— БИОФИЗИКА КЛЕТКИ —

УДК 577.322.9

СЕЛЕНИТ НАТРИЯ КАК ВОЗМОЖНЫЙ АДЪЮВАНТ В ТЕРАПИИ COVID-19

© 2022 г. Т.М. Гусейнов*, #, Р.Т. Гулиева*, С. Н. Джафарова*, Н.Х. Джафар**

*Институт биофизики НАН Азербайджана, ул. Захида Халилова, 117, Баку, AZ1143, Азербайджан #E-mail: tokus@mail.ru

**Клиника «MediClub», ул. Узеира Гаджибейли, 119, Баку, AZ1010, Азербайджан Поступила в редакцию 23.05.2022 г. После доработки 19.07.2022 г. Принята к публикации 20.07.2022 г.

Показана роль селена при развитии РНК вирусных инфекций, в частности Covid-19. Многие РНК-вирусы являются селензависимыми из-за «антисмысловых» взаимодействий между вирусный РНК и участком мРНК клеток хозяина, содержащим последовательность селенцистеина, которые приводят к развитию селендефицитного состояния, окислительного стресса, нарушению иммунного ответа и т.д. К преимуществам лицензионного препарата селена — селенита натрия, широко применяемого в медицине, ветеринарии и сельском хозяйстве, относятся: быстрота проникновения через мембраны клеток во все ткани организма; активное участие в метаболических процессах, сопровождающихся окислением клеточных серосодержащих белков; антиагрегационный эффект за счет снижения активности тромбоксана; прерывание контакта вириона (SARS-CoV-1, SARS-CoV-2) с мембраной здоровой клетки; подавление активности NF-кВ-фактора, которая существенно возрастает при ковидных инфекциях. Приведены аргументы в пользу использования селенита натрия в качестве адъюванта в терапии Covid-19.

Ключевые слова: РНК-вирусы, COVID-19, окислительный стресс, селенит натрия, глутатионпероксидаза, тиоредоксинредуктаза.

DOI: 10.31857/S000630292205012X, **EDN:** JJITPM

Селен является эссенциальным, абсолютно незаменимым элементом для жизнедеятельности многих организмов (от вирусов до млекопитающих), и что важно, человека. Несмотря на то, что его валовое содержание в организме человека массой 70 кг составляет всего 14—15 мг, он принимает непосредственное участие во многих жизненно важных регуляторных процессах [1-3]. Его распространение в земной коре незначительно, так называемый кларк составляет всего 10^{-5} %, и, при этом он распределен очень неравномерно. Принято считать почвы с содержанием менее $10^{-5}\%$ селена — бедными, а более $10^{-5}\%$ — богатыми [4]. Исходя из этого, содержание селена в продуктах зависит от его региональной обеспеченности и, следовательно, обеспеченность селена (статус селена) в организме человека может сильно меняться даже в пределах одной страны. При этом установлено, что различные организмы неравномерно поглощают селен. Некоторые растения, относящиеся к злаковым и астрагалам, могут служить индикаторами обеспеченности почвы селеном. Несмотря на то, что содержание селена в океане очень низкое, отдельные виды морских организмов, в частности, различные водоросли (например, спирулина) обладают способностью аккумулировать его в своих тканях [4]. Кроме видовых особенностей существует еще органная специфичность. В печени, почках, сетчатке, щитовидной железе, надпочечниках, семенниках, клетках крови (лимфоциты, тромбоциты, эритроциты), нервных клетках содержание селена высокое, что говорит о его важности в их функционировании [2, 5]. С 70-х годов XX века во многих странах мира началось интенсивное изучение обеспеченности населения селеном [4, 6]. Наблюдаемое заметное снижение селенового статуса связано с определенным ухудшением экологических условий в связи с ростом техногенной деятельности человека. В частности, интенсивное развитие энергетики (зольные остатки сжигаемых углеводородов), промышленности, средств связи, транспорта, приводящее к значительным выбросам газовых ангидридов, обуславливает закисление почв. Загрязнение тяжелыми элементами, которые образуют нерастворимые комплексы

с селеном, в конечном счете становится причиной того, что уменьшаются подвижные формы селена, то есть того селена, который поглощается растениями и через них попадает в организм человека [2, 4].

Во многих регионах мира, включая развитые страны и большую часть Азии, Австралии, Африки, а также многие страны СНГ (Россия, Украина, Беларусь и др.) и Балтии, которые страдают от дефицита селена, приняты или рассматриваются государственные программы по обеспечению нормализации селенового статуса на законодательном уровне [7, 8]. В Азербайджане статус селена близок к дефициту и это представляет определенную опасность для здоровья населения [6].

Селен входит в состав более 25 важных белков [9], выполняющих значительные регуляторные функции — это регуляция обмена йода в организме [2], защита гемоглобина от окисления [4], обеспечение нормальной репродуктивной функции [2], функций сердечно-сосудистой системы [2], углеводного обмена [2, 10], поражение нервной системы, в том числе когнитивных функций [2], регуляция иммунитета [2, 11], участие в торможении роста ряда злокачественных опухолей [2, 12], интоксикация от последствий отравления тяжелыми металлами [2], а также в регуляции свертываемости крови (ингибирование тромбоксана) [9].

Особенно важно то, что большая часть селенбелков обладает уникальными антиокислительными функциями. Еще в 1970-е годы было установлено, что в селендефицитных районах высока смертность от рака [2, 12], а в 1980-е годы выявлена высокая смертность от кардиомиопатии (болезни Кешана), которая в разы превышает норму [3]. В последние 20 лет изучение таких вирусных заболеваний, как ВИЧ-инфекции [13, 14], лихорадки Эбола [13], вируса Коксаки [3, 9], Хантавируса [15], вируса Зика [15], различных видов гриппа (птичий грипп и др.) [16, 17] выявило, что в селендефицитных районах летальность от этих заболеваний существенно выше, чем в районах, достаточно обеспеченных селеном. Было предположено, что в геноме этих вирусов содержатся коды селенсодержащих белков - глутатионпероксидазы, главного антиоксидантного фермента [14, 18-20]; Se-транспортного SeP-белка [14] (включает в себя 10 и более атомов селена [15]); тиоредоксинредуктазы [14]. Что важно отметить, тиоредоксинредуктаза обладает окислительновосстановленными функциями, предохраняющими клетки организма от ДНК-повреждений в ходе вирусной атаки, приводящей к окислительной модификации [13, 14]. Однако позднее авторы работ [21, 22] на примере ВИЧ-1 и вируса Эбола установили, что при развитии этих заболеваний происходят «антисмысловые взаимодействия» между РНК вируса и мРНК клеток хозяина, в ходе которых происходит избирательный захват участка последовательности шипа — вставки аминокислоты селенцистеин (элемент SECİS) с образованием комплементарной двухнитевидной спиральной структуры, обеспечивающей экспрессию уже «вирусных» селенопротеинов, в итоге за счет ресурсов селена клеток хозяина приводящих к его дефициту. А это при вирусных инфекциях отражается на качестве иммунитета, который в подобных условиях страдает от окислительного стресса [15, 23].

ПРОТИВОВИРУСНЫЕ СВОЙСТВА СЕЛЕНА И ПРЕДПОСЫЛКИ ИСПОЛЬЗОВАНИЯ СЕЛЕНИТА НАТРИЯ КАК АДЪЮВАНТА В ЛЕЧЕНИИ COVID-19

Механизм противовирусного действия селена носит многосторонний характер, охватывает ряд стадии развития вирусный инфекции, начиная от вторжения вириона в здоровые клетки и кончая борьбой с ее последствиями. Ниже приводится краткий перечень полезных свойств селена, на примере селенита натрия (основного неорганического соединения селена, применяемого в биологии и медицине) при лечении вирусных инфекций на примере ВИЧ и лихорадки Эбола [13, 18].

Прерывание контакта шипов вируса с мембранами здоровых клеток. Селенит натрия может выступать в роли прерывателя контакта вирионов (SARS-CoV-1, SARS-CoV-2) с мембранным аппаратом здоровых клеток (хозяина). В частности, сам вирион SARS-CoV-2 состоит из гидрофобной оболочки, на внешней части которой расположены белковые выступы-шипы, а во внутренней части находится собственно носитель его генома мРНК. Белки этих шипов взаимодействуют с мембранным аппаратом клеток «хозяина», т.е. организма, подвергаемого атаке вируса, в основном, посредством мембранного интегрального белка клеток — ангиотензинного фермента АСЕ2 (angiotensin converting enzyme 2) и с последующим нарушением целостности мембран, способствуя проникновению генетического материала вируса в здоровые клетки. В дальнейшем эта мРНК встраивается в геном клетки хозяина, модифицирует его, после чего происходит размножение вируса за счет ресурсов клетки хозяина [24, 25]. Значит, прерывание контакта шипов вируса с мембранами здоровых клеток за счет изменения структуры каких-либо белков шипа является превентивной мерой для пресечения развития инфекции [26]. Эта гипотеза подробно представлена в работе [27].

Пассивный транспорт и участие в активном внутриклеточном метаболизме селена. Селенит натрия, являясь малоразмерной и неполярной молекулой, легко проходит через мембраны клеток путем пассивного транспорта, обладает активным внутриклеточным метаболизмом селена, который сопровождается окислением внутриклеточных серосодержащих белков с одновременным восстановлением селенита (+4) до селенида (-2). Учитывая то, что селен и сера по химическим свойствам достаточно схожи, можно предположить, что селен при поступлении в организм как химически более активный элемент будет замещать серу в серосодержащем цистеине (2-амино-3-меркаптопропановой кислоте) или, при взаимодействии с SH-группами белков, отнимать от тиолов атом водорода и тем самым окислять их, образуя связи типа R-S-S-R и R-S-Se-S-R[28, 29]. В случае вирусной инфекции селенит натрия также будет взаимодействовать и с вирусными серосодержащими белками, в том числе и с находящейся в шипах COVID-19 дисульфидизомеразой (PDI), дезактивируя ее как фермент по

$$PDI-(SH)_2 + Se^{4+} \rightarrow PDI-S-S-PDI + Se^{2+}$$
.

Это означает, что селенит натрия может способствовать срыву контактного проникновения вируса в здоровые клетки [26, 27].

Как указывалось, выше, в результате геномных антисмысловых взаимодействий возникает дефицит селена, приводящий к уменьшению ресурсов селенэнзимов, в первую очередь тиреодоксинредуктазы, поставщика протонов для нужд ДНК синтеза здоровых клеток [30]. В результате появляется повышенный расход организмом селена, необходимого для синтеза селенпротеинов, как для собственных, так и для «вирусных». Вследствие этого возникает селендефицитное состояние, приводящее к образованию активных форм кислорода [14, 31], ослаблению иммунитета на фоне окислительного стресса и снижению антиокислительной защиты организма [10]. Селенит натрия является удачной в этом отношении формой селена, способствующей быстрому проникновению его в клеточные структуры и преодолению гематоэнцефалического барьера [10, 28]. Это свойство позволяет организму использовать селен из селенита натрия для поддержания жизненно важного уровня селенпротеинов, защищая его от окислительного стресса [2].

Ингибирование опухолевого роста. На модельных опытах с применением опухолевых клеток было установлено, что селенит натрия специфически подавляет РНК- и ДНК-полимеразные реакции в результате образования стабильного сополимерного продукта селена с молекулами

полимеразных энзимов через селенотрисульфидную ковалентную связь. Таким образом, селен может ингибировать опухолевый рост, что указывает на определенную возможность торможения и вирусного размножения в клетках хозяина (учитывая, что существует и вирусная версия развития рака) [32]. Это было продемонстрировано и для вируса гриппа A [17].

Ингибирование активации ядерного фактора NF-кВ. Исходя из известной схожести между SARS-CoV-1 и SARS-CoV-2, можно сделать определенные предположения о действии селена в отношении репликационных и транскрипционных процессов при инфекции COVID-19. Так, для SARS-CoV-1 была установлена существенная активация ядерного фактора NF-кB, играющего ключевую роль в регулировании иммунного ответа [33–35]. Фактор NF-кВ принимает активное участие в транскрипции геномного материала вируса, которая сопровождается токсичными воспалительными процессами [36]. Имеется много сведений о том, что селен ингибирует эту активацию, тогда как дефицит селена вызывает активацию NF-кВ [9]. О важности ингибирования этого фактора свидетельствует и тот факт, что он является ключевым звеном в транскрипционных процессах при ВИЧ-инфекции [9] (как уже отмечалось, геном вируса иммунодефицита имеет много схожих свойств с геномом COVID-19.

Регуляция иммунного ответа. Активация NF-кВ фактора сопровождается развитием антивоспалительных процессов [37], а это означает усиленную секрецию множества цитокинов. Неконтролируемое производство цитокиновых факторов, содержащих интерлейкины IL-6, IL-8, IL-10, IL-1β и фактор некроза опухоли-альфа совместно с активными формами кислорода и азота стимулируют синдром острого респираторного дисбаланса (Acute Respiratory Distress Syndrome -ARDS) [38–41]. Все это приводит к развитию наиболее опасных последствий COVID-19, таких как массированная атака интерлейкинов, в том числе IL-2 и IL-6 (цитокиновый шторм), на инфицированный организм [39, 42] и нарушение иммунного ответа в целом. В этом контексте селен давно известен, как регулятор иммунного ответа на всех уровнях: неспецифическом, гуморальном и клеточном, в то же время ограничивающим деятельность Т-хелперов [1, 43, 44].

Антиагрегационный эффект. Как уже отмечалось, опасными последствиями развития COVID-19 являются не только респираторные патологии, но и в равной мере сосудистые, связанные с генерацией сверхсвертываемости крови [36, 37, 42] и образованием тромбоцитопении [45]. В основе этих процессов лежит образование тромбоксана A2, ведущего агрегацию тромбоци-

тов, что является причиной свертывания крови в сосудах, начиная с самых мелких альвеолярных и до крупных легочных артерий (эффект «матового стекла») не только в легких, но и в других органах, богатых сосудами (сердце, почки, сетчатка, надпочечники и др.) [30, 46]. Селенит натрия, ингибируя формирование тромбоксана, обладает антиагрегационным эффектом [9].

ЗАКЛЮЧЕНИЕ

В течение 2020-2022 гг. в ходе распространения COVID-19 по всему миру появилось много обзорных и оригинальных работ, посвященных связи обеспеченности организма человека и животных эссенцианальными минералами и различными витаминами с развитием патогенеза и успешным лечением COVID-19 [5, 21, 34, 38, 47— 51]. Среди этих необходимых нутриентов важное место занимает селен, статус которого заметно влияет на течение этой вирусной инфекции [22, 49-52] и др. Кроме того, в этих работах приведены гипотетические механизмы регулирования иммунного ответа селеном и его соединениями [22, 38, 44, 53–55]. В них большое место отводится влиянию селена на активность фактора NF-кВ и на сопряженную с ним экспрессию антивоспалительных цитокинов (цитокиновый шторм) [33, 35]. Во многих модельных опытах были использован селенит натрия, который показал высокую метаболическую активность в различных регуляторных процессах, и именно это является причиной его широкого использования. Следует подчеркнуть, что в последнее время появились довольно обширные обзоры, посвященные роли селена и ряда других микроэлементов (цинк, железо, медь и другие), которые всесторонне освещают эту проблему (например, обзорные работы [8, 26, 56]).

Подведя итоги проведенного краткого обзора об участии селена в развитии вирусных инфекций, в особенности SARS-CoV-2, можно сделать определенные выводы:

- 1. Восприимчивость к инфекции SARS-CoV-2 и ее последствиям, а также тяжесть протекания заболевания зависят от обеспеченности организма селеном.
- 2. Селенит натрия, обладая активным окислительным метаболизмом, участвует в регуляции вирусного размножения и в репарации поврежденных клеток.
- 3. Селенит натрия как сертифицированный препарат применяется в лечебной практике в составе селенсодержащих препаратов или селенсо-

держащих БАДов. Он имеет ряд неоспоримых преимуществ по сравнению другими препаратами селена (

L-селенметионином и L-селенцистеином и др.). Так как синтез селенсодержащих белков происходит по специфическому SECIS-механизму, который не предполагает использование селенсодержащих аминокислот в готовом виде, эти аминокислоты проходят длинный путь разложения (изъятия селена из молекул аминокислот) до селенида, то есть происходит синтез *de novo*. Для селенита натрия характерна быстрота доставки селена в поврежденные клетки, и эта быстрота оказываемых репарационных эффектов придает ему определенные преимущества.

Учитывая высокую контагиозность SARS-CoV-2 и высокую степень риска заражения медперсонала, соприкасающегося с пациентами с COVID-19 и особенно врачей «неотложной помощи», представляется важным рекомендовать в качестве превентивных мер по усилению их иммунитета насыщение организма селеном, цинком и другими усиливающими иммунитет средствами.

Перечисленные выше соображения говорят о целесообразности использования селенита натрия в качестве адъювантного средства при лечении короновирусного инфекционного заболевания, особенно на ранних этапах его развития.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов

СОБЛЮДЕНИЕ ЭТИЧЕСКИХ НОРМ

Данная работа не содержит описания какихлибо исследований с участием людей или животных в качестве объектов.

СПИСОК ЛИТЕРАТУРЫ

- 1. J. R. Arthur, R. C. McKenzie, and G. J. Beckett, J. Nutrition, **133** (5), 1457S (2003).
- 2. M. P. Rayman, Lancet, **379** (9822), 1256 (2012).
- 3. J. K. Wrobel, R. Power, and M. Toborek, IUBMB Life, **68** (2), 97 (2015).
- 4. В. В. Ермаков и В. В. Ковальский, Биологическое значение селена (Наука, М., 1974).
- 5. F. Zhou, T. Yu, R. Du, et al., Lancet, 395, 1054 (2020).
- 6. Э. М. Зейналлы, Р. Т. Гулиева и Ф. Р. Яхъяева, в сб. Материалы науч.-практич. конфер. посвящ. 80-летию проф. Э.И. Ибрагимова (Центр онкологии МЗ Азербайджана, Баку, Азербайджан, 2010), сс. 65— 66.

- 7. Н. А. Голубкина, А. В. Синдирева и В. Ф. Зайцев, Юг России: экология, развитие, **12** (1), 107 (2017).
- 8. Л. Н. Йованович и В. В. Ермаков, в сб. *Материалы международного биогеохимического симпозиума* (Тирасполь, 2020), сс. 71—83.
- S. Tomo, G. Saikiran, M. Banerjee, and S. Paul, EXC-LI J. 20, 781 (2021).
- 10. K. T. Suzuki, J. Health Sci., **51** (2), 107 (2005).
- 11. F. Qian, S. Misra, and K. S. Prabhu, Crit. Rev. Biochem. Mol. Biol., **54** (6), 484 (2019).
- 12. M. Kieliszek, B. Lipinski, and S. Blazejak, Cells, **6** (4), 39 (2017).
- 13. B. Lipinski, Br. J. Med. & Med. Res., 6, 319 (2015).
- 14. E. W. Taylor, J. A. Ruzicka, L. Premadasa, and L. Zhao, Biochemistry. Curr. Top Med. Chem., **16** (3), 1530 (2016).
- O. M. Guillin, C. Vindry, T. Ohlmann, and L. Chavatte, Nutrients, 11 (9), 2101 (2019).
- 16. G. Gong, Y. Li, K. He, et al., RSC Adv., **10** (13), 8002 (2020).
- 17. Z. A. Lazimova, I. I. Abdullaev, F. I. Abdullaev, and T.B. Asadullaev, Voprosi virusologii, **31** (2), 236 (1986).
- 18. Т. М. Гусейнов и Н. С. Сафаров, Биомедицина, № 2, 3 (2007).
- 19. E.W. Taylor, J.A. Ruzicka, and L. Premadasa, ResearchGate (2015). Available online at: http://rgdoi.net/10.13140/RG.2.2.10237.51683.
- 20. E. W. Taylor, Natural Health, News, June 18 (2020).
- 21. R. A. Heller, Q. Sun, J. Hackler, et al., Redox Biol., 38, 101764 (2021).
- 22. M. Majeed, K. Nagabhushanam, S. Gowda, and L. Mundkur, Nutrition, **82**, 111053 (2021).
- L. Delgado-Roche and F. Mesta, Arch. Med. Res., 51 (5), 384 (2020).
- 24. R. Lu, X Zhao., J. Li, et al., Lancet, **395** (10224), 565 (2020).
- 25. A. Mittal, K. Manjunath, R. K. Ranjan, et al., PLoS Pathog, **16** (8), 1008762 (2020).
- 26. V. V. Ermakov and L. N. Jovanović, Geochem. Int. **60**, 137 (2022).
- M. Kieliszek and B. Lipinski, Med. Hypotheses, 143, 1 (2020).
- 28. С. Я. Гусейнова, Биомедицина, 17 (3), (2019).
- 29. M. Hongoh, M. Haratake, N. Fachigame, et al., Roy. Soc. Chem., **41** (24), 7340 (2012).
- 30. S. Miller, S. W. Walker, J. R. Arthur, et al., Clin. Sci. Lond. Engl., **100** (5), 543 (2001).
- 31. L. Hiffler and B. Rakotoambinina, Front. Nutr., 7, 164 (2020).
- 32. J. L. Larabee, J. R. Hocker, R. J. Hanas, et al., Biochem. Pharmacol., **64** (12), 1757 (2002).

- 33. C. A. Lutomski, T. J. El-Baba, J. R. Bolla, and C. V. Robinson, bioRxiv, 2020. DOİ: 10.1101/2020.10.06.328112 (2020).
- 34. A. Gorji and M. G. Khaleghi, Nutrition, **82**, 111047 (2021).
- 35. W. Zeng, et al., Biochem. Biophys. Res. Commun., **527**, 618 (2020).
- 36. M. L. De Diego, J. L. Nieto-Torres, J. A. Regla-Nava, et al., J. Virol., **88** (2), 913 (2014).
- Z. Varga, A. J. Flammer, P. Steiger, et al., Lancet, 395 (10234), 1417 (2020).
- 38. X. Jing, G. Liangqin, L. Huiqing, and Ch. Shao-dong, Nutrition, **82**, 111049 (2021).
- 39. S. S. Martinez, Y. Huang, L. Acuna, et al., Int. J. Mol. Sci., **23** (1), 280 (2021).
- 40. S. H. Tian, W. Hu, L. Niu, et al., Preprints (2020).
- 41. D. Wang, B. Hu, C. Hu, et al., China, JAMA (2020).
- 42. R. Jayawardena, P. Sooriyaarachchi, M. Chourdakis, et al., Clin. Res. Rev., **14** (4), 367 (2020).
- 43. M. Fakhrolmobasheri, Z. Nasr-Esfahany, H. Khanahmad, and M. Zeinalian, Int. J. Vitam. Nutr. Res., **91** (3–4), 197 (2020).
- 44. S. Hariharan and S. Dharmaraj, Inflammopharmacology, **28**, 667 (2020).
- 45. M. Ackermann, et al., New Engl. J. Med., **383** (2), 120 (2020).
- 46. G. Lippi, M. Plebani, and B. M. Henry, Clin. Chim. Acta, **506**, 145 (2020).
- 47. J. Katz and S. Yue, Nutrition, **84**, 111106 (2021).
- 48. R. Kumar, H. Rathi, A. Haq, et al., Virus Res., **15**, 292 (2021).
- 49. A. Moghaddam, R. A. Heller, Q. Sun, et al., Nutrients, **12** (7), 2098 (2020).
- 50. J. Zhang, R. Saad, E. W. Taylor, and M. P. Rayman, Redox Biol., **37**, 1017 (2020).
- 51. J. Zhang, E. W. Taylor, K. Bennett, et al., Am. J. Clin. Nutr., **111**, (6), 1297 (2020).
- 52. G. Bermano, C. Meplan, D. K. Mercer, and J. E. Hesketh, Br. J. Nutr., **125** (6), 618 (2021).
- 53. Y. Fu, Y. Cheng, and Y. Wu, Virol. Sin., 35, 266 (2020).
- 54. K. R. Sachitra, R. Nirmal, R. Ismail, and B. Faizal, Nutrition, **83**, 111089 (2021).
- 55. H. Shakoor, J. Feehan, A. S. Al Dhaheri, et al., Maturitas, **143**, 1 (2021).
- S. Khatiwada and A. Subedi, Curr. Nutr. Rep., 10 (2), 125 (2021).

Sodium Selenite as a Potential Adjuvant Therapy for COVID-19

T.M. Huseynov*, R.T. Guliyeva*, S.H. Jafarova*, and N.H. Jafar**

*Institute of Biophysics, National Academy of Sciences of Azerbaijan, ul. Zahida Khalilova 17, Baku, AZ1143 Azerbaijan

**Clinic "MediClub", ul. Uzeyira Hajibeyli 119, Baku, AZ1010 Azerbaijan

The review shows that selenium plays a role in the development of RNA viral infections, and in particular, COVID-19. Many RNA viruses are selenium-dependent due to "antisense" interactions between the viral RNA and the mRNA region of the host cells, containing the selencysteine insertion sequence, leading to the development of a selenium deficiency state, oxidative stress, impaired immune response, and so forth. The advantages of sodium selenite, the licensed product of selenium, widely used in medicine, veterinary medicine, agriculture, include: a) the speed of penetration through cell membranes into all tissues of the organism; b) active participation in metabolic processes, accompanied by the oxidation of cellular sulfur-containing proteins; c) antiaggregation effect by reducing the activity of thromboxane; d) interruption of the contact of the virion (SARS-CoV-1, SARS-CoV-2) with the membrane of a healthy cell; e) suppression of the activity of the NF-kB factor, which increases significantly in Covid infections. The review considers evidence that is relevant in providing support for the use of sodium selenite as adjuvant therapy in Covid-19

Keywords: RNA viruses, COVID-19, oxidative stress, sodium selenite, glutathione peroxidase, thioredoxin reductase