург, Россия

^{*}E-mail: tony.lipin@yandex.ru

^{**}E-mail: oab@list.ru

2. ОСНОВНЫЕ ОБОЗНАЧЕНИЯ И ПРЕДВАРИТЕЛЬНЫЕ ЗАМЕЧАНИЯ

Под пространствами понимаются хаусдорфовы топологические пространства. В работе используются следующие обозначения и термины:

- ω первый бесконечный ординал и первый бесконечный кардинал;
 - \mathfrak{c} кардинал континуум;
 - к⁺ следующий за к кардинал;
- для всяких множества A и кардинала τ через $[A]^{\tau}$ ($[A]^{\leq \tau}, [A]^{< \tau}, [A]^{> \tau}$) обозначается семейство всех подмножеств множества A мощности ровно (не большей, строго меньшей, строго большей) τ ;
- $\Box \partial u$ зъюнктное объединение, т.е. объединение, аргументы которого не пересекаются;
- $2^{<\omega}$ множество всех конечных последовательностей над множеством $\{0, 1\}$;
- 2^{ω} множество всех последовательностей порядкового типа ω над множеством $\{0,1\}$;
- если $u \in 2^{<\omega}$ и $c \in \{0,1\}$, то uc обозначается конечная последовательность, получаемая из u добавлением в конец элемента c;
- если $u \in 2^{<\omega}$ и $s \in 2^{\omega}$, то запись $u \prec s$ означает, что u есть начало s;
 - уплотнение непрерывная биекция;
- *сумма* пространств понимается, как в [11] (раздел 2.2);
- *польское* пространство пространство счетного веса, обладающее полной метрикой;
- абсолютно борелевское пространство пространство, гомеоморфное борелевскому подмножеству некоторого полного метрического пространства;
- $n\partial po$ пространства X, Ker(X) объединение всех плотных в себе подмножеств пространства X;
 - w(X) вес пространства X.

В работе нам несколько раз пригодится следующий, вероятно известный, результат.

Предложение 1. Для всякого пространства X его ядро Ker(X) замкнуто и плотно в себе, а также $|X \setminus Ker(X)| \le w(X)$.

Доказательство. Для всякого простанства Y обозначим Iso(Y) множество изолированных точек Y. Для каждого ординала α определим множество $X_{\alpha} \subseteq X$ следующим образом: $X_0 := X$; если $\alpha = \beta + 1$, то $X_{\alpha} := X_{\beta} \setminus \text{Iso}(X_{\beta})$; и если α предельный, то $X_{\alpha} := \bigcap_{\beta < \alpha} X_{\beta}$. Так как при $\alpha < \beta$ выполняется $X_{\alpha} \supseteq X_{\beta}$, то для некоторого ординала γ верно $X_{\gamma} = X_{\gamma+1}$. Будем считать, что γ — наименьший ординал с этим свойством.

Легко видеть, что $X_{\gamma} = \operatorname{Ker}(X)$, и это множество замкнуто и плотно в себе. Для всякой точки $x \in X \backslash X_{\gamma}$ обозначим r(x) тот ординал α , при котором $x \in \operatorname{Iso}(X_{\alpha})$. Очевидно, что при любом выборе базы пространства X всякой точке $x \in X \backslash X_{\gamma}$ можно сопоставить базисную окрестность O(x) такую, что для всех точек $y \in O(x)$, не равных x, верно r(y) < r(x). Тогда все выбранные O(x) попарно различны, откуда $|X \backslash \operatorname{Ker}(X)| \le w(X)$. \square

3. ЛЕММА О НЕСЧЕТНОМ ИНЪЕКТИВНОМ БИНАРНОМ ОТНОШЕНИИ НА ПОЛНОМ МЕТРИЧЕСКОМ ПРОСТРАНСТВЕ МАЛОГО ВЕСА

Цель этого раздела состоит в доказательстве следующей леммы.

Лемма 1. Пусть X- полное метрическое пространство, $w(X) < \mathfrak{c}$, $A \in [X]^{>w(X)}$ и функция $f: A \to X$ инъективна. Тогда существуют континуальное множество $C \subseteq X$ и инъекция $g: C \to X$ такие, что график функции g содержится $g: C \to X$ такии графика $g: C \to X$ пространстве $g: C \to X$ такие.

Если при этом функция f не имеет неподвижных точек, то С и g можно выбрать так, что g также не будет обладать неподвижными точками.

Обозначим (*) условие "X — полное метрическое пространство, $w(X) < \mathfrak{c}$, $A \in [X]^{>_{w(X)}}$ и функция $f: A \to X$ инъективна".

Центральную роль в доказательстве леммы 1 сыграет следующее понятие.

Определение 1. Пусть (*). Для всяких множеств $M,N\subseteq X$ обозначим $A_f(M,N):=$:= $\{x\in A:x\in M,f(x)\in N\}$ и $B_f(M,N):=\{f(x):x\in A_f(M,N)\}.$

Пару (K, L) замкнутых плотных в себе подмножеств X будем называть f-существенной, если $|A_f(K, L)| > w(X)$.

Из предложения 1 вытекает следующее

Предложение 2. *Если* (*), то пара (Ker(X), Ker(X)) f-существенна.

Напомним, что во всяком полном метрическом пространстве X для любого замкнутого множества $C \subseteq X$ выполняется или $|C| \le w(X)$ (если C разрежено; это следует из предложения 1), или $|C| \ge \mathfrak{c}$ (если C содержит плотное в себе подмножество) (Теорема 6 в [10]).

Для всяких $A \subseteq X$ и $x \in X$ обозначим $\Delta(A, x)$ минимум мощностей $|O(x) \cap A|$ по всем окрестностям O(x)точких (такназываемый дисперсионный характер подпространства $A \cup \{x\}$ в точке x). Для всякого кар-

динала τ обозначим $A^{\circ \tau} := \{x \in X : \Delta(A, x) \ge \tau\}$. Следующее предложение, вероятно, известно.

Предложение 3. Если X — пространство и $A \in [X]^{>w(X)}$, $mo |A^{ow^{+}(X)}| \ge \mathfrak{c}$.

Д о к а з а т е л ь с т в о. Обозначим $U := X \setminus A^{ow^+(X)}$. Всякой точке $x \in U$ сопоставим произвольную ее окрестность O(x) такую, что $|O(x) \cap A| \le w(X)$. Очевидно, что $\bigcup_{x \in U} O(x) = U$, и так как из семейства всех O(x) можно выделить подпокрытие множества U мощности не более w(X), то $|U \cap A| \le w(X) < |A|$. Тогда $|A^{ow^+(X)}| > w(X)$. Так как множество $A^{ow^+(X)}$ замкнуто, получаем $|A^{ow^+(X)}| \ge \mathfrak{c}$. \square

Предложение 4. Пусть (*), *пара* (K,L) f-существенна и $\varepsilon > 0$. Тогда найдутся такие множества $K_0 \sqcup K_1 \subseteq K$ и $L_0 \sqcup L_1 \subseteq L$, что пары (K_0, L_0) и (K_1, L_1) f-существенны, а диаметр множеств K_0, K_1, L_0, L_1 меньше ε .

Доказательство. Выберем в K любые две точки множества $A_f(K,L)^{\mathrm{ow}^+(X)}$ и отделим их замкнутыми окрестностями K_0 , K_1 диаметра меньше ε . Очевидно, пары (K_0,L) и (K_1,L) f-существенны. Теперь выберем в L любые две точки множества $B_f(K_0,L)^{\mathrm{ow}^+(X)}$ и отделим их замкнутыми окрестностями M, N диаметра меньше ε и лежащими на положительном расстоянии друг от друга. Наконец, выберем в L любую точку множества $B_f(K_1,L)^{\mathrm{ow}^+(X)}$ и обозначим L_1 любую ее настолько малую замкнутую окрестность, что L_1 не может пересекать одновременно M и N, а диаметр L_1 меньше ε . Обозначим L_0 то из множеств M, N, которое не пересекается с L_1 . Легко видеть, что K_0 , K_1 , L_0 , L_1 искомые. \square

Доказательство леммы 1. По предложению 2 существует хотя бы одна f-существенная пара. Итерированно применяя предложение 4, выберем для всех $u \in 2^{<\omega}$ f-существенные пары (K_u, L_u) так, что $K_{u0} \sqcup K_{u1} \subseteq K_u$, $L_{u0} \sqcup L_{u1} \subseteq L_u$ и диаметры множеств K_u и L_u меньше $\frac{1}{|u|}$.

Заметим, что для всякой последовательности $s \in 2^{\omega}$ множества $\bigcap_{u \prec s} K_u$ и $\bigcap_{u \prec s} L_u$ одноэлементны в силу стремящихся к нулю диаметров K_u и L_u при $|u| \to \infty$ и полноты метрики. Единственную точку множества $\bigcap_{u \prec s} K_u$ обозначим y_s , соберем $C := \{y_s : s \in 2^{\omega}\}$ и для каждой y_s обозначим $g(y_s)$

единственную точку множества $\bigcap_{u \prec s} L_u$. Легко видеть, что C и g искомые.

Теперь пусть f не имеет неподвижных точек. Для каждого $n \in \omega$ обозначим A_n множество таких $x \in A$, что расстояние между x и f(x) больше $\frac{1}{x}$. Поскольку $\bigcup_{n\in \Omega} A_n = A$ и |A| > w(X), то найдется такое $n \in \omega$, что $|A_n| > w(X)$. Применим к паре A_n , f уже доказанное первое утверждение леммы и получим некоторые C и g. Покажем, что эти C и д искомые, т.е. что инъекция д не имеет неподвижных точек. От противного: для некоторой точки $y \in C$ оказалось, что g(y) = y. Обозначим O(v) любую окрестность точки v диаметра менее $\frac{1}{2}$. Очевидно, такая окрестность не может одновременно содержать x и f(x) ни для какого $x \in A_n$, откуда точка (y, g(y)) пространства $X \times X$ не принадлежит замыканию графика функции f. Противоречие.

4. ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ

Обозначим (**) условие "X — пространство, $X = Y \sqcup H$ и ϕ есть уплотнение подпространства Y на пространство Z".

Основным инструментом доказательства станет следующая конструкция.

Определение 2. Пусть (**). Обозначим:

- (1) Π_X^{φ} множество пар $(z, p) \in Z \times H$ таких, что при любом выборе окрестности O(p) точки p точка z предельна для множества $\varphi[O(p) \cap Y]$;
 - (2) Δ_{ϕ} множество {($\phi(x), x$) : $x \in Y$ };
 - $(3) P_z := \{ p \in H : (z, p) \in \Pi_X^{\varphi} \}$ для каждой $z \in Z$.

Лемма 2. *Если* (**), то множество $\Pi_X^{\phi} \cup \Delta_{\phi}$ замкнуто в пространстве $Z \times X$.

Д о к а з а т е л ь с т в о. Пусть точка $(z,a) \in Z \times X$ предельна для $\Pi_X^{\varphi} \cup \Delta_{\varphi}$. Возможны два случая:

- (1) a=p для некоторой $p\in H$. Возьмем любую окрестность U точки p и положим $V:=U\cap Y$, $W:=\varphi[V]$;
- (2) a = x для некоторой $x \in Y$. Возьмем любую окрестность W точки $\varphi(x)$ и положим $V := \varphi^{-1}[W]$. Обозначим U произвольное открытое в X множество такое, что $U \cap Y = V$.

В обоих случаях множество U открыто в X, $a \in U$, $V = U \cap Y$ и $W = \varphi[V]$.

Обозначим A множество тех $w \in Z$, для которых существует точка $b \in U$ такая, что $(w, b) \in \Pi_X^{\phi} \cup \Delta_{\phi}$. Из определения Π_X^{ϕ} легко следует,

что $A\subseteq\overline{W}$. При этом z предельна для A. Значит, точка z предельна для W .

Тогда в случае (1) получаем по определению $(z,p)\in\Pi_X^{\phi}$, а в случае (2) точки z и $\phi(x)$ не отделимы в Z, откуда $z=\phi(x)$ и $(z,x)\in\Delta_{\phi}$. \square

Следствие 1. Пусть (**) и $z \in Z$. Тогда множество $P_z \cup \{z\}$ замкнуто.

О п р е д е л е н и е 3. Пусть (**). Обозначим H_s множество тех $p \in H$, для которых существует хотя бы одна точка $z \in Z$ такая, что $(z,p) \in \Pi_X^{\phi}$. Обозначим $H_f := H \backslash H_s$.

Предложение 5. Пусть (**), $|H_s| > w(X)$ и $|H| < \mathfrak{c}$. Тогда существуют множество $A \in [Z]^{>w(X)}$ и инъекция $f: A \to H$ такие, что $f \subseteq \Pi_X^{\phi}$.

Доказательство. Достаточно доказать, что для любого множества $S \in [X]^{\leq w(X)}$ и инъекции $h: S \to X$, $h \subseteq \Pi_X^{\phi}$, найдутся точки $z \notin S$ и $p \notin h[S]$ такие, что $(z, p) \in \Pi_X^{\phi}$.

По следствию 1 множество $P_w \cup \{w\}$ замкнуто в X для каждого $w \in Z$. Тогда или $|P_w| \leq w(X)$, или $|P_w| \geq \mathfrak{c}$. При этом $P_w \subseteq H$ и $|H| < \mathfrak{c}$, откуда $|P_w| \leq w(X)$. Тогда и $\left|\bigcup_{w \in S} P_w\right| \leq w(X)$. Значит, найдется точка $p \in H_s$ такая, что ни для какого $w \in S$ не выполняется $(w,p) \in \Pi_X^{\phi}$, и в частности $p \notin h[S]$. Наконец, по определению H_s существует точка $z \in Z$, для которой $(z,p) \in \Pi_X^{\phi}$. \square

Лемма 3. Пусть (**), пространство X обладает полной метрикой и $|H| < \mathfrak{c}$. Тогда $|H_{\mathfrak{s}}| \leq w(X)$.

Доказательство. От противного: пусть $|H_s| > w(X)$. Из предложения 5 следует существование множества $A \in [Y]^{>w(X)}$ и инъекции $f: A \to H$ таких, что $\{(\phi(x), f(x)): x \in A\} \subseteq \Pi_X^{\phi}$. Отметим, что инъекция f не имеет неподвижных точек, так как ее области определения и значений не пересекаются. Тогда по лемме 1 найдутся континуальное множество $C \subseteq X$ и инъекция $g: C \to X$ такие, что g не имеет неподвижных точек и график функции g содержится в замыкании графика f. По лемме 2 для каждой $y \in C \cap Y$ выполняется $(\phi(y), g(y)) \in \Pi_X^{\phi}$. Но тогда множество H содержит континуальное подмножество $G(C \cap Y)$, что противоречит условию $G(C \cap Y)$, что противоречит условию $G(C \cap Y)$

П р е д л о ж е н и е 6. Если (**), $|H| < \mathfrak{c}$, X обладает полной метрикой и Z — компакт, то $H_f \cap \operatorname{Ker}(X) = \emptyset$.

Доказательство. Пусть $p \in H \cap \text{Ker}(X)$. Так как всякое плотное в себе полное метриче-

ское пространство имеет мощность не менее \mathfrak{c} , то и любая окрестность O(p) точки p содержит не менее \mathfrak{c} точек. Тогда, так как $|H| < \mathfrak{c}$, то множество $O(p) \cap Y$ непусто. Значит, можно выбрать последовательность S элементов множества Y, сходящуюся к точке p. Так как Z — компакт, то последовательность $\mathfrak{p}[S]$ обладает хотя бы одной предельной точкой z. Легко видеть, что по определению $(z,p) \in \Pi_{\mathfrak{p}}^{\varphi}$, т.е. $p \in H_{\mathfrak{s}}$. \square

Лемма 4. Пусть X — полное метрическое пространство и для множества $H \subseteq X$ выполняется $w(X) < |H| < \mathfrak{c}$. Тогда подпространство $X \setminus H$ невозможно уплотнить на компакт.

Доказательство. Пусть (**), $|H| < \mathfrak{c}$, пространство X обладает полной метрикой и Z — компакт. По предложению 6 множество H_f содержится в $X \setminus \text{Ker}(X)$, откуда $|H_f| \le w(X)$. По лемме 3 также $|H_{\mathfrak{s}}| \le w(X)$, и отсюда $|H| \le w(X)$. \square

Доказательство теоремы 1. От противного: подпространство $Y:=X\backslash H$ уплотняется на пространство $Z=\bigcup_{n\in\omega}K_n$, где все множества K_n компактны. Для всякого $n\in\omega$ обозначим X_n замыкание множества $f^{-1}(K_n)$ в пространстве X и положим $M:=\bigcup_{n\in\omega}X_n$. Очевидно, $M\supseteq Y$. Из леммы 4 следует, что для каждого $n\in\omega$ имеет место $|H\cap X_n|\leq w(X_n)\leq w(X)$. Тогда $|M\cap H|\leq w(X)<<|H|$, и отсюда $|X\backslash M|=|H|$. Но $X\backslash M$ — борелевское множество в X, и тогда по теореме 6 в работе [10] неравенство $w(X)<|X\backslash M|<\mathfrak{C}$ невозможно. Противоречие. \square

5. ЗАКЛЮЧЕНИЕ

Теорема 1 вместе с результатом Е.Г. Пыткеева порождает следующее

Следствие 2. Пусть X — полное метрическое пространство и для множества $H \subseteq X$ выполняется $w(X) \le |H| \le \mathfrak{c}$. Тогда подпространство $X \setminus H$ невозможно уплотнить на сепарабельное абсолютно борелевское пространство.

Доказательство. В работе [9] Е.Г. Пыткеев доказал, что всякое сепарабельное абсолютно борелевское не σ -компактное пространство уплотняется на компакт. Тогда если бы подпространство $X \setminus H$ уплотнялось на сепарабельное абсолютно борелевское пространство, то уплотнялось бы и на σ -компактное пространство.

Заметим, что в работе [7] А.С. Пархоменко построил пример (польского) σ -компактного метрического пространства, которое не уплотняется на компакт.

Укажем также одну переформулировку теоремы 1 для сепарабельных пространств.

Следствие 3. Предположим, что сепарабельное метрическое пространство Y уплотняется на сепарабельное абсолютно борелевское пространство. Тогда либо Y польское, либо для всякого пополнения X пространства Y выполняется $|X \setminus Y| = \mathfrak{c}$.

Отметим, что свойство метрической полноты пространства X в теореме 1 существенно.

Предложение 7. Для всякого τ , такого, что $\omega < \tau < c$, существуют метрическое сепарабельное пространство X и множество $H \subseteq X$ мощности τ такие, что X и $X \setminus H$ гомеоморфны и уплотняются на метрический компакт.

Доказательство. Пусть $I = [0,1], A \in [I]^{\mathsf{T}}$ и $Q \in [I]^{\omega}$. Положим $B := (I \times I) \setminus (A \times Q)$. Зафиксируем на множествах A и B их естественную топологию как подпространств прямой и плоскости соответственно. Обозначим X сумму пространства B и счетного числа копий $A_n, n \in \omega$ пространства A. Легко видеть, что X — метрическое сепарабельное пространство, которое уплотняется на компакт $I \times I$, и для $H = A_0$ подпространство $X \setminus H$ гомеоморфно X. \square

В о п р о с 2. Существуют ли полное метрическое пространство X и множество $H \subseteq X$ такие, что $w(X) < |H| < \mathfrak{c}$ и подпространство $X \setminus H$ уплотняется на полное метрическое пространство?

В о п р о с 3. Существуют ли абсолютно борелевское пространство X и множество $H \subseteq X$ такие, что $w(X) < |H| < \mathfrak{c}$ и подпространство $X \setminus H$

уплотняется на абсолютно борелевское пространство? В частности, может ли такое X быть польским?

СПИСОК ЛИТЕРАТУРЫ

- 1. *Белугин В.И.*, *Осипов А.В.*, *Пыткеев Е.Г.* О свойствах подклассов слабо диадических компактов, Сиб. мат. журнал. 2022 (принята в печать).
- 2. *Белугин В.И.*, *Осипов А.В.*, *Пыткеев Е.Г.* О некоторых свойствах субкомпактных пространств, Матем. Заметки. 2022. V. 111. № 2. P. 188–201.
- 3. *Белугин В.И.*, *Осипов А.В.*, *Пыткеев Е.Г.* О классах субкомпактных пространств, Матем. Заметки. 2021. V. 109. № 6. P. 810—820.
- 4. Belugin V.I., Osipov A.V., Pytkeev E.G. Compact condensations of Hausdorff spaces, Acta Math. Hungarica. 2021. V. 164. № 1. P. 15–27.
- Куратовский К. Топология, Том 1, Изд. "МИР" Москва. 1966.
- Раухваргер И.Л. Об уплотнениях в компакты, Докл. АН СССР. 1949. V. 66. № 13. Р. 13–15.
- Пархоменко А.С. Об уплотнениях в компактные пространства, Изв. АН СССР. Сер. матем. 1941. V. 5. № 3. Р. 225–232.
- 8. *Пыткеев Е.Г.* К теории уплотнений на компакты, Докл. АН СССР. 1977. V. 233. № 6. Р. 1046—1048.
- 9. *Пыткеев Е.Г.* О верхних гранях топологий, Матем. Заметки. 1976. V. 20. № 4. Р. 489—500.
- 10. Stone A.H. Non-separable Borel sets, Rozpr. Math. 1962. V. 28. P. 3–40.
- Энгелькинг Р. Общая топология, Изд. "МИР" Москва, 1986.

ON CONDENSATIONS ONTO σ-COMPACT SPACES

A. E. Lipin a,b and A. V. Osipov a,b

^a N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation

^b Ural Federal University, Yekaterinburg, Russian Federation

Presented by Academician of the RAS S.V. Matveev

In this paper, we prove the following result. Let the full metric space X of weight w(X) and the set $H \subseteq X$ are such that $w(X) \le |H| \le \mathfrak{c}$. Then there is no continuous bijection of the subspace $X \setminus H$ onto σ -compact space. As a result, there is no continuous bijection of the subspace $X \setminus H$ onto the Polish space. Thus, it has been proved that metric compact are not a_{τ} -spaces for any uncountable cardinal numbers τ . This result is the answer to the question delivered by E.G. Pytkeev in his work (*On the properties subclasses of weakly dyadic compact sets, Sib. mat. journal.*).

Keywords: compaction, Polish space, compact space, σ -compact space, a_{τ} -space