= МАТЕМАТИКА ===

УЛК 519.2

ОБ ОДНОМ СЕМЕЙСТВЕ КОМПЛЕКСНЫХ СТОХАСТИЧЕСКИХ ПРОЦЕССОВ

© 2021 г. Академик РАН И. А. Ибрагимов^{1,2,*}, Н. В. Смородина^{1,2,**}, М. М. Фаллеев^{2,*}

Поступило 14.08.2021 г. После доработки 14.08.2021 г. Принято к публикации 08.09.2021 г.

В работе вводится семейство r_{λ} , $\lambda \in \mathbb{C}$ комплексных стохастических процессов, дающих возможность строить вероятностное представление резольвенты оператора $-\frac{1}{2}\frac{d^2}{dx^2}$. При $\lambda = 0$ процесс r_{λ} является вещественным и совпадает с процессом броуновского локального времени.

Ключевые слова: случайные процессы, локальное время

DOI: 10.31857/S2686954321060072

1. ВВЕДЕНИЕ

Пусть $w(t), t \ge 0$ — стандартный винеровский процесс. Хорошо известно, что с помощью винеровского процесса w(t) строится вероятностное представление классического решения задачи Коши для уравнения теплопроводности. Именно, для каждой непрерывной ограниченной функции f функция

$$u(t,x) = \mathbf{E}f(x - w(t)) \tag{1}$$

удовлетворяет уравнению теплопроводности

$$\frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2} \tag{2}$$

и начальному условию $u(0, x) = \lim_{t \to 0} u(t, x) = f(x)$.

Если мы хотим строить вероятностное представление не только классического, но и обобщенного (см. [1, гл. III]) решения задачи Коши для уравнения (2), то для начальной функции $f \in L_2(\mathbb{R})$ вместо (1) можно использовать следующее выражение:

$$u(t,x) = (L_2) \lim_{M \to \infty} \mathbf{E} f_M(x - w(t)), \tag{3}$$

где функция f_{M} определяется через преобразование Фурье \hat{f} функции f как

$$f_M(x) = \frac{1}{2\pi} \int_{-\pi}^{M} e^{-ipx} \widehat{f}(p) dp.$$

В этом случае удобнее говорить не в терминах уравнений, а в терминах функций от операторов. Далее через $W_2^k(\mathbb{R})$ мы будем обозначать пространство Соболева функций (подробнее см. [2,

гл. 1]), определенных на \mathbb{R} . В пространстве $W_2^k(\mathbb{R})$ мы выберем норму

$$\|\psi\|_{W_2^k(\mathbb{R})}^2 = \int_{\mathbb{R}} (1+|p|^{2k}) |\widehat{\psi}(p)|^2 dp,$$

где через $\hat{\psi}$ обозначено прямое преобразование Фурье функции ψ , которое в данной работе определяется как $\hat{\psi}(p) = \int_{\mathbb{R}} e^{ipx} \psi(x) dx$.

Рассмотрим самосопряженный оператор

$$\mathcal{A} = -\frac{1}{2} \frac{d^2}{dx^2},\tag{4}$$

заданный на области определения $\mathfrak{D}(\mathcal{A}) = W_2^2(\mathbb{R})$. Хорошо известно (см., например, [3, гл. 7]), что спектр $\sigma(\mathcal{A})$ оператора \mathcal{A} является абсолютно непрерывным и совпадает с полупрямой $[0,\infty)$. Преобразование Фурье осуществляет унитарную эквивалентность оператора \mathcal{A} и оператора умножения на $p^2/2$. В силу спектральной теоремы оператор

¹ Санкт-Петербургское отделение

Математического института им. В.А. Стеклова Российской Академии наук, Санкт-Петербург, Россия

² Санкт-Петербургский государственный университет, Санкт-Петербург, Россия

^{*}E-mail: ibr32@pdmi.ras.ru

^{**}E-mail: smorodina@pdmi.ras.ru

^{***}E-mail: m.faddeev@spbu.ru

 e^{-tA} при всех положительных t определен уже на всем $L_2(\mathbb{R})$, а из (3) вытекает, что для любого $f \in L_2(\mathbb{R})$ справедливо

$$e^{-t\mathcal{A}}f(x) = (L_2) \lim_{M \to \infty} \mathbf{E} f_M(x - w(t)) =$$

$$= \frac{1}{2\pi} (L_2) \lim_{M \to \infty} \mathbf{E} \int_{-M}^{M} e^{-ipx} e^{ipw(t)} \hat{f}(p) dp.$$

Другими словами, с помощью винеровского процесса строится вероятностное представление оператора e^{-tA} .

В настоящей работе мы построим случайные процессы, дающие аналогичное представление, но не для экспоненты, а для резольвенты оператора \mathcal{A} . Именно, мы построим семейство $r_{\lambda}(t,x)$, t>0 комплекснозначных случайных процессов, параметризованных спектральным параметром $\lambda \in \mathbb{C}$, таких, что при каждых t>0 и $\alpha \in [0,1/2)$ с вероятностью единица выполнено

$$r_{\lambda}(t,\cdot) \in W_2^{\alpha}(\mathbb{R}),$$

и при каждых λ ∈ $\mathbb{C}\setminus[0,\infty)$ и $f\in L_2(\mathbb{R})$ выполнено

$$\lim_{t \to \infty} \mathbf{E} f * r_{\lambda} = (\mathcal{A} - \lambda I)^{-1} f. \tag{5}$$

В случае, когда $\lambda \in [0, \infty)$ (т.е., когда $\lambda \in \sigma(\mathcal{A})$) равенство (5) выполнено для всех

$$f \in \mathfrak{D}((\mathcal{A} - \lambda I)^{-1}).$$

Построенный класс процессов мы будем называть резольвентными процессами. При $\lambda=0$ резольвентный процесс $r_{\lambda}(t,x)$ совпадает с процессом броуновского локального времени (про броуновское локальное время см., например, [4]). Таким образом, указанный подход дает еще один взгляд на броуновское локальное время, как на одного представителя целого семейства процессов. Для построения резольвентных процессов мы использовали метод, предложенный в [5, 6].

2. ОПРЕДЕЛЕНИЕ И СВОЙСТВА РЕЗОЛЬВЕНТНОГО ПРОЦЕССА

Пусть, как и выше, $w(t), t \ge 0$ — стандартный винеровский процесс. Для каждого фиксированного $\lambda \in \mathbb{C}$ мы определим случайную функцию $r_{\lambda}(t,x)$ переменных $t \ge 0, \ x \in \mathbb{R}$, причем так, что при каждых $t \ge 0, \ \alpha \in \left[0, \frac{1}{2}\right]$ с вероятностью единица было выполнено

$$r_{\lambda}(t,\cdot) \in W_2^{\alpha}(\mathbb{R}).$$

Для этого определим сначала процесс $\hat{r_{\lambda}}(t, p)$, который будет являться преобразованием Фурье (по переменной x) искомого процесса $r_{\lambda}(t, x)$.

Итак, пусть

$$\lambda = a + bi$$
.

При $a=\mathrm{Re}\lambda\leqslant 0$ для всех $p\in\mathbb{R}$ положим

$$\widehat{r_{\lambda}}(t,p) = \int_{0}^{t} e^{\lambda \tau} e^{ipw(\tau)} d\tau.$$
 (6)

Далее, пусть $a=\text{Re}\lambda>0$. Тогда при $|p|>\sqrt{2a}$ или при $|p|=\sqrt{2a}$ и $b=\text{Im}\lambda=0$, как и выше, определим $\hat{r_{\lambda}}(t,p)$ формулой (6).

При $|p| < \sqrt{2a}$ положим

$$\widehat{r_{\lambda}}(t,p) = -\int_{0}^{t} e^{-\lambda \tau} e^{pw(\tau)} d\tau.$$
 (7)

При $|p|=\sqrt{2a}$ и $b={
m Im}\lambda>0$ положим

$$\widehat{r_{\lambda}}(t,p) = i \int_{0}^{t} e^{i\lambda \tau} e^{ipe^{i\pi/4} w(\tau)} d\tau.$$
 (8)

Наконец, при $|p| = \sqrt{2a}$ и $b = \text{Im}\lambda < 0$ положим

$$\widehat{r_{\lambda}}(t,p) = -i \int_{0}^{t} e^{-i\lambda\tau} e^{ipe^{-i\pi/4} w(\tau)} d\tau.$$
 (9)

Введем обозначение. Через $h_{\lambda}(t,p)$ обозначим функцию, заданную следующим образом ($a = \text{Re}\lambda, b = \text{Im}\lambda$):

$$h_{\lambda}(t,p) = \begin{cases} e^{\lambda t}e^{ipw(t)}, & \text{при } a \leq 0, \\ \text{или при } a > 0 \text{ и } |p| > \sqrt{2a}, \\ \text{или при } a > 0, |p| = \sqrt{2a} \text{ и } b = 0, \\ e^{-\lambda t}e^{pw(t)}, & \text{при } a > 0 \text{ и } |p| < \sqrt{2a}, \\ ie^{i\lambda t}e^{ipe^{i\pi/4}w(t)}, & \text{при } a > 0, \\ |p| = \sqrt{2a} \text{ и } b > 0, \\ -ie^{-i\lambda t}e^{ipe^{-i\pi/4}w(t)}, & \text{при } a > 0, \\ |p| = \sqrt{2a} \text{ и } b < 0. \end{cases}$$
(10)

В этих обозначениях

$$\hat{r_{\lambda}}(t,p) = \int_{0}^{t} h_{\lambda}(\tau,p)d\tau.$$

Покажем теперь, что для любых фиксированных λ, t с вероятностью единица выполнено $r_{\lambda}(t,\cdot) \in W_2^{\alpha}(\mathbb{R})$, где $r_{\lambda}(t,\cdot)$ — обратное преобразование Фурье функции $\hat{r_{\lambda}}(t,\cdot)$.

Для этого введем пространство \mathcal{W}_2^{α} измеримых случайных функций g(x) с нормой

$$\|g\|_{\alpha}^{2} = \mathbf{E} \int_{\mathbb{R}} (1 + p^{2\alpha}) |\hat{g}(p)|^{2} dp,$$
 (11)

где \hat{g} есть преобразование Фурье функции g по переменной x.

Справедлива следующая

Теорема 1. 1. Для любого $\alpha \in \left[0, \frac{1}{2}\right)$ при фиксированных t > 0, $\lambda \in \mathbb{C}$ существует предел

$$r_{\lambda}(t,\cdot) = ({}^{\circ}W_{2}^{\alpha}) \lim_{M \to \infty} r_{\lambda}(t,\cdot,M),$$

где функция $r_{\lambda}(t,\cdot,M)$ задается своим преобразованием **Ф**урье

$$\widehat{r_{\lambda}}(t,p,M) = \mathbf{1}_{[-M,M]}(p) \cdot \int_{0}^{t} h_{\lambda}(\tau,p) d\tau.$$

2. Если $\operatorname{Re}\lambda < 0$, то для любого $\alpha \in \left[0, \frac{1}{2}\right]$ существует предел

$$r_{\lambda}^{\infty}(\cdot) = (W_{2}^{\alpha}) \lim_{t \to \infty} r_{\lambda}(t, \cdot). \tag{12}$$

Из теоремы 1 немедленно следует, что с вероятностью единица

$$r_{\lambda}(t,\cdot) \in W_2^{\alpha}(\mathbb{R}),$$

а при $Re\lambda < 0$

$$r_{\lambda}^{\infty}(\cdot) \in W_2^{\alpha}(\mathbb{R}).$$

Заметим, что процессы $r_{\lambda}(t,\cdot)$ у нас пока заданы только своим преобразованием Фурье $\hat{r_{\lambda}}(t,\cdot)$. Найдем теперь явное выражение для функций $r_{\lambda}(t,\cdot)$ как функционалов от траекторий винеровского процесса.

Пусть сначала $a = \text{Re}\lambda \le 0$. Тогда

$$\widehat{r_{\lambda}}(t,p) = \int_{0}^{t} e^{\lambda \tau} e^{ipw(\tau)} d\tau,$$

и, значит,

$$r_{\lambda}(t,x) = \frac{1}{2\pi} (L_2) \lim_{M \to \infty} \int_{-M}^{M} e^{-ipx} \int_{0}^{t} e^{\lambda \tau} e^{ipw(\tau)} d\tau dp =$$

$$= \frac{1}{2\pi} (L_2) \lim_{M \to \infty} \int_{0}^{t} e^{\lambda \tau} \int_{\mathbb{R}} \mathbf{1}_{[-M,M]}(p) e^{-ip(x-w(\tau))} d\tau dp =$$

$$= (L_2) \lim_{M \to \infty} \int_{0}^{t} e^{\lambda \tau} D_M(x-w(\tau)) d\tau,$$

где D_M — ядро Дирихле

$$D_M(x) = \frac{\sin Mx}{\pi x}.$$

Таким образом, при $a = \text{Re}\lambda \le 0$ мы имеем

$$r_{\lambda}(t,x) = (L_2) \lim_{M \to \infty} \int_{0}^{t} e^{\lambda \tau} D_M(x - w(\tau)) d\tau.$$
 (13)

Пользуясь тем, что в смысле обобщенных функций

$$\lim_{M\to\infty}D_M=\delta,$$

где δ — дельта-функция Дирака, здесь и ниже будем для сокращения записи использовать удобную формулу

$$r_{\lambda}(t,x) = \int_{0}^{t} e^{\lambda \tau} \delta(x - w(\tau)) d\tau, \tag{14}$$

понимая ее так, что правая часть (13) есть определение правой части (14).

В случае a < 0 в этом же смысле мы имеем

$$r_{\lambda}^{\infty}(x) = \int_{0}^{\infty} e^{\lambda \tau} \delta(x - w(\tau)) d\tau.$$

Пусть теперь $a = \text{Re}\lambda > 0$. Тогда

$$\widehat{r_{\lambda}}(t,p) = \int_{0}^{t} e^{\lambda \tau} e^{ipw(\tau)} d\tau \cdot \mathbf{1}_{(\sqrt{2a},\infty)}(|p|) - \int_{0}^{t} e^{-\lambda \tau} e^{pw(\tau)} d\tau \cdot \mathbf{1}_{(0,\sqrt{2a})}(|p|),$$

и, соответственно,

$$r_{\lambda}(t,x) = \frac{1}{2\pi} (L_{2}) \lim_{M \to \infty} \int_{[-M,M] \setminus [-\sqrt{2a},\sqrt{2a}]} e^{-ipx} \int_{0}^{t} e^{\lambda \tau} e^{ipw(\tau)} d\tau dp - \frac{1}{2\pi} \int_{-\sqrt{2a}}^{\sqrt{2a}} e^{-ipx} \int_{0}^{t} e^{-\lambda \tau} e^{pw(\tau)} d\tau dp =$$

$$= (L_{2}) \lim_{M \to \infty} \int_{0}^{t} e^{\lambda \tau} (D_{M}(x - w(\tau)) - D_{\sqrt{2a}}(x - w(\tau))) d\tau =$$

$$= -\int_{0}^{t} e^{-\lambda \tau} D_{\sqrt{2a}}(x + iw(\tau)) =$$

$$= \int_{0}^{t} e^{\lambda \tau} (\delta(x - w(\tau)) - \frac{\sin(\sqrt{2a}(x - w(\tau)))}{\pi x}) d\tau -$$

$$-\int_{0}^{t} e^{-\lambda \tau} \frac{\sin(\sqrt{2a}(x + iw(\tau)))}{\pi x} d\tau.$$

Заметим еще, что в случае $\lambda = 0$ процесс $r_{\lambda}(t, x)$ совпадает с броуновским локальным временем (см. [4, гл. 1, § 4]).

3. ИНТЕГРАЛЬНОЕ ПРЕДСТАВЛЕНИЕ РЕЗОЛЬВЕНТЫ

Для каждого $\lambda \in \mathbb{C}$ определим случайный ограниченный оператор

$$\Re_{\lambda}^{t}: L_{2}(\mathbb{R}) \to L_{2}(\mathbb{R}),$$

полагая для $f \in L_2(\mathbb{R})$

$$\mathcal{R}_{\lambda}^{t} f(x) = (r_{\lambda} * f)(t, x). \tag{15}$$

В случае $a = \text{Re}\lambda < 0$ определим еще случайный оператор \Re_{λ} , полагая

$$\mathcal{R}_{\lambda}f(x) = (r_{\lambda}^{\infty} * f)(x). \tag{16}$$

Преобразования Фурье операторов \mathcal{R}'_{λ} , \mathcal{R}_{λ} действуют следующим образом:

$$\widehat{\mathcal{R}_{\lambda}^{t}}\widehat{f}(p) = \widehat{r_{\lambda}}(t,p) \cdot \widehat{f}(p), \tag{17}$$

$$\widehat{\mathcal{R}_{\lambda}}\widehat{f}(p) = \widehat{r_{\lambda}^{\infty}}(p) \cdot \widehat{f}(p). \tag{18}$$

Далее, для $f\in L_2(\mathbb{R})$ определим функцию u(t,x), полагая

$$u(t,x) = \mathbf{E} \mathcal{R}_{\lambda}^{t} f(x) = \mathbf{E} (r_{\lambda} * f)(t,x).$$

Теорема 2. Пусть $\text{Re}\lambda \leq 0$. Тогда функция u(t,x) является обобщенным решением уравнения

$$\frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2} + \lambda u + f(x),$$

удовлетворяющим условию u(0, x) = 0.

Пусть, как и выше, \mathcal{A} — самосопряженный оператор в $L_2(\mathbb{R})$, заданный на области определения

$$\mathfrak{D}(\mathcal{A}) = W_2^2(\mathbb{R}) = \{ f \in L_2(\mathbb{R}) : p^2 \widehat{f}(p) \in L_2(\mathbb{R}) \}$$

и действующий на этой области определения по правилу

$$\mathcal{A}f = -\frac{1}{2}f".$$

Как уже было отмечено, $\sigma(\mathcal{A}) = \sigma_{ac}(\mathcal{A}) = [0, \infty)$, причем для $\lambda \in \sigma(\mathcal{A})$ область определения оператора $(\mathcal{A} - \lambda I)^{-1}$ имеет вид

$$\mathfrak{D}(\mathcal{A}-\lambda I)^{-1}=\left\{f\in L_2(\mathbb{R}):\frac{\widehat{f}(p)}{\frac{p^2}{2}-\lambda}\in L_2(\mathbb{R})\right\}.$$

Теорема 3. 1. Пусть $\text{Re}\lambda < 0$. Тогда для любого $f \in L_2(\mathbb{R})$ справедливо

$$\mathbf{E}f * r_{\lambda}^{\infty}(x) = (\mathcal{A} - \lambda I)^{-1} f(x).$$

2. Пусть $\text{Re}\lambda \ge 0$ и $\lambda \notin \sigma(A)$. Тогда для любого $f \in L_2(\mathbb{R})$ справедливо

$$(L_2)\lim_{t\to\infty} \mathbf{E}f * r_{\lambda}(t,x) = (\mathcal{A} - \lambda I)^{-1} f(x). \tag{19}$$

3. Пусть $\lambda \in \sigma(A)$. Тогда для любого $f \in \mathfrak{D}(A - \lambda I)^{-1}$ справедливо (19).

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Работа М.М. Фаддеева выполнена при поддержке РФФИ (грант № 19-01-00657).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Ладыженская О.А.*, *Уральцева Н.Н.* Линейные и квазилинейные уравнения эллиптического типа. М.: Наука, 1973.
- Агранович М.С. Соболевские пространства, их обобщения и эллиптические задачи в областях с гладкой и липшицевой границей. М.: МЦНМО, 2013. 378 с.
- 3. *Бирман М.Ш., Соломяк М.З.* Спектральная теория самосопряженных операторов в гильбертовом пространстве. Лань, Санкт-Петербург, Москва, Краснодар, 2010.
- Бородин А.Н., Ибрагимов И.А. Предельные теоремы для функционалов от случайных блужданий // Тр. МИАН СССР. 1994. Т. 195. С. 3—286.
- Berman S. Gaussian processes with stationary increments: local times and sample function properties // Ann. Math. Stat. 1970. V. 41. № 4. P. 1260–1272.
- 6. *Berman S.* Local times and sample function properties of stationary Gaussian process // Trans. Amer. Math. Soc. 1969. V. 137. P. 277–299.

ON A FAMILY OF COMPLEX-VALUED STOCHASTIC PROCESSES

Academician of the RAS I. A. Ibragimov^{a,b}, N. V. Smorodina^{a,b}, and M. M. Faddeev^b

^aSt. Petersburg Department of V.A. Steklov Institute of Mathematics of the Russian Academy of Sciences, St. Petersburg, Russian Federation

^bSt. Petersburg State University, St. Petersburg, Russian Federation

We introduce a family $r_{\lambda}, \lambda \in \mathbb{C}$ of complex-valued stochastic processes giving a possibility to construct a probabilistic representation for a resolvent of operator $-\frac{1}{2}\frac{d^2}{dx^2}$. For $\lambda=0$ the process r_{λ} is real-valued and coincides with the Brownian local time process.

Keywords: random processes, local time