= БИОФИЗИКА КЛЕТКИ =

УДК 577.355.3

МЕХАНИЗМ ИНГИБИРОВАНИЯ КИСЛОРОД-ВЫДЕЛЯЮЩЕГО КОМПЛЕКСА ФОТОСИСТЕМЫ II КАТИОНАМИ ЛАНТАНОИДОВ

© 2023 г. Е.Р. Ловягина*, #, А.В. Локтюшкин*, Н.С. Васильев*, Б.К. Сёмин*

*Биологический факультет Московского государственного университета имени М. В. Ломоносова, Ленинские горы, 1/12, Москва, 119234, Россия

> #E-mail: elena.lovyagina@gmail.com Поступила в редакцию 15.02.2023 г. После доработки 27.03.2023 г. Принята к публикации 03.05.2023 г.

Исследован процесс взаимодействия катионов ${\rm La}^{3+}$ и ${\rm Tb}^{3+}$ с ${\rm Ca}$ -связывающим участком кислород-выделяющего комплекса фотосистемы II без кальция. Катионы связываются необратимо и не могут быть удалены переосаждением препарата или замещением их катионом ${\rm Ca}^{2+}$. Эта способность лантаноидов прочно связываться с ${\rm Ca}$ -связывающим участком была использована для исследования возможности влияния связанного катиона ${\rm Ln}^{3+}$ на высокоаффинный ${\rm Mn}$ -связывающий участок кислород-выделяющего комплекса. С этой целью из кислород-выделяющего комплекса препарата фотосистемы II без кальция с блокированным катионами ${\rm La}^{3+}$ или ${\rm Tb}^{3+}$ ${\rm Ca}$ -связывающим участком гидрохиноном экстрагировали катионы марганца, после чего исследовали активность высокоаффинного ${\rm Mn}$ -связывающего участка, используя экзогенные доноры электронов (${\rm Mn}^{2+} + {\rm H}_2{\rm O}_2$) и 1,5-дифенилкарбазид. Было установлено, что связанный с ${\rm Ca}$ -связывающим участком катион лантаноида значительно ингибирует скорость окисления доноров электронов через высокоаффинный ${\rm Mn}$ -связывающий участок. Обсуждается механизм обнаруженного эффекта.

Ключевые слова: фотосистема II, кислород-выделяющий комплекс, высокоаффинный Мп-связывающий участок, кальций, лантаноиды.

DOI: 10.31857/S0006302923040038, **EDN:** KJDNJM

Каталитический центр комплекса, выделяющего молекулярный кислород в процессе окисления двух молекул воды (кислород-выделяющий комплекс, KBK) в оксигенных фотосинтетических организмах состоит из четырех катионов Mn и одного катиона Ca^{2+} , соединенных между собой пятью кислородными мостиками [1, 2]. Этот металлический кластер фиксирует четыре молекулы воды, две из которых связаны с катионом Mn4, а две другие — с катионом Ca^{2+} . Возможно, одна из молекул воды, связанных с катионом Ca^{2+} , является молекулой, участвующей в образовании молекулярного кислорода [3, 4], хотя роль Ca^{2+} в процессе окисления воды может быть и другой [5–7].

Сокращения: КВК — кислород-выделяющий комплекс, Φ CII — фотосистема II, Φ CII(-Ca) — фотосистема II без катиона кальция в кислород-выделяющем комплексе, \ln^{3+} — катион лантаноида, Xл — хлорофилл, PЦ — реакционный центр, $ДX\Phi$ ИФ — 2,6-дихлорофенолиндофенол, $Д\Phi$ К — 1,5-дифенилкарбазид, Φ CII(-Ca,+Ln) — фотосистема II без катиона кальция в кислород-выделяющем комплексе с блокированным катионом лантаноида Сасвязывающим участком.

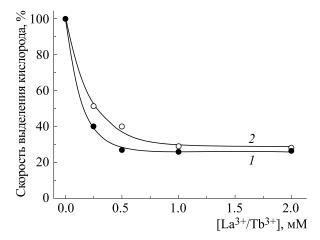
Катион Ca²⁺ может быть экстрагирован из КВК путем обработки мембран фотосистемы II (ФСІІ) средой с высокой ионной силой (1-2 M NaCl) [8] или цитратным буфером с низким рН [9], что сопровождается потерей способности ФСІІ к выделению молекулярного кислорода. Кислород-выделяющая активность препаратов Φ СІІ без катиона Ca²⁺ в KBK (Φ СІІ(-Ca)) может быть в значительной степени восстановлена добавлением экзогенного Ca^{2+} в концентрации 10-30 мМ (до ≈70%) [10]. С Са-связывающим участком КВК способны связываться и другие катионы металлов, однако восстановления кислородвыделяющей активности при этом не происходит [11]. Показано, что единственным ионом металла, который может функционально заместить Ca^{2+} , является Sr^{2+} [12]. Некоторые катионы металлов, включая лантаноиды [13, 14] и Cd^{2+} [15], конкурируют с Са²⁺ за взаимодействие с Са-связывающим участком. Лантаноиды (Ln³⁺) способны вытеснять катион Ca²⁺ из нативного КВК и связываться с освободившимся Са-связываю-

щим участком в мембранных препаратах ФСII [13], а также со свободным Са-связывающим участком в препаратах ФСІІ без кальция [14]. Связанные катионы Ln³⁺ не вытесняются катионом Ca^{2+} [13]. Несмотря на то, что лантаноиды эффективно конкурируют с катионами Ca²⁺ за Са-связывающие участки [16], они не способны восстановить процесс окисления воды марганцевым кластером. Это может быть связано с различиями в характеристиках катионов Ca²⁺ и Ln³⁺ (ионный радиус, рК связанной молекулы воды, валентность), но могут быть и другие причины. В этой связи важно отметить, что катионы Ln³⁺ способны эффективно связываться не только с Са-связывающим участком, но и с высокоаффинным Мп-связывающим участком в препаратах ФСІІ без марганца [17]. В данной работе мы исследовали возможные варианты механизма ингибирования лантаноидами КВК в препаратах ΦCII(-Ca).

МАТЕРИАЛЫ И МЕТОДЫ

Препараты ФСІІ. Фрагменты фотосинтетических мембран, обогащенные ФСІІ (ВВУ-тип), выделяли из листьев шпината Spinacia oleracea L. согласно методике, опубликованной в работе [18]. Скорость выделения кислорода полученными мембранными препаратами ФСІІ составляла 450—550 мкмоль O_2 мг $Xл^{-1}$ ч $^{-1}$. Концентрацию хлорофилла (Хл) определяли в 80%-м растворе ацетоне согласно методу, описанному в работе [19]. Препараты хранили при -80° С в буфере А следующего состава: 400 мМ сахарозы, 15 мМ Na-Cl, 50 мМ MES/NaOH (2-(*N*-морфолино) этансульфоновая кислота), рН 6.5. Перед обработкой или измерением препараты размораживали в темноте при 5°C в течение 1 ч, далее они находились при тех же условиях. Активность контрольных препаратов ФСII в течение времени проведения экспериментов сохранялась постоянной. Концентрация реакционных центров (РЦ) ФСІІ рассчитана в мкМ из соотношения 250 молекул Хл на один РЦ [20, 21].

Удаление Ca²⁺ из кислород-выделяющего комплекса мембранных препаратов ФСII. Мембраны ФСII обрабатывали буфером, содержащим 2 M NaCl, 0.4 M сахарозы и 25 мМ MES/NaOH, pH 6.5 [8], в течение 15 мин при комнатной температуре и освещении 4 мкЭ·м⁻²·с⁻¹. После инкубации мембраны осаждали и дважды отмывали буфером А. Полученные препараты ФСII(-Ca) помимо катионов кальция не содержали двух периферических белков PsbQ и PsbP, защищающих КВК от проникновения экзогенных веществ.


Удаление Мп из кислород-выделяющего комплекса мембранных препаратов ФСІІ(-Са). Мембраны ФСІІ(-Са) (50 мкг Хл/мл) инкубировали с гидрохиноном (600 мкМ) в буфере А (рН 6.5) в темноте при 5°С в течение 30 мин. Затем к суспензии мембран добавляли 25 мМ $\rm CaCl_2$ для удаления поверхностно связанных катионов $\rm Mn^{2+}$, после инкубации в течение 2 мин мембраны осаждали и дважды отмывали буфером А. После обработки гидрохиноном в KBK полученных препаратов сохранялось $\rm 1.0 \pm 0.1~Mn$ на один РЦ [23].

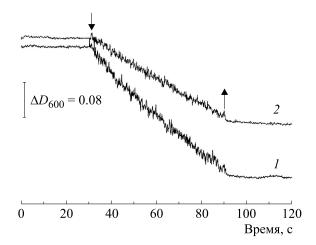
Измерение скорости выделения кислорода препаратами ФСII. Кинетику фотоиндуцированного выделения кислорода препаратами ФСII регистрировали амперометрически с помощью закрытого электрода Кларка в термостатируемой ячейке с интенсивным перемешиванием при 25°С. В качестве искусственного акцептора электронов использовали 2,6-дихлоро-*n*-бензохинон (Sigma-Aldrich, США) в концентрации 200 мкМ. Для калибровки величины диффузионного тока использовали значение концентрации кислорода в воде в равновесии с воздухом при 25°C, равное 253 мкМ. Источником возбуждающего света служили светодиоды XBDROY (Cree Inc., США) с максимумом при длине волны 450 нм, обеспечивающие насыщающую интенсивность света $(1800 \text{ MK} \Im \cdot \text{M}^{-2} \cdot \text{c}^{-1}).$

Спектральное определение фотохимической активности препаратов ФСІІ. Фотохимическую активность препаратов ФСII измеряли как скорость фотовосстановления экзогенного акцептоэлектронов 2,6-дихлорофенолиндофенола (ДХФИФ) на спектрофотометре Specord UV-VIS (Carl Zeiss Jena, Германия) в кюветах с длиной оптического пути 1 см. В качестве возбуждающего источника света использовали светодиоды XBDROY (Стее Іпс., США). Перед трубкой фотоумножителя спектрофотометра устанавливали оранжевый стеклянный фильтр ОС-14, пропускающий свет с $\lambda > 590$ нм, для отсечения возбуждающего света. Фотоиндуцированные изменения оптической плотности ДХФИФ регистрировали на длине волны 600 нм (максимум поглощения депротонированной формы ДХФИФ). Скорость восстановления ДХФИФ определяли, используя молярный коэффициент экстинкции $\varepsilon = 21.8 \text{ мM}^{-1}\text{см}^{-1}$ [22].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

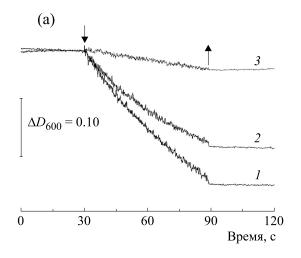
Са-связывающий участок КВК оксигенных организмов имеет два аминокислотных остатка D1-Asp170 и D1-Ala344, связывающих катион кальция с белком D1 реакционного центра ФСІІ и, одновременно, с катионами марганца Mn4 и Mn2 марганцевого кластера, т. е. карбоксильные группы аминокислотных остатков Asp170 и

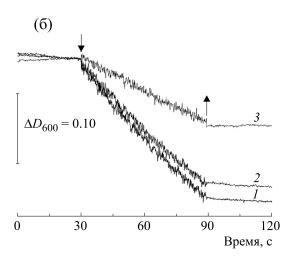
Рис. 1. Зависимость скорости выделения кислорода препаратами Φ CII(-Ca) от концентрации катионов $\text{La}^{3+}/\text{Tb}^{3+}$ во время преинкубации. Мембраны Φ CII(-Ca) (50 мкг Хл/мл) инкубировали в присутствии катионов La^{3+} (кривая \emph{I}) или Tb^{3+} (кривая $\emph{2}$) в течение 3 мин в темноте при комнатной температуре, после чего осаждали центрифугированием и ресуспендировали в буфере A (10 мкг Хл/мл). Скорость выделения кислорода измеряли в присутствии 10 мМ CaCl_2 .

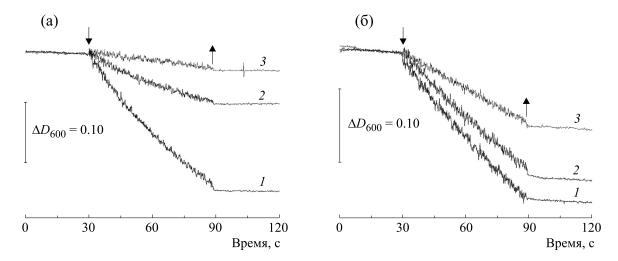

Ala344 являются бидентантными лигандами. Соединение катиона кальция с катионами марганца дополнительно осуществляется и через взаимодействие с кислородными мостиками О1, О2 и О5 [2]. С катионом Са²⁺ также связаны две молекулы воды – W3 и W4. Эти данные позволяют полагать, что связывание катиона лантаноида с Са-связывающим участком КВК может затрагивать в первую очередь катионы Мп4 и Мп2 марганцевого кластера через бидентантные лиганды. Один из этих катионов, Мп4, связан с высокоаффинным Мп-связывающим участком [1, 24, 25]. Функциональную активность этого участка довольно легко проверить. Если этот участок не занят катионом металла - Mn или Fe [26], то через него интенсивно фотоокисляются экзогенные катионы марганца донорной системы $[Mn^{2+} + H_2O_2]$ [27–29] тирозином Y_Z^* [30]. Учитывая изложенное выше, мы планировали проверить активность высокоаффинного Мп-связывающего участка в препаратах ФСІІ(-Ca) после замещения катиона Ca²⁺ катионом Ln³⁺ и последующей экстракции из этих препаратов катионов марганца.

В предварительном эксперименте мы исследовали возможность удаления связавшегося с Сасвязывающим участком катиона Ln³⁺ посредством центрифугирования суспензии мембран и их отмывки буфером А. Известно, что катионы кальция не могут вытеснять связанный катион лантаноида в мембранах ФСІІ [13] или ФСІІ (-Са) [14], что свидетельствует о прочном связывании

катионов ${\rm Ln}^{3+}$. Связанные с Са-связывающим участком в мембранах $\Phi{\rm CII}({\text -}{\rm Ca})$ катионы ${\rm La}^{3+}$ и ${\rm Tb}^{3+}$ также не удаляются процедурой переосаждения с последующей отмывкой (рис. 1). Это позволяет провести экстракцию марганца из препарата $\Phi{\rm CII}({\text -}{\rm Ca})$ с блокированным катионом лантаноида Са-связывающим участком без потери ${\rm Ln}^{3+}$.


Наиболее часто для удаления катионов марганца из КВК используется обработка щелочным Трис-буфером или раствором гидроксиламина, что позволяет практически полностью удалить марганец (остаточное содержание ≤0.5 Мп/РЦ [31]). В нашей работе мы использовали другой восстановитель для экстракции - гидрохинон. Гидрохинон восстанавливает только три катиона марганца из четырех, соответственно, в КВК остается один катион марганца [23]. Мы использовали этот восстановитель, чтобы определить, связан ли остающийся катион марганца с высокоаффинным Мп-связывающим участком. Следует отметить, что частичная экстракция катионов марганца из КВК (например двух катионов из четырех) сопровождается практически полной инактивацией выделения кислорода (остаточная активность около 10% [32]), но незначительным уменьшением скорости электронного транспорта (скорость восстановления ДХФИФ уменьшается лишь до 83% [23]), что свидетельствует о незначительном ингибировании реакции окисления воды. В случае экстракции марганца гидрохиноном остается только один Мп на РЦ, скорость выделения кислорода уменьшается до 8%, тогда как скорость восстановления ДХФИФ уменьшается лишь до 41% (рис. 2).


Далее мы исследовали влияние связанных с Са-связывающим участком катионов (рис. 3) и ${\rm Tb}^{3+}$ (рис. 4) на скорость восстановления ДХФИФ в частицах ФСІІ(-Ca) после обработки их гидрохиноном. В качестве источника электронов использовали донорную $[Mn^{2+} + H_2O_2]$ или 1,5-дифенилкарбазид (ДФК). На рис. 3 и 4 показаны кинетики восстановления ДХФИФ, а в таблице представлены величины измеренных скоростей. Кинетики восстановления ДХФИФ в препаратах ФСІІ(-Ca), обработанных гидрохиноном (остаточное содержание марганца – один Мп/РЦ), представлены кривыми 1 на рис. 3 и 4. При измерении кинетик 2 были использованы препараты, приготовленные следующим образом: мембраны ФСІІ(-Са) были проинкубированы 20 мин с 1 мМ La^{3+} (рис. 3) или Tb^{3+} (рис. 4), после чего мембраны были осаждены центрифугированием и отмыты буфером А (ФСІІ(-Ca,+Ln)). Затем марганец был экстрагирован из КВК гидрохиноном. В случае донорной


Рис. 2. Кинетики восстановления ДХФИФ мембранными препаратами ФСІІ(-Са). Кривая 1 — препараты ФСІІ(-Са); кривая 2 — препараты ФСІІ(-Са), обработанные гидрохиноном. Все кинетики измерены при концентрации Хл 10 мкг/мл и концентрации ДХФИФ 40 мкМ без искусственного донора электронов. Скорость восстановления ДХФИФ нативными препаратами ФСІІ составляла 145 \pm 5 мкмоль ДХФИФ мг Хл $^{-1}$ ·ч $^{-1}$ (100%), препаратами ФСІІ(-Са) $100 \pm$ 5 мкмоль ДХФИФ мг Хл $^{-1}$ ·ч $^{-1}$ (69%), препаратами ФСІІ(-Са), обработанными гидрохиноном, $59 \pm$ 7 мкмоль ДХФИФ мг Хл $^{-1}$ ·ч $^{-1}$ (41%).

пары [${\rm Mn}^{2+}$ + ${\rm H}_2{\rm O}_2$], донирующей электроны только через высокоаффинный Мп-связывающий участок, видно, что скорость восстановления ДХФИФ уменьшается до 76% при блокировании Са-участка катионом лантана (рис. 3а) и значительно больше уменьшается в случае катиона тербия (41%, рис. 4а). Этот факт ясно показывает, что связанные с Са-участком катионы La³⁺ и Тb³⁺ ингибируют высокоаффинный Мп-связывающий участок. В случае ДФК, другого донора электронов, ингибирование восстановления ДХФИФ выражено значительно слабее – остаточная активность ≈84% для обоих катионов (рис. 36 и 46). Это объясняется тем, что ДФК донирует электроны через два участка - высокоаффинный и низкоаффинный [33], что снижает долю потока электронов через высокоаффинный участок. Этот факт также свидетельствует о том, что в препаратах ФСІІ(-Ca), обработанных гидрохиноном, сохраняющийся катион марганца не связан с высокоаффинным участком. Полученные результаты демонстрируют, что связанные с Са-участком катионы лантаноидов ингибируют высокоаффинный Мп-связывающий участок, но не полностью. Это подтверждается тем, что добавление катионов La^{3+} или Tb^{3+} к препаратам $\Phi CII(-Ca,+Ln)$, обработанным гидрохиноном,

Рис. 3. Влияние La^{3+} на восстановление ДХФИФ в препаратах ФСІІ(-Ca), обработанных гидрохиноном: кривые I препараты ФСІІ(-Ca), обработанные гидрохиноном (условия обработки приведены в разделе «Материалы и методы»); кривые 2 — препараты ФСІІ(-Ca) (250 мкг Хл/мл) инкубировали с 1 мМ La^{3+} в течение 20 мин при комнатной температуре в темноте, затем центрифугировали в режиме $16100~g \times 5$ мин и ресуспендировали в буфере A, после чего обрабатывали гидрохиноном; кривые 3 — препараты ФСІІ(-Ca) (250 мкг Хл/мл) инкубировали с 1 мМ La^{3+} в течение 20 мин при комнатной температуре в темноте, затем центрифугировали в режиме $16100~g \times 5$ мин и ресуспендировали в буфере A, после чего обрабатывали гидрохиноном и измеряли скорость восстановления ДХФИФ в присутствии 1 мМ La^{3+} . Все кинетики были измерены при концентрации хлорофилла 10 мкг/мл и концентрации ДХФИФ 40 мкМ в присутствии донорной пары 10 мкМ 1,5-дифенилкарбазида 100. Стрелки показывают моменты включения и выключения света. Скорость восстановления ДХФИФ препаратами ФСІІ(-Ca), обработанными гидрохиноном, в присутствии донорной пары 100 мкм 101, в присутствии ДФК 101 мкмоль ДХФИФ мг 101 мг 102 скорости восстановления ДХФИФ нативными препаратами ФСІІ), в присутствии ДФК 103 мкмоль ДХФИФ мг 103 корости восстановления ДХФИФ нативными препаратами ФСІІ).

Рис. 4. Влияние Tb^{3+} на восстановление ДХФИФ в препаратах ФСІІ(-Ca), обработанных гидрохиноном: кривые 1- препараты ФСІІ(-Ca), обработанные гидрохиноном; кривые 2- препараты ФСІІ(-Ca) (250 мкг Хл/мл) инкубировали с 1 мМ Tb^{3+} в течение 20 мин при комнатной температуре в темноте, затем центрифугировали при 16100 g в течение 5 мин и ресуспендировали в буфере A, после чего обрабатывали гидрохиноном; кривые 3- препараты ФСІІ(-Ca) (250 мкг Хл/мл) инкубировали с 1 мМ Tb^{3+} в течение 20 мин при комнатной температуре в темноте, затем центрифугировали 16100 g х 5 мин и ресуспендировали в буфере A, после чего обрабатывали гидрохиноном и измеряли скорость восстановления ДХФИФ в присутствии $1 \text{ мМ } Tb^{3+}$. Все кинетики были измерены при концентрации хлорофилла 10 мкг/мл и концентрации ДХФИФ 40 мкM в присутствии донорной пары $[2 \text{ мкM } \text{Mn}^{2+} + 3 \text{ мM } \text{H}_2\text{O}_2]$ (а) или 200 мкM 1.5-дифенилкарбазида (б).

сопровождается дальнейшим ингибированием реакции окисления доноров электронов через высокоаффинный Mn-связывающий участок (кинетики 3 на рис. 3 и 4).

Следует отметить, что помимо отрицательно заряженных аминокислотных остатков в КВК ФСІІ, способных связывать катионы лантаноидов, мембраны тилакоидов содержит и другие неспецифические центры связывания, например, отрицательно заряженные липиды, такие как фосфатидилглицерол и сульфохиновозилдиацилглицерол. Эти липиды присутствуют и в мембранных препаратах ФСП, однако их содержание невелико (четыре молекулы/РЦ) [34]. Сульфохи-

Таблица 1. Влияние катионов La^{3+} and Tb^{3+} на скорость восстановления ДХФИФ в мембранах ФСІІ(-Ca) перед и после экстракции Mn из KBK гидрохиноном

Препарат	Скорость восстановления ДХФИФ, %	
	Донор [$Mn^{2+} + H_2O_2$], %	Донор ДФК, %
Φ CII(-Ca) \rightarrow + гидрохинон \rightarrow + донор	100a	1006
ФСІІ(-Са) + 1мМ La^{3+} → центрифугирование → + гидрохинон → + донор	76.5	83.8
ФСП(-Ca) + 1 мМ La^{3+} → центрифугирование → + гидрохинон → +1 мМ La^{3+} → + донор	12.8	45.3
ФСП(-Ca) + 1мМ Тb ³⁺ → центрифугирование → + гидрохинон \rightarrow + донор	41.0	83.3
ФСІІ(-Ca) + 1 мМ Тb ³⁺ → центрифугирование → + гидрохинон → +1 мМ Тb ³⁺ → + донор	9.9	43.2

Примечание. Экспериментальные условия приведены в подписях к рис. 3 и 4. Все данные являются средними арифметическими значений, полученных не менее чем в двух независимых экспериментах с тремя повторностями. Стандартное отклонение каждого находится в пределах $\pm 9\%$. Активность 100% соответствует скорости фотовосстановления ДХФИФ: $a-88\pm 7$ мкмоль ДХФИФ мг Хл $-1\cdot$ ч-1; $6-63\pm 6$ мкмоль ДХФИФ мг Хл $-1\cdot$ ч-1.

новозилдиацилглицерол (три молекулы/PЦ) расположен достаточно далеко от KBK [35], что делает маловероятным взаимодействие между этим липидом и KBK. Фосфатидилглицерол (одна молекула/PЦ), возможно, является необходимым компонентом в процессе переноса электронов на акцепторном участке $Q_A \rightarrow Q_B$ [35]. Однако исследования показали, что лантаноиды ингибируют перенос электронов не на акцепторном, а на донорном участке Φ CII [13, 14, 17].

Неспецифическое связывание трехвалентных катионов может оказывать влияние на поверхностный заряд мембран ФСІІ, потенциально приводить к их слипанию и, как следствие, затруднённой диффузии реагентов в более крупные частицы. В случае агрегации частиц ФСІІ должно увеличиваться светорассеяние препарата, но мы не наблюдали увеличения начальной оптической плотности препаратов ФСII в присутствии ионов лантаноидов. Это свидетельствует о том, что выраженная агрегация мембран ФСІІ в присутствии La^{3+} и Tb^{3+} отсутствует. С другой стороны, выявленные нами эффекты лантаноидов нельзя объяснить нейтрализацией отрицательных фиксированных зарядов на поверхности частиц с последующей их агрегацией, поскольку в предыдущей работе [17] мы наблюдали значительное (на два порядка величин) различие в константах ингибирования лантаноидами фотохимической активности препаратов ФСІІ с различными нарушениями в КВК.

ЗАКЛЮЧЕНИЕ

Таким образом, экстракция катионов марганца из KBK мембранных препаратов ФСІІ(-Ca), в которых Са-связывающий участок блокирован катионом лантаноида, демонстрирует ингибирование не только Са-связывающего участка, но и высокоаффинного Мп-связывающего участка. Предположительно, это может происходить следующим образом. При связывании катиона Ln³⁺ с Са-связывающим участком происходит вытеснение из координационной сферы высокоаффинного участка связывания Мп4 бидентантного лиганда D1-Asp170 и его перехват катионом Ln^{3+} . Это приводит к изменению высокоаффинного участка и снижению эффективности связывания им экзогенного катиона марганца. Можно предполагать, что процесс модификации координационной сферы высокоаффинного участка происходит не до экстракции катионов марганца, а после. Однако сильное влияние катиона La^{3+} на эффективность окисления воды препаратом $\Phi CII(-Ca)$ противоречит этому предположению: скорость восстановления ДХФИФ в препаратах ФСІІ(-Са) без искусственного донора электронов равна 100 мкмоль

ДХФИФ мг $Xл^{-1}$ ·ч⁻¹ (100%) (рис. 2), а в присутствии La^{3+} (1 мМ) она значительно снижается — до 45 мкмоль ДХФИФ мг $Xл^{-1}$ ·ч⁻¹ (45%).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СОБЛЮДЕНИЕ ЭТИЧЕСКИХ СТАНДАРТОВ

Настоящая работа не содержит описания каких-либо исследований с использованием людей и животных в качестве объектов.

СПИСОК ЛИТЕРАТУРЫ

- Y. Umena, K. Kawakami, J.-R. Shen, et al., Nature, 473, 55 (2011). DOI: 10.1038/nature09913
- M. Suga, F. Akita, K. Hirata, et al., Nature, 517, 99 (2015). DOI: 10.1038/nature13991
- 3. J. P. McEvoy and G. W. Brudvig, Chem. Rev., **106**(11), 4455 (2006). DOI: 10.1021/cr0204294
- 4. C. J. Kim and R. J. Debus, Biochemistry, **56**, 2558 (2017). DOI: 10.1021/acs.biochem.6b01278
- 5. E. Y. Tsui, R. Tran, J. Yano, et al., Nature Chem., 5, 293 (2013). DOI: 10.1038/nchem.1578
- M. Shamsipur and A. Pashabadi, Coord. Chem. Rev., 374, 153 (2018). DOI: 10.1016/j.ccr.2018.07.006
- 7. K. Saito, M. Nakagawa, M. Mandal, et al., Photosynth. Res., **148**, 153(2021). DOI: 10.1007/s11120-021-00846-y
- 8. T. Ono and Y. Inoue, Biochim. Biophys. Acta, **1020**, 269 (1990). DOI: 10.1016/0005-2728(90)90157-Y
- 9. T. Ono and Y. Inoue, FEBS Lett., **227**, 147 (1988). DOI: 10.1016/0014-5793(88)80886-X
- 10. T. Ono and Y. Inoue, Biochim. Biophys. Acta, **850**, 380 (1986). DOI: 10.1016/0005-2728(86)90194-5
- 11. J. S. Vrettos, D. A. Stone, and G. W. Brudvig, Biochemistry, **40**, 7937 (2001). DOI: 10.1021/bi010679z
- 12. D. F. Ghanotakis, G. T. Babcock, and C. F. Yocum, FEBS Lett., **167**, 127 (1984a). DOI: 10.1016/0014-5793(84)80846-7
- 13. D. F. Ghanotakis, G. T. Babcock, and C. F. Yocum, Biochim. Biophys. Acta, **809**, 173 (1985). DOI: 10.1016/0005-2728(85)90060-X
- 14. T. Ono, J. Inorg. Biochem., **82**, 85 (2000). DOI: 10.1016/S0162-0134(00)00144-6
- 15. C. M. Waggoner and C. F. Yocum, in: *Current Research in Photosynthesis*, Ed. by M. Baltscheffsky (Springer, Dordrecht, *Netherlands*, 1990), pp. 733–736. DOI: 10.1007/978-94-009-0511-5 167
- 16. M. Epstein, J. Reuben, and A. Levitzki, Biochemistry, 16, 2449 (1977).
- E. R. Lovyagina, A. V. Loktyushkin, and B. K. Semin,
 J. Biol. Inorg. Chem., 26, 1 (2021). DOI: 10.1007/s00775-020-01832-w
- 18. D. F. Ghanotakis and G. T. Babcock, FEBS Lett., **153**, 231 (1983). DOI: 10.1016/0014-5793(83)80154-9

- R. J. Porra, W. A. Tompson, and P. E. Kriedemann, Biochim. Biophys. Acta, 975, 384 (1989). DOI: 10.1016/S0005-2728(89)80347-0
- D. F. Ghanotakis, G. T. Babcock, and C. F. Yocum, Biochim. Biophys. Acta, 765, 388 (19846). DOI: 10.1016/0005-2728(84)90180-4
- 21. Q. Xu and T. M. Bricker, J. Biol. Chem., 267, 25816 (1992). DOI: 10.1016/S0021-9258(18)35683-7
- 22. J. M. Armstrong, Biochim. Biophys. Acta, **86**, 194 (1964). DOI: 10.1016/0304-4165(64)90180-1
- B. K. Semin, L. N. Davletshina, and A. B. Rubin, Photosynth. Res., 125, 95 (2015). DOI: 10.1007/s11120-015-0155-4
- 24. P. J. Nixon and B. A. Diner, Biochemistry, **31**, 942 (1992). DOI: 10.1021/bi00118a041
- K. A. Campbell, D. A. Force, P. J. Nixon, et al., J. Am. Chem. Soc., 122, 3754 (2000). DOI: 10.1021/ja000142t
- B. K. Semin, M. L. Ghirardi, and M. Seibert, Biochemistry, 41, 5854 (2002). DOI: 10.1021/bi0200054
- 27. H. Inoue and T. Wada, Plant Cell Physiol., **28**, 767 (1987). DOI: 10.1093/oxfordjournals.pcp.a077357

- 28. A. Boussac, M. Picaud, and A.-L. Etienne, Photobiochem. Photobiophys., **10**, 201 (1986).
- 29. B. K. Semin, L. N. Davletshina, A. Yu. Aleksandrov, et al., Biochemistry (Moscow), **69**, 410 (2004). DOI: 10.1023/B:BIRY.0000022066.38297.8a
- C. W. Hoganson, D. F. Ghanotakis, G. T. Babcock, et al., Photosynth. Res., 22, 285 (1989). DOI: 10.1007/BF000 48306
- 31. A.-F. Miller and G. W. Brudvig, Biochemistry, **29**, 1385 (1990). doi:10.1021/bi00458a007
- 32. B. K. Semin, L. N. Davletshina, M. Seibert, et al., J. Photochem. Photobiol. B: Biology, **178**, 192 (2018). DOI: 10.1016/j.jphotobiol.2017.11.016
- 33. V. N. Kurashov, E. R. Lovyagina, D. Yu. Shkolnikov, et al., Biochim. Biophys. Acta, **1787**, 1492 (2009). DOI: 10.1016/j.bbabio.2009.07.002
- B. Loll, J. Kern, W. Saenger, et al., Biochim. Biophys. Acta, 1767, 509 (2007). DOI: 10.1016/j.bbabio.2006.12.009
- 35. N. Mizusawa and H. Wada, Biochim. Biophys. Acta, **1817**, 194 (2012). DOI: 10.1016/j.bbabio.2011.04.008

Mechanism of Inhibition of the Oxygen-Evolving Complex of Photosystem II by Lanthanide Cations

E.R. Lovyagina, A.V. Loktyushkin, N.S. Vasiliev, and B.K. Semin

Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow, 119234 Russia

The process of the interaction of ${\rm La}^{3+}$ and ${\rm Tb}^{3+}$ cations with the Ca-binding site of the oxygen-evolving complex of photosystem II samples depleted of calcium has been studied. The binding of cations to the Ca-binding site is irreversible and the bound cations cannot be washed out or replaced by ${\rm Ca}^{2+}$ cation. A feature of lanthanides to bind strongly to the Ca-binding site has been used to investigate if the bound ${\rm Ln}^{3+}$ cation has an effect on the high-affinity Mn-binding site of the oxygen-evolving complex. Therefore, in this work, hydroquinone was used for the extraction of manganese cations from the oxygen-evolving complex of the calcium-depleted photosystem II membranes with the Ca-binding site blocked by ${\rm La}^{3+}$ or ${\rm Tb}^{3+}$ and the activity of the high-affinity site was then examined using exogenous electron donors (${\rm Mn}^{2+} + {\rm H}_2{\rm O}_2$) and 1,5-diphenylcarbazide. It was found that lanthanide cation bound to the Ca-binding site can significantly inhibit the oxidation rates of electron donors through the high-affinity Mn-binding site. The mechanism of the observed effect is discussed.

Keywords: photosystem II, oxygen-evolving complex, high-affinity Mn-binding site, calcium, lanthanides