УДК 577.352.465

2-АРВ СТИМУЛИРУЕТ ВЫБРОС Са²⁺ ИЗ Са²⁺-ДЕПО

© 2019 г. Д. С. Ивашин^{*a*}, О. А. Рогачевская^{*a*}, М. Ф. Быстрова^{*a*}, С. С. Колесников^{*a*}, *

^аИнститут биофизики клетки РАН, 142290, Пущино, Московская обл., ул. Институтская, 3, Россия *e-mail: staskolesnikov@yahoo.com Поступила в редакцию 26.10.2018 г. После доработки 20.11.2018 г.

Принята к публикации 30.11.2018 г.

С помощью микрофотометрии (Ca²⁺ imaging), генетически кодируемого Ca²⁺-сенсора G-CEPIA1er и Ca²⁺-зонда Fura-2 анализировались Ca²⁺-сигналы, инициируемые различными стимулами в цитоплазме и эндоплазматическом ретикулуме (ЭР) клеток HEK-293. Показано, что 2-APB, являющийся блокатором SOC-каналов и антагонистом IP₃-рецепторов, инициировал выброс Ca²⁺ из ЭР. В присутствии тапсигаргина, ингибировавшего ретикулярную Ca²⁺-ATP-азу SERCA и частично опустошавшего Ca²⁺-депо, 2-APB не вызывал выброса депонированного Ca²⁺. Мы предполагаем, что эти эффекты можно объяснить способностью 2-APB стимулировать ретикулярные Ca²⁺-каналы CLAC, которые активируются при высокой концентрации Ca²⁺ в люмене ЭР и предотвращают перегрузку Ca²⁺-депо.

Ключевые слова: внутриклеточная Ca²⁺-сигнализация, генетически кодируемый сенсор **DOI:** 10.1134/S023347551902004X

введение

Клеточные функции регулируются внутриклеточным Ca²⁺, уровень и динамика которого контролируются рядом внутриклеточных транспортных и сигнальных систем. Одним из важнейших является фосфоинозитидный путь, который сопрягает многие гептаспиральные (G-protein-coupled receptor, GPCR) и некоторые тирозинкиназные рецепторы с мобилизацией внутриклеточного Ca^{2+} [1]. Это сопряжение протекает в несколько стадий, включая агонист-зависимую активацию фосфолипазы С (PLC), катализирующей гидролиз фосфолипида PIP2 (phosphatidylinositol 4,5-bisphosphate), в результате чего продуцируются два вторичных медиатора: водорастворимый инозитолтрисфосфат (IP₃, inositol 1,4,5-trisphosphate) и липидный диацилглицерин (DAG, diacylglycerol). В свою очередь, ІР₃ стимулирует ІР₃-рецепторы, являющиеся внутриклеточными IP₃-активируемыми Ca²⁺-каналами, функционирующими в эндоплазматическом ретикулуме и ответственными за высвобождение депонированного Ca²⁺ [1, 2]. Этот первоначальный агонист-зависимый Са²⁺сигнал может инициировать так называемый Са²⁺-индуцированный выброс Са²⁺ (Са²⁺-induced Ca^{2+} release. CICR). который играет ключевую роль в превращении локальных Ca²⁺-сигналов в глобальные, а также в распространении Ca²⁺-

волн в цитоплазме клеток [3–5]. Регенеративный процесс CICR происходит за счет того, что в определенной области концентраций внутриклеточный Ca^{2+} стимулирует IP₃-рецепторы [2] и/или рианодиновые рецепторы, которые также являются внутриклеточными Ca^{2+} -каналами, обеспечивающими выброс Ca^{2+} из Ca^{2+} -депо [6].

Существенный прогресс в исследовании внутриклеточных сигнальных процессов был лостигнут в значительной степени благодаря ингибиторному анализу, который опирается на широкий спектр соединений, способных проникать в клетки и избирательно модулировать активность сигнальных белков. Например, рианодиновые рецепторы активируются кофеином, но ингибируются рианодином, что позволяет оценивать их вклад в генерацию внутриклеточных Ca²⁺-сигналов [6, 7]. Фармакологический инструментарий для функциональных исследований IP₃-рецепторов менее эффективен. Среди применяемых агонистов заслуживает внимания лишь проникающий предшественник IP₃ (Bt3-Ins(145)P3/AM), хотя индуцируемый им подъем уровня внутриклеточного ІР₃ и его динамика сильно зависят от скорости гидролиза эфирной группы внутриклеточными эстеразами и от интенсивности метаболизма IP₃ в данной клетке. Имеется несколько соединений, которые считаются антагонистами IP₃-рецепторов: гепарин, ксестоспонгины (xestospongin C, xestospongin D) и 2-APB (2-атіпоethoxydiphenyl borate) [8–10]. Их использование в качестве ингибиторов IP₃-зависимого выброса Ca²⁺ связано с рядом проблем. Так, гепарин не проникает через мембрану, и его быстрая доставка в цитоплазму клетки может быть осуществлена либо с помощью инъекции, либо путем пермеабилизации (permeabilization) с использованием детергентов или токсинов, формирующих поры в плазматической мембране [11]. Существенный недостаток этого подхода состоит в том, что условия, при которых поры образуются преимущественно в плазматической мембране, но не во внутриклеточных органеллах, подобрать трудно.

Хотя в ранних работах утверждалось, что ксестоспонгины ингибируют IP₃-зависимый выброс Ca²⁺ [9], в дальнейшем прямое ингибирование IP₃-рецепторов ксестоспонгинами было поставлено под сомнение (например, [12]). Более того, в недавней работе с использованием пермеабилизованных клеток было показано, что ксестоспонгины С и D не являются ингибиторами ІР₃-рецепторов всех трех типов [11]. В пионерской работе Мариямы и соавторов [10] было показано, что 2-АРВ является проникающим через мембрану соединением, способным ингибировать IP₃-индуцируемый выброс Ca²⁺. Оказалось, что в этих эффектах основной мишенью 2-АРВ являлся IP₃-рецептор типа 1 [11]. Между тем ряд работ указывает на то, что действие 2-АРВ на внутриклеточную Ca²⁺-сигнализацию может быть опосредовано и иными механизмами. К ним относятся блокирование входа наружного Ca²⁺ через потенциал-независимые Са²⁺-проницаемые каналы, включая депо-управляемые каналы (SOC, store-operated channel) [13-15], ингибирование ретикулярной Ca²⁺-ATP-азы SERCA [16] и активация Ca²⁺-проницаемых каналов TRPV1, TRPV2 и TRPV3 [17].

Обычно анализ роли различных внутриклеточных сигнальных и транспортных систем в генерации Ca²⁺-сигналов основан на мониторинге цитозольного Ca²⁺ с использованием высокоаффинных флуоресцентных Ca²⁺-зондов (Fura-2, Fluo-4) в сочетании с ингибиторным анализом. В силу недостаточной специфичности многих ингибиторов, отмеченной выше, трудно однозначно интерпретировать результаты ингибиторного анализа, основываясь лишь на одном измеряемом параметре – концентрации свободного Са²⁺ в цитозоле клетки. Это ставит задачу одновременного мониторинга Ca²⁺ и в других компартментах, вовлеченных в Са²⁺-обмен, таких как эндоплазматический/саркоплазматический peтикулум, митохондрии и лизосомы. Наиболее эффективно эта задача решается с использованием генетически кодируемых Ca^{2+} -зондов на основе флуоресцентных белков, содержащих в своей последовательности сигнал локализации в том или ином компартменте [18]. В настоящей работе мы использовали генетически кодируемый низкоаффинный ($K_d = 672 \text{ мкM}$) Ca^{2+} -индикатор G-CEPIA1er [19] для мониторинга Ca^{2+} в эндоплазматическом ретикулуме (ЭР) клеток HEK-293.

МАТЕРИАЛЫ И МЕТОДЫ

В работе использовались клетки линии НЕК-293, которые культивировались во влажной атмосфере с 5% СО₂ при 37°С в планшете с 12 лунками с 1 мл среды DMEM с добавлением 10% эмбриональной бычьей сыворотки в каждой. Клетки трансфицировались плазмидным вектором pCMV-G-CEPIA1er (Addgene). Для временной трансфекции в лунку добавляли 1 мкг pCMV-G-CEPIA1er и 2 мкл липофектамина 3000 (Thermo-Fisher). После инкубации клеток в течение 5-6 ч при 37°С трансфекционная среда замещалась на обычную культуральную среду. Регистрации проводились через 24-72 ч после трансфекции. Качество трансфекции оценивалось по интенсивности и распределению эмиссии флуоресцентного белка GFP, являющегося индикаторной частью сенсора G-CEPIA1er.

Для фотометрических экспериментов клетки инкубировали при комнатной температуре (23-25°C) в присутствии проникающего агента Fura-2 AM (4 мкМ) и детергента Pluronic (0.02%) (оба из Моlecular Probes) в течение 20-30 мин, что обеспечивало загрузку клеток Ca²⁺-зондом Fura-2. Внеклеточный раствор содержал (мМ): NaCl – 140, KCl – 5, CaCl₂ – 2, MgSO₄ – 1, HEPES – 10, глюкоза – 10. В случае необходимости 2 мМ CaCl₂ заменялся на 1 мМ EGTA + 0.8 мМ CaCl₂, чтобы снизить концентрацию свободного Ca²⁺ во внеклеточном растворе до 250 нМ. Фотометрические эксперименты проводили с использованием инвертированного флуоресцентного микроскопа Axiovert 200 (Carl Zeiss), оборудованного объективом Plan NeoFluar 20×/0.75 и цифровой ЕМССД камерой iXon 888 (Andor Technology). Флуоресценцию Са²⁺-индикаторов возбуждали при длинах волн 340 ± 5 и 380 ± 5 нм в случае Fura-2 и 480 ± 5 нм в случае G-CEPIA1er. Эмиссию обоих зондов регистрировали в области 525 ± 20 нм. Изменение свободного Ca²⁺ в цитозоле и в ЭР индивидуальных клеток оценивали по отношению F_{340}/F_{380} и $\Delta F/F_0$ соответственно, где F_{340} и F_{380} – интенсивности эмиссии Fura-2 при возбуждении при 340 и 380 нм соответственно, а $\Delta F = F_0 - F$, где F и $F_0 - F$

Рис. 1. Репрезентативная регистрация цитоплазматического и ретикулярного Ca²⁺ в одиночной клетке линии HEK-293 (n = 51). Верхняя панель – мониторинг цитоплазматического Ca²⁺ по флуоресценции Ca²⁺-зонда Fura-2. Данные представлены как отношение F_{340}/F_{380} , где F_{340} и F_{380} – интенсивности эмиссии Fura-2 при возбуждении на 340 и 380 нм. Нижняя панель – одновременный мониторинг Ca²⁺ в ЭР по флуоресценции Ca²⁺-сенсора G-CEPIAIer. Данные представлены в виде $\Delta F/F_0$, где $\Delta F = F_0 - F$, F и F_0 – текущая интенсивность эмиссии G-CEPIAIer и эмиссия в начале регистрации, соответственно. Моменты аппликации 2 мкМ ATP, 2 мкМ тапсигаргина и 50 мкМ 2-APB обозначены на верхней панели линиями над экспериментальной кривой.

текущая интенсивность эмиссии G-CEPIA1er и его эмиссия в начале регистрации, соответственно. Количественный фотометрический анализ изображений проводили с использованием программы Imaging Workbench 6 (INDEC).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Микрофотометрия клеток НЕК-293, экспрессирующих Ca²⁺-сенсор G-CEPIA1er и нагруженных Ca²⁺-зондом Fura-2, позволила сопоставить динамику свободного Ca²⁺ в цитозоле и ЭР инливидуальных клеток в различных условиях. Одна из типичных регистраций представлена на рис. 1. Поскольку в клетках НЕК-293 функционируют GPCR-рецепторы нуклеотидов Р2У-типа, сопряженные с фосфоинозитидным каскадом, кратковременная аппликация 2-5 мкМ АТР инициировала импульс Ca²⁺ в цитозоле клеток (рис. 1, *верхняя* кривая) и синхронное падение и восстановление уровня ретикулярного Ca²⁺ (рис. 1, нижняя кри*вая*). Такое согласованное поведение Ca^{2+} в цитоплазме и ЭР было вполне ожидаемо, поскольку многие агонисты GPCR-рецепторов, включая АТР, стимулируют выброс Ca²⁺, депонированного в ЭР [1].

Выброс депонированного Ca^{2+} приводит к истощению Ca^{2+} -депо, которое пополняется Ca^{2+} -АТР-азой SERCA (sarco-endoplasmic reticulum Ca^{2+} АТРазе), перекачивающей Ca^{2+} из цитоплазмы в ЭР, а также за счет входа наружного Ca^{2+} через SOC-каналы (store-operated channels), активируемые при опустошении Ca²⁺-депо [20, 21]. Сообразно с этой универсальной закономерностью, тапсигаргин (thapsigargin) (2 мкМ), эффективный игибитор ретикулярной Ca²⁺-ATP-азы [20], вызывал постепенное падение Ca²⁺ в ЭР (рис. 1, нижняя кривая) за счет утечки депонированного Ca²⁺, которая обеспечивается специализированными ионными каналами [22] и, возможно, фоновой активностью ІР₃-рецепторов. Опустошение Са²⁺-депо ожидаемо сопровождалось активацией SOC-каналов и увеличением входа наружного Ca²⁺, что приводило к росту концентрации Ca²⁺ в цитоплазме (рис. 1, *верхняя кривая*). Аппликация 2-АРВ (50 мкМ), блокирующего SOC-каналы, возвращала цитозольный Ca²⁺ практически к уровню покоя, очевидно, за счет активности Ca²⁺-насосов плазматической мембраны. Последующее удаление 2-АРВ приводило к деблокированию SOC-каналов, увеличению входа наружного Ca^{2+} и, соответственно, росту цитозольного Ca²⁺ (рис. 1, *верхняя кривая*). Следует отметить, что концентрация полуингибирования различных изоформ SERCA тапсигаргином лежит в области низких наномолярных концентраций [23]. Учитывая это обстоятельство, можно было ожидать, что тапсигаргин при внеклеточной концентрации 2 мкМ должен был полностью подавить активность ретикулярной Ca²⁺-ATP-азы.

Рис. 2. 2-АРВ стимулирует выброс депонированного Ca^{2+} в клетках НЕК-293. Верхняя панель – репрезентативная регистрация (44 клетки) цитоплазматического Ca^{2+} при стимуляции клетки АТР (2 мкМ) и 2-АРВ (50 мкМ) при 2 мМ Ca^{2+} в экстраклеточном растворе. Перед аппликацией иономицина наружный Ca^{2+} снижался до 250 нМ. Нижняя панель – одновременный мониторинг Ca^{2+} в ЭР.

Поэтому существенное уменьшение скорости падения депонированного Ca²⁺, инициированное 2-АРВ на фоне тапсигаргина (рис. 1, *нижняя кривая*), можно было объяснить тем, что это соединение блокировало Ca²⁺-каналы утечки и ингибировало фоновую активность IP₃-рецепторов.

Это предположение, однако, противоречило данным экспериментов, в которых анализировалось действие 2-АРВ (50 мкМ) на Ca²⁺-ответы клеток, инициированные АТР (2 мкМ). Оказалось, что клетки, в которых АТР индуцировал импульсы цитозольного Ca²⁺, обратимо теряли чувствительность к АТР в присутствии 2-АРВ (50 мкМ) (рис. 2, верхняя кривая). Этот эффект 2-APB обычно интерпретируется как свидетельство блокады IP₃-рецепторов. Между тем, мониторинг депонированного Ca²⁺ указывал на то, что 2-АРВ также вызывал обратимое падение депонированного Ca²⁺ (рис. 2, нижняя кривая). 2-АРВ опустошал Ca²⁺-депо на 25-30%, если принять за ноль уровень Ca²⁺, который достигался в ЭР по-сле аппликации Ca²⁺-ионофора иономицина (5 мкМ). Последний быстро проникал в клетку и опустошал ЭР, уровень Ca²⁺ в котором был существенно выше, чем в цитоплазме (рис. 2, нижняя кривая). Поэтому подавление клеточных ответов на АТР в присутствии 2-АРВ не могло быть связано со слишком низким уровнем депонированного Ca²⁺ и несомненно было обусловлено вызванным 2-АРВ блокированием IP₃-рецепторов. В то же время быстрое падение Ca^{2+} в ЭР (рис. 2, *ниж*-*няя кривая*) свидетельствовало о том, что 2-АРВ активировал утечку Ca^{2+} , что трудно согласовать с действием, оказываемым этим ингибитором на фоне тапсигаргина (рис. 1, *нижняя кривая*).

Уровень Ca²⁺ в ЭР определяется балансом между поступлением Ca²⁺, обеспечиваемым Ca²⁺ насосом SERCA, и выходом Ca²⁺ в цитозоль через различные Ca²⁺-проницаемые каналы, функционирующие в ЭР. Среди таковых IP₃- и рианодиновый рецепторы, которые обеспечивают быстрый выброс Ca²⁺ и генерацию Ca²⁺-сигналов [1, 3]. Другие Ca²⁺-проницаемые каналы выполняют функцию регулируемой Са²⁺-утечки [22]. Среди них следует отметить ретикулярные Ca²⁺-каналы с функциональным названием CLAC (Ca²⁺ loadactivated Ca^{2+} channel), которые формируются канальными субъединицами TMCO1 (transmembrane and coiled-coil domains 1). CLAC-каналы активируются за счет тетрамеризации субъединиц ТМСО1, которая иницируется при высокой концентрации Ca²⁺ в люмене ЭР. Это рассматривается как механизм, предотвращающий перегрузку Са²⁺-депо [24]. Если предположить, что 2-АРВ способен активировать CLAC-каналы, понижая аффинность ТМСО1 к свободному Ca²⁺ в люмене ЭР, то можно объяснить различие в эффектах 2-АРВ, наблюдавшееся нами в различных условиях (рис. 1 и 2). Действительно, при длительной аппликации тапсигаргина ЭР опустошался (рис. 1, *нижняя кривая*), и 2-АРВ был не способен стимулировать CLAC-каналы из-за низкой концентрации Ca²⁺ в люмене ЭР. В условиях, при которых уровень Ca²⁺ в ЭР был высок, 2-АРВ инициировал выброс ретикулярного Ca²⁺, повышая активность CLAC-каналов (рис. 2, *нижняя кривая*). Этот эффект 2-АРВ был обратим за счет восполнения Ca²⁺ в ЭР активной SERCA. Доказательство функциональности предполагаемого механизма требует отдельных экспериментов непосредственно с CLAC-каналами.

Работа поддержана Российским научным фондом (грант 18-14-00347).

СПИСОК ЛИТЕРАТУРЫ

- Berridge M.J. 2016. The inositol trisphosphate/calcium signaling pathway in health and disease. *Physiol. Rev.* 96, 1261–1296.
- 2. Mikoshiba K. 2015. Role of IP₃ receptor signaling in cell functions and diseases. *Adv. Biolog. Reg.* 57, 217–227.
- Berridge M.J., Bootman M.D., Roderick H.L. 2003. Calcium signalling: Dynamics, homeostasis and remodelling. *Nat. Rev. Mol. Cell Biol.* 4, 517–529.
- Zhang S., Fritz N., Ibarra C., Uhlen P. 2011. Inositol 1,4,5-trisphosphate receptor subtype-specific regulation of calcium oscillations. *Neurochem. Res.* 36, 1175– 1185.
- Iino M. 2010. Spatiotemporal dynamics of Ca²⁺ signaling and its physiological roles. *Proc. Japan Acad. Ser. B. Phys. Biol. Sci.* 86, 244–256
- Thomas N.L., Williams A.J. 2012. Pharmacology of ryanodine receptors and Ca²⁺-induced Ca²⁺ release. *Wiley Interdiscipl. Rev. Membr. Transp. Signal.* 1, 383–397.
- Kong H., Jones P.P. Koop A., Zhang L., Duff H.J., Chen W.S.R. 2008. Caffeine induces Ca²⁺ release by reducing the threshold for luminal Ca²⁺ activation of the ryanodine receptor. *Biochem J.* 414, 441–452.
- Ghosh T.K., Eis P.S., Mullaney J.M., Ebert C.L., Gill D.L. 1988. Competitive, reversible, and potent antagonism of inositol 1,4,5-trisphosphate-activated calcium release by heparin. J. Biol. Chem. 263, 11075– 11079.
- Gafni J., Munsch J.A., Lam T.H., Catlin M.C., Costa L.G., Molinski T.F., Pessah I.N. 1997. Xestospongins: Potent membrane permeable blockers of the inositol 1,4,5-trisphosphate receptor. *Neuron.* 19, 723– 733.
- Maruyama T., Kanaji T., Nakade S., Kanno T., Mikoshiba K. 1997. 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5)P3-induced Ca²⁺ release. *Jpn. J. Biochem.* 122, 498–505.
- Saleem H., Tovey S.C., Molinski T.F., Taylor C.W. 2014. Interactions of antagonists with subtypes of inositol 1,4,5-trisphosphate (IP₃) receptor. *Br. J. Pharm.* 171, 3298–3312.

- Solovyova N., Fernyhough P., Glazner G., Verkhratsky A. 2002. Xestospongin C empties the ER calcium store but does not inhibit InsP3-induced Ca²⁺ release in cultured dorsal root ganglia neurones. *Cell Calcium* **32**, 49–52.
- Ma H.-T., Venkatachalam K., Li H.-S., Montell C., Kurosaki T., Patterson R.L., Gill D.L. 2001. Assessment of the role of the inositol 1,4,5-trisphosphate receptor in the activation of transient receptor potential channels a and store-operated Ca²⁺ entry. *J. Biol. Chem.* 276, 18888–18896.
- 14. Gregory R.B., Rychkov G., Barritt G.J. 2001. Evidence that 2-aminoethoxydiphenyl borate is a novel inhibitor of store operated Ca²⁺ channels in liver cells, and acts through a mechanism which does not involve inositol trisphosphate receptors. *Biochem. J.* 354, 285–290.
- Xu S.-Z., Zeng F., Boulay G., Grimm C., Harteneck C., Beech D.J. 2005. Block of TRPC5 channels by 2-aminoethoxydiphenyl borate: A differential, extracellular and voltage-dependent effect. *Br. J. Pharm.* 145, 405– 414.
- Missiaen L., Callewaert G., De Smedt H., Parys J.B. 2001. 2-Aminoethoxydiphenyl borate affects the inositol 1,4,5-trisphosphate receptor, the intracellular Ca²⁺ pump and the non-specific leak from the non-mitochondrial Ca²⁺ stores in permeabilised A7r5 cells. *Cell Calcium.* 29, 111–116.
- Hu H.-Z., Gu Q., Wang C., Colton C.K., Tang J., Kinoshita-Kawada M., Lee L.Y., Wood J.D., Zhu M.X. 2004. 2-Aminoethoxydiphenyl borate is a common activator of TRPV1, TRPV2, and TRPV3. *J. Biol. Chem.* 279, 35741–35748.
- Kwon S.-K., Hirabayashi Y., Polleux F. 2016. Organelle-specific sensors for monitoring Ca²⁺ dynamics in neurons. *Front. Syn. Neurosci.* 8, 29.
- Suzuki J., Kanemaru K., Ishii K., Ohkura M., Okubo Y., Iino M. 2014. Imaging intraorganellar Ca²⁺ at subcellular resolution using CEPIA. *Nat. Commun.* 5, 4153.
- Tadini-Buoninsegni F., Smeazzetto S., Gualdani R., Moncelli M.R. 2018. Drug interactions with the Ca²⁺-ATPase from sarco(endo)plasmic reticulum (SERCA). *Front. Mol. Biosci.* 5, 36.
- Lopez J.J., Albarran L., Gómez L.J., Smani T., Salido G.M., Rosado J.A. 2016. Molecular modulators of store-operated calcium entry. *Biochim. Biophys. Acta*. 1863, 2037–2043.
- 22. Carreras-Sureda A., Pihán P., Hetz C. 2018. Calcium signaling at the endoplasmic reticulum: Fine-tuning stress responses. *Cell Calcium*. **70**, 24–31.
- Treiman M., Caspersen C., Christensen S.B. 1998. A tool coming of age: Thapsigargin as an inhibitor of sarcoendoplasmic reticulum Ca²⁺-ATPases. *Trends Pharm. Sci.* 19, 131–135.
- Wang Q.C., Zheng Q., Tan H., Zhang B., Li X., Yang Y., Yu J., Liu Y., Chai H., Wang X., Sun Z., Wang J.-Q., Zhu S., Wang F.i, Yang M., Guo C., Wang H., Zheng Q., Li Y., Chen Q., Zhou A., Tang T.-S. 2016. TMCO1 is an ER Ca²⁺ load-activated Ca²⁺ channel. *Cell.* 165, 1454–1466.

2-APB Stimulates Ca²⁺ Release in HEK-293 Cells

D. S. Ivashin¹, O. A. Rogachevskaja¹, M. F. Bystrova¹, and S. S. Kolesnikov^{1, *}

¹Institute of Cell Biophysics, Russian Academy of Sciences, Institutskaya ul. 3, Pushchino, Moscow oblast, 142290 Russia *e-mail: staskolesnikov@vahoo.com

By using the genetically encoded Ca^{2+} sensor G-CEPIA1er, Ca^{2+} indicator Fura-2, and Ca^{2+} imaging, we studied Ca^{2+} signals initiated by certain stimuli in the cytoplasm and endoplasmic reticulum (ER) of HEK-293 cells. It was shown that 2-APB, which has been documented to serve both as a blocker of SOC channels and an antagonist of IP₃-receptors, induced Ca^{2+} release from ER. In the presence of thapsigargin that inhibited reticular Ca^{2+} -ATPase SERCA and partly emptied Ca^{2+} stores, 2-APB was unable to stimulate Ca^{2+} release from ER. To explain these phenomena, it was hypothesized that 2-APB stimulated reticular Ca^{2+} channels CLAC, which were activated by high luminal Ca^{2+} and preserved ER from overloading with Ca^{2+} .

Keywords: intracellular Ca²⁺ signaling, genetically encoded Ca²⁺ sensor