— МАТЕМАТИКА —

УЛК 517.929

ВТОРАЯ КРАЕВАЯ ЗАДАЧА ДЛЯ ДИФФЕРЕНЦИАЛЬНО-РАЗНОСТНЫХ УРАВНЕНИЙ

© 2021 г. А. Л. Скубачевский 1,2,*, Н. О. Иванов 1,**

Представлено академиком РАН Ю.С. Осиповым 17.08.2021 г. Поступило 20.08.2021 г. После доработки 20.08.2021 г. Принято к публикации 02.09.2021 г.

Рассматривается вторая краевая задача для дифференциально-разностного уравнения второго порядка с переменными коэффициентами на интервале (0, d). Получено необходимое и достаточное условие существования обобщенного решения. Доказано, что если правая часть уравнения ортогональна в $L_2(0,d)$ некоторым функциям, то обобщенное решение из пространства Соболева $W_2^1(0,d)$ будет принадлежать пространству $W_2^2(0,d)$.

Ключевые слова: дифференциально-разностные уравнения, обобщенные решения, краевая задача **DOI:** 10.31857/S2686954321050155

ВВЕДЕНИЕ

Обобщенные решения первой краевой задачи для функционально-дифференциальных уравнений нейтрального типа на конечном интервале (0, d) впервые рассматривались в работах [1, 2]. Было показано, что гладкость обобщенных решений может нарушаться во внутренних точках интервала даже при бесконечно дифференцируемой правой части и сохраняется лишь на подынтервалах, получаемых выбрасыванием из интервала (0, d) орбит его концов. В работах [3, 4] получены условия на правые части уравнения, обеспечивающие гладкость обобщенных решений первой краевой задачи для дифференциально-разностных уравнений на всем интервале (0, d). Вопрос о нахождении таких условий в случае второй краевой задачи является открытым. В работах [5, 6] в случаях как первой, так и второй краевых задач были получены условия на коэффициенты дифференциально-разностного уравнения, при выполнении которых гладкость обобщенных решений дифференциально-разностного уравнения сохраняется на всем интервале для любой правой части. Краевые задачи для функционально-дифференциальных уравнений возникают во многих важных приложениях, в частности в задачах теории управления системами с последействием [4, 7-10].

1. ПОСТАНОВКА ЗАДАЧИ

Введем операторы R_Q : $L_2(Q) \to L_2(Q)$, R: $L_2(\mathbb{R}) \to L_2(\mathbb{R})$, I_Q : $L_2(Q) \to L_2(\mathbb{R})$ и P_Q : $L_2(\mathbb{R}) \to L_2(Q)$ следующим образом:

$$(Ru)(x) = \sum_{j=-n}^{n} a_j(x)u(x+j), \quad x \in \mathbb{R},$$
 (1)

где $Q:=(0,d), \quad d=n+\theta, \quad n\in \mathbb{N}, \quad 0<\theta \leq 1;$ $a_j(x)\in C^{\infty}(\mathbb{R})$ — комплекснозначные функции; $(I_Qv)(x)=v(x), \quad x\in Q; \quad (I_Qv)(x)=0, \quad x\in \mathbb{R}\backslash Q;$ $(P_Ov)(x)=v(x), \, x\in Q; R_O=P_ORI_O.$

Рассмотрим задачу

$$-(R_0 u')'(x) = f(x), \quad x \in Q,$$
 (2)

$$(R_0 u')(0) = (R_0 u')(d) = 0,$$
 (3)

где $f \in L_2(Q)$.

Заметим, что сдвиги аргументов $x \mapsto x + j$ в операторе R могут отображать точки интервала Q в $\mathbb{R} \backslash Q$. Поэтому краевые условия для уравнения (2) мы задаем не только в точках 0 и d, но и на множестве $\mathbb{R} \backslash Q$. Для этого используется оператор I_Q , который является оператором продолжения

¹ Математический институт Российского университета дружбы народов, Москва. Россия

² Центр фундаментальной и прикладной математики Московского государственного университета имени М.В. Ломоносова, Москва, Россия

^{*}E-mail: skub@lector.ru

^{**}E-mail: noivanov1@gmail.com

нулем функции из $L_2(Q)$ на $\mathbb{R}\setminus Q$. Для рассмотрения дифференциально-разностного уравнения (2) на интервале Q вводится оператор P_Q , являющийся оператором сужения функции из $L_2(\mathbb{R})$ на Q.

Если $\theta=1$, рассмотрим один класс непересекающихся подынтервалов: $Q_{1k}=(k-1,k),\ k=1,\ldots,n+1$. Если $0<\theta<1$, рассмотрим два класса непересекающихся подынтервалов: $Q_{1k}=(k-1,k),\ k=1,\ldots,n+1,$ и $Q_{2k}=(k-1+\theta,k),\ k=1,\ldots,n$.

Обозначим через $R_s = R_s(x), x \in \overline{Q}_{s1}$, теплицеву матрицу порядка $N(s) \times N(s)$ с элементами

$$r_{ij}^s(x):=a_{j-i}(x+i-1), \quad x\in\mathbb{R}, \quad i,j=1,...,N(s),$$
 (4) где $N(1)=n+1,\ N(2)=n;\ s=1,2,$ если $0<\theta<1;$ $s=1,$ если $\theta=1.$

Очевидно, матрица $R_2(x)$ может быть получена из матрицы $R_1(x)$ вычеркиванием последней строки и последнего столбца. Свойства оператора R_O тесно связаны со свойствами матриц $R_s(x)$.

Всюду в дальнейшем будем предполагать, что для всех $x \in \overline{Q}_{s1}$ и $Y \in \mathbb{C}^{N(s)}$ (s=1,2, если $0<\theta<1,$ и s=1, если $\theta=1$) выполняется неравенство

$$\operatorname{Re}(R_{s}(x)Y,Y) \ge c||Y||^{2},\tag{5}$$

где c > 0 не зависит от x и Y, (\cdot, \cdot) и $\|\cdot, \cdot\|$ — скалярное произведение и норма в $\mathbb{C}^{N(s)}$ соответственно.

2. РАЗРЕШИМОСТЬ ВТОРОЙ КРАЕВОЙ ЗАДАЧИ

Пусть $W_2^k(Q)$ — пространство Соболева комплекснозначных функций из $L_2(Q)$, имеющих все обобщенные производные вплоть до k-го порядка

из $L_2(Q)$. Скалярное произведение в $W_2^k(Q)$ вводится по формуле

$$(u,v)_{W_2^k(Q)} = \sum_{i=0}^k \int_0^d u^{(i)} \overline{v^{(i)}} dx.$$

Введем неограниченный оператор $\mathcal{A}_R: L_2(Q)\supset D(\mathcal{A}_R)\to L_2(Q)$ с областью определения $D(\mathcal{A}_R)=\{u\in W_2^1(Q): Ru'\in W_2^1(Q), (Ru')(0)=(Ru')(d)=0\},$ действующий по формуле

$$\mathcal{A}_R u = -(Ru')', \quad u \in D(\mathcal{A}_R). \tag{6}$$

Определение 1. Функция $u \in D(\mathcal{A}_R)$ называется обобщенным решением задачи (2), (3), если

$$\mathcal{A}_R u = f. \tag{7}$$

Теорема 1. Пусть выполняется неравенство (5). Тогда вторая краевая задача (2), (3) имеет обобщенное решение $u \in D(\mathcal{A}_R)$ тогда и только тогда, когда

$$\int_{0}^{d} f(x)dx = 0. \tag{8}$$

3. ГЛАДКОСТЬ ОБОБЩЕННЫХ РЕШЕНИЙ НА ПОДЫНТЕРВАЛАХ

Те орема 2. Пусть выполняется неравенство (5), и пусть $u \in D(\mathcal{A}_R)$ — обобщенное решение задачи (2), (3). Тогда $u \in W_2^2(k-1,k-1+\theta), k=1,...,n$, $n+1, u \in W_2^2(k-1+\theta,k), k=1,...,n$, если $0 < \theta < 1$; $u \in W_2^2(k-1,k), k=1,...,n+1$, если $\theta = 1$.

4. ГЛАДКОСТЬ ОБОБЩЕННЫХ РЕШЕНИЙ НА ВСЕМ ИНТЕРВАЛЕ (0, d)

Предположим, что $\theta = 1$, т.е. d = n + 1. Введем матрицу \mathbf{R}_1 порядка $(n + 2) \times (2n + 2)$ по формуле

$$\mathbf{R}_1 := \begin{pmatrix} a_0(0) & a_1(0) & \dots & a_n(0) & 0 & 0 & \dots & 0 \\ a_{-1}(1) & a_0(1) & \dots & a_{n-1}(1) & a_0(1) & a_1(1) & \dots & a_n(1) \\ a_{-2}(2) & a_{-1}(2) & \dots & a_{n-2}(2) & a_{-1}(2) & a_0(2) & \dots & a_{n-1}(2) \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ a_{-n}(n) & a_{-n+1}(n) & \dots & a_0(n) & a_{-n+1}(n) & a_{-n+2}(n) & \dots & a_1(n) \\ 0 & 0 & \dots & 0 & a_{-n}(n+1) & a_{-n+1}(n+1) & \dots & a_0(n+1) \end{pmatrix}.$$

Обозначим через $\mathbf{R}_1^1(\mathbf{R}_1^2)$ матрицу порядка $(n+2)\times(2n+1)$, полученную из матрицы \mathbf{R}_1 вычеркиванием первого (последнего) столбца соответственно, а через \mathbf{R}_1^0 матрицу порядка $(n+2)\times 2n$,

полученную из \mathbf{R}_1 вычеркиванием первого и последнего столбцов.

Будем предполагать, что выполняется условие

$$\sum_{k=1}^{n} (|a_k(0)| + |a_{-k}(n+1)|) \neq 0.$$
 (9)

 Π е м м а 1. Пусть выполнены условия (5) u (9). Тогда $\operatorname{rank} \mathbf{R}_1 = n + 2 u \operatorname{rank} \mathbf{R}_1^0 \ge n + 1$.

Обозначим через $G_j^1 = G_j^1(x)$ $(G_j^2 = G_j^2(x))$ *j*-й столбец матрицы порядка $n \times (n+1)$, полученной из матрицы $R_1 = R_1(x)$ вычеркиванием первой (последней) строки (j = 1, ..., n+1).

Введем линейный ограниченный оператор $A_R^0:W_2^2(Q)\supset D(A_R^0)\to L_2(Q)$ с областью определения $D(A_R^0)=D(\mathcal{A}_R)\cap W_2^2(Q)$, действующий по формуле

$$A_R^0 u = \mathcal{A}_R u, \quad u \in D(A_R^0).$$

Теорема 3. Пусть выполнены условия (5) и (9), и пусть $\theta = 1$. Предположим, что столбцы $G_1^1(0)$ и $G_{n+1}^2(1)$ линейно независимы. Тогда оператор $A_R^0: W_2^2(Q) \supset D(A_R^0) \to L_2(Q)$ фредгольмов, $1 \in \mathcal{N}(A_R^0)$ и $\dim \mathcal{N}(A_R^0) = 1$. Если к тому же

$$\operatorname{rank} \mathbf{R}_{1}^{0} = \operatorname{rank} \mathbf{R}_{1}^{1} = \operatorname{rank} \mathbf{R}_{1}^{2}, \tag{10}$$

 $mo \operatorname{codim} \Re(A_R^0) = 3$; если же

$$\operatorname{rank} \mathbf{R}_{1}^{0} < \max \{ \operatorname{rank} \mathbf{R}_{1}^{1}, \operatorname{rank} \mathbf{R}_{1}^{2} \}, \tag{11}$$

 $mo \operatorname{codim}\Re(A_R^0) = 2.$

Из теорем 1 и 3 вытекает

Следствие 1. Пусть выполнены условия теоремы 3. Если к тому же справедливы равенства (10), то найдутся три линейно независимые функции h_0 , h_1 , $h_2 \in L_2(Q)$ такие, что $h_0(x) \equiv 1$, и при выполнении условий $(f,h_j)_{L_2(Q)}=0$, j=0,1,2, обобщенное решение задачи (2), (3) $u_f \in W_2^1(Q)$ существует и принадлежит пространству $W_2^2(Q)$. Если же справедливо неравенство (11), то найдутся две линейно независимые функции h_0 , $h_1 \in L_2(Q)$ такие, что $h_0(x) \equiv 1$, и при выполнении условий $(f,h_j)_{L_2(Q)}=0$, j=0, 1, обобщенное решение задачи (2), (3) $u_f \in W_2^1(Q)$ существует и принадлежит пространству $W_2^2(Q)$.

Те орем а 4. Пусть выполнены условия (5) и (9), и пусть $\theta = 1$. Предположим, что столбцы $G_1^1(0)$ и $G_{n+1}^2(1)$ линейно зависимы и $G_1^1(0), G_{n+1}^2(1) \neq 0$. Тогда оператор $A_R^0: W_2^2(Q) \supset D(A_R^0) \to L_2(Q)$ фредгольмов, $1 \in \mathcal{N}(A_R^0)$ и $\dim \mathcal{N}(A_R^0) = 1$. Если при этом $\operatorname{rank} \mathbf{R}_1^0 = \operatorname{rank} \mathbf{R}_1^1$ или $\operatorname{rank} \mathbf{R}_1^0 = \operatorname{rank} \mathbf{R}_1^2$, то $\operatorname{codim} \mathcal{R}(A_R^0) = 2$. Из теорем 1 и 4 вытекает

Из теорем 1 и 4 вытекает

Следствие 2. Пусть выполнены условия теоремы 4. Тогда найдутся две линейно независимые

функции h_0 , $h_1 \in L_2(Q)$ такие, что $h_0(x) \equiv 1$, и при выполнении условий $(f,h_j)_{L_2(Q)} = 0$, j = 0,1, обобщенное решение задачи (2), (3) $u_f \in W_2^1(Q)$ существует и принадлежит пространству $W_2^2(Q)$.

Пример 1. Рассмотрим оператор R_Q : $L_2(0,3) \rightarrow L_2(0,3)$, где Q=(0,3), $(Ru)(x)=a_0u(x)+a_1u(x+1)+a_{-1}u(x-1)+a_2u(x+2)+a_{-2}u(x-2)$, $a_i \in \mathbb{R}$, $i=0,\pm 1,\pm 2$. Тогда n=2, $\theta=1$, а матрица R_1 имеет вид

$$R_{1} = \begin{pmatrix} a_{0} & a_{1} & a_{2} \\ a_{-1} & a_{0} & a_{1} \\ a_{-2} & a_{-1} & a_{0} \end{pmatrix}.$$

Следовательно,

$$G_1^1 = \begin{pmatrix} a_{-1} \\ a_{-2} \end{pmatrix}, \quad G_3^2 = \begin{pmatrix} a_2 \\ a_1 \end{pmatrix},$$

$$\mathbf{R}_1 = \begin{pmatrix} a_0 & a_1 & a_2 & 0 & 0 & 0 \\ a_{-1} & a_0 & a_1 & a_0 & a_1 & a_2 \\ a_{-2} & a_{-1} & a_0 & a_{-1} & a_0 & a_1 \\ 0 & 0 & 0 & a_{-2} & a_{-1} & a_0 \end{pmatrix}.$$

Предположим, что выполняется условие (5), а столбцы G_1^1 и G_3^2 линейно независимы. Можно показать, что тогда $\det \mathbf{R}_1^0 \neq 0$. Следовательно, выполняется условие (10). Таким образом, в силу теоремы 3 оператор $A_R^0: W_2^2(0,3) \supset D(A_R^0) \to L_2(0,3)$ фредгольмов, $1 \in \mathcal{N}(A_R^0)$ и $\dim \mathcal{N}(A_R^0) = 1$, при этом $\operatorname{codim} \mathcal{R}(A_R^0) = 3$.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Публикация подготовлена при поддержке Минобрнауки России в рамках государственного задания: соглашение № 075-03-2020-223/3 (FSSF-2020-0018).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Каменский Г.А., Мышкис А.Д*. Постановка краевых задач для дифференциальных уравнений с отклоняющимися аргументами в старших членах // Дифференц. уравнения. 1974. Т. 10. № 3. С. 409—418.
- 2. *Каменский А.Г.* Краевые задачи для уравнений с формально симметричными дифференциальноразностными операторами // Дифференц. уравнения. 1976. Т. 10. № 5. С. 815—824.
- 3. *Каменский Г.А.*, *Мышкис А.Д.*, *Скубачевский А.Л.* О гладких решениях краевой задачи для дифференциально-разностного уравнения нейтрального типа // Укр. матем. журнал. 1985. Т. 37. № 5. С. 581—585.

- 4. *Skubachevskii A.L.* Elliptic Functional Differential Equations and Applications. Basel—Boston—Berlin, Birkhäuser, 1997. 298 p.
- 5. Неверова Д.А., Скубачевский А.Л. О классических и обобщенных решениях краевых задач для дифференциально-разностных уравнений с переменными коэффициентами // Матем. заметки. 2013. Т. 94. № 5. С. 702—719.
- 6. *Neverova D.A.* Generalized and classical solutions to the second and third boundary-value problem for differential-difference equations // Functional Differential Equations. 2014. T. 21. C. 47–65.
- Осипов Ю.С. О стабилизации управляемых систем с запаздыванием // Дифференц. уравнения. 1965. Т. 1. № 5. С. 605–618.
- 8. *Красовский Н.Н.* Теория управления движением. Линейные системы. М.: Наука, 1968. 475 с.
- Кряжимский А.В., Максимов В.И., Осипов Ю.С.
 О позиционном моделировании в динамических
 системах // Прикл. мат. мех. 1983. Т. 47. № 6.
 С. 883—890.
- Скубачевский А.Л. К задаче об успокоении системы управления с последействием // ДАН. 1994. Т. 335.
 № 2. С. 157–160.

2021

THE SECOND BOUNDARY VALUE PROBLEM FOR DIFFERENTIAL-DIFFERENCE EQUATIONS

A. L. Skubachevskii^{a,b} and N. O. Ivanov^a

^a Mathematical Institute of the RUDN University, Moscow, Russian Federation
 ^b Moscow Center for Fundamental and Applied Mathematics, Lomonosov Moscow State University, Moscow, Russian Federation

Presented by Academician of the RAS Yu.S. Osipov

We consider the second boundary value problem for a second order differential-difference equation with variable coefficients on the interval (0, d). It was obtained the necessary and sufficient condition for existence of a generalized solution. It was proved that, if the right-hand side of the equation is orthogonal in $L_2(0, d)$ to some functions, then a generalized solution from the Sobolev space $W_2^1(0, d)$ belongs to the space $W_2^2(0, d)$.

Keywords: differential-difference equations, generalized solutions, boundary value problem