= БИОФИЗИКА КЛЕТКИ=

УДК 57.053.2: 612.117.5: 612.117.7

ВЛИЯНИЕ ГАЗОМЕДИАТОРОВ НА Ca^{2+} -ЗАВИСИМУЮ КАЛИЕВУЮ ПРОНИЦАЕМОСТЬ МЕМБРАНЫ КРАСНЫХ КЛЕТОК КРОВИ

© 2020 г. И.В. Петрова*, Ю.Г. Бирулина*, С.Н. Беляева**, О.А. Трубачева*, **, А.В. Сидехменова***, Л.В. Смаглий*, И.В. Ковалев*, С.В. Гусакова*

*Сибирский государственный медицинский университет Минздрава России, 634050, Томск, Московский тракт, 2 **НИИ кардиологии Томского НИМЦ РАН, 634012, Томск, Киевская ул., 111a

***НИИ фармакологии и регенеративной медицины им. Е.Д. Гольдберга Томского НИМЦ РАН, 634028, Томск, просп. Ленина, 3

E-mail: ivpetrova 57@yandex.ru
Поступила в редакцию 02.12.2019 г.
После доработки 31.01.2020 г.
Принята к публикации 27.05.2020 г.

Исследовано влияние газовых посредников H_2S и CO на Ca^{2^+} -зависимые калиевые каналы и анионный обменник, которые участвуют в формировании гиперполяризации мембраны эритроцитов, а также играют важную роль в регулировании объема и деформируемости эритроцитов. Установлено, что в присутствии доноров H_2S и CO существенно снижается амплитуда редокс-стимулированной гиперполяризации мембраны вследствие снижения активности Ca^{2^+} -зависимых калиевых каналов. Также обнаружено, что H_2S и CO устраняют снижение объема эритроцитов, отмечаемое при активации Ca^{2^+} -зависимых калиевых каналов или блокировании анионного обменника. Показано, что H_2S достоверно увеличивает деформируемость эритроцитов.

Ключевые слова: эритроциты, монооксид углерода, сероводород, Ca^{2+} -зависимые калиевые каналы, анионный обменник, деформируемость.

DOI: 10.31857/S0006302920040122

Реологические свойства крови во многом обусловлены способностью красных кровяных телец деформироваться при прохождении через микроциркуляторное русло и поддерживать свой постоянный объем. Два тесно взаимосвязанных процесса, которые зависят от структурных свойств компонентов цитоскелета, степени взаимодействия цитоскелета и интегральных трансмембранных комплексов, которое достигается анкирином, белками 4.1, 4.2 и белком полосы 3 (известным как анионный обменник (AE1)) [1], а также от активности ион-транспортных систем эритроцитарной мембраны [2].

Установлено, что заметное уменьшение объема эритроцитов опосредовано так называемым Gardos-эффектом, который представляет собой индуцированную ионами ${\rm Ca}^{2^+}$ потерю катионов калия через ${\rm Ca}^{2^+}$ -зависимые ${\rm K}^+$ -каналы (${\rm K}_{\rm Ca}$ -каналы, Gardos-каналы) [3, 4]. Одной из функций

Сокращения: K_{Ca} -каналы — Ca^{2^+} -зависимые калиевые каналы, Φ MC — феназинметасульфат, CORM-2 — бис(дихлорид трикарбонилрутения), ГО — гиперполяризационный ответ.

 $K_{\text{Са}}$ -каналов каналов является их участие в регуляции апоптоза красных клеток крови [5]. Показано, что при различных заболеваниях, в том числе и при сердечно-сосудистой патологии, сокращается продолжительность жизни эритроцитов, снижается их деформируемость, увеличивается внутриклеточная концентрация ионов кальция [1, 6].

В то же время основная функция эритроцитов заключается в транспортировке кислорода в связи с гемоглобином. Сродство кислорода к гемоглобину можно регулировать, изменяя, например, объем клеток (и, следовательно, концентрагемоглобина) и уровень рН внутри эритроцитов. Изменения напряжения кислорода, в свою очередь, могут контролировать активность ионных переносчиков [7, 8], которые участвуют в поддержании клеточного объема и рН. Помимо молекулярного кислорода как такового, активные формы кислорода, оксид азота (NO), монооксид углерода (СО), сероводород (Н2S) могут играть роль в регуляции ион-транспортных систем эритроцитов при условии, что они подвержены влиянию напряжения кислорода. Имеющиеся данные о вовлечении эндогенно синтезируемых

газовых молекул — H₂S и CO в механизмы внутри- и межклеточной коммуникации дополнительно указывает на значимость данных агентов в регуляции жизнедеятельности клеток, тканей и организма в целом [9-11]. Существенный прогресс в исследованиях реакций, опосредованных газотрансмиттерами, достигнут в связи с открытием способности некоторых химических соединений воспроизводить эффекты данных сигнальных молекул, действуя в качестве их доноров. Однако сведения о действии Н2S и СО на клетки крови весьма немногочисленны и носят скорее констатирующий характер, что оставляет ряд нерешенных вопросов о механизмах воздействия сигнальных молекул на системы ионного переноса.

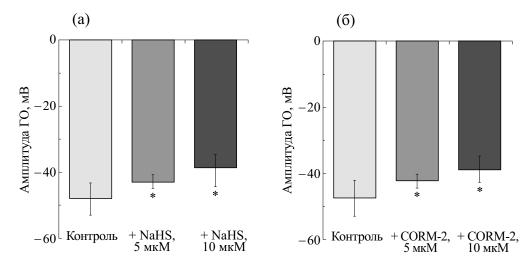
В связи с вышесказанным целью исследования явилось изучение механизмов регуляции ${\rm Ca}^{2+}$ -зависимой калиевой гиперполяризации мембраны эритроцитов.

МАТЕРИАЛЫ И МЕТОДЫ

Материалом исследования являлась венозная кровь, которую забирали из локтевой вены доноров утром натощак в пробирки типа BD Vacutainer® с гепарином лития (17 МЕ/мл). В исследование были включены 25 здоровых добровольцев (15 мужчин и 10 женщин) в возрасте от 38 до 62 лет, не имеющих в анамнезе сердечно-сосудистых, эндокринных и генетических заболеваний. Из цельной гепаринизированной крови получали осадок эритроцитов путем центрифугирования (5 мин, 1000 g, 4°C), затем удаляли плазму и клетки белой крови, а эритроциты дважды отмывали 150 мМ NaCl, содержащим фосфатно-солевой буфер (5 мМ, рН 7.4), при тех же условиях центрифугирования. Полученный осадок эритроцитов промывали изоосмотической средой (320 мОсм/л), содержащей 150 мМ NaCl, 10 мМ глюкозы, 1 мМ КСl, 1 мМ MgCl₂. После этого эритроциты переносили на лед и хранили не более 12 ч.

Изучение Ca^{2+} -зависимой калиевой проницаемости мембраны эритроцитов выполняли потенциометрическим методом путем непрерывной регистрации мембранного потенциала клеток по изменениям рН среды, основанным на том, что в присутствии протонофора (ClCCP, carbonylcyanide-m-chlorophenylhydrazone), 20 мкМ) распределение H^+ зависит от мембранного потенциала как $E_m = (pH_i - pH_0)RT/F$, где pH_i и pH_0 — значения рН цитоплазмы и среды инкубации соответственно. Для активации K_{Ca} -каналов использовали искусственную электронно-донорную систему аскорбат (10 мМ) — феназинметасульфат (Φ MC, 0,1 мМ) [12]. Доноры H_2 S и CO — NaHS и

бис(дихлорид трикарбонилрутения) (CORM-2) — добавляли за 5 мин до внесения в суспензию эритроцитов агентов, вызывающих гиперполяризацию мембраны.


Регистрацию изменений объема эритроцитов выполняли спектрофотометрическим методом, согласно которому при изменении объема клеток изменяется светопропускание, значит, и оптическая плотность суспензии эритроцитов [13]. Оптическая плотность вычисляется как десятичный логарифм отношения потока излучения, падающего на объект, к потоку излучения прошедшего через него (отразившегося от него): $D = \lg I_0/I$, где D — оптическая плотность (I_0 и I — интенсивности падающего и ослабленного пучков света). Оптическую плотность определяли при $\lambda = 800$ нм (спектрофотометр UNICO-2800, United Products & Instruments, США). Для спектрофотометрических измерений упакованные эритроциты разводили в среде их инкубации в соотношении 1:100. В исследуемой суспензии количество эритроцитов варьировало от $4 \cdot 10^7$ до $5 \cdot 10^7$ кл./мл, объем кварцевой кюветы составлял 3.5 мл.

Исследование деформируемости эритроцитов проведено методом эктацитометрии на анализаторе RheoScan-AnD 300 (Rheo Meditech. Inc., Корея) с помощью набора картриджей RSD-K02 в диапазоне напряжений сдвига 1—20 Па. Для характеристики деформируемости эритроцитов использовали индекс элонгации [14].

Статистическую обработку полученных результатов проводили при помощи программы SPSS Statistics 22. Достоверность различий определяли непараметрическими критериями: U-критерий Манна-Уитни для независимых и T-критерий Вилкоксона для зависимых выборок. Данные представлены в виде медианы (Me) и межквартильного размаха (Q_1 ; Q_3).

РЕЗУЛЬТАТЫ

Изучение влияния газотрансмиттеров на механизмы регуляции Gardos-каналов эритроцитов. Добавление искусственной электронно-донорной системы «аскорбат-ФМС» к суспензии эритроцитов приводит к развитию гиперполяризации мембраны красных клеток крови, изменение амплитуды которой служит интегральной характеристикой Ca²⁺-управляемой K⁺-проницаемости мембраны эритроцитов. Добавление NaHS в концентрациях 5 и 10 мкМ в среду инкубации эритроцитов достоверно снижало амплитуду гиперполяризационного ответа (Γ O) на 12% (n = 8, p < 0.05) и на 23% (n = 8, p < 0.05) по сравнению с контролем соответственно (рис. 1а). В присутствии 5 и 10 мкМ CORM-2 в среде инкубации эритроцитов редокс-индуцированный ГО сни-

Рис. 1. Влияние NaHS (a) и CORM-2 (б) на гиперполяризацию мембраны эритроцитов; $*-p \le 0.05$ по сравнению с контролем.

зился на 10% (n = 7, p < 0.05) и 20% (n = 7, p < 0.05) по сравнению с контролем соответственно (рис. 16).

Показано, что определенный вклад в развитие ГО мембраны эритроцитов вносит электронейтральный СІ⁻/НСО₃-обменник [15]. Инкубация эритроцитов в присутствии блокатора анионного обмена SITS (100 мкМ) приводила к увеличению амплитуды редокс-зависимого ГО на 35.2% от контрольного значения (n = 8, p < 0.05). Инкубация эритроцитов в присутствии SITS и NaHS вызвала снижение исследуемого параметра по сравнению со значениями, полученными в отсутствие NaHS. Так, амплитуда ГО при совместном действии SITS и 5 или 10 мкМ NaHS составила относительно контрольного значения -52.3 (-58.8, -47.1) MB (n = 6, p < 0.05) M -25.4 (-35.8, -18.6) MB (n = 6, p < 0.05) соответственно. Аналогичные данные были получены и при сочетанном действии SITS и CORM-2: в концентрации 5 мкМ СОRM-2 снижал величину ГО до -53.5 (-56.2, -44.2) мВ (n = 6, p < 0.05), 10 мкМ CORM-2 – до -24.4 (-35.6, -17.7) MB (n = 6, p < 0.05) cootbetственно.

Полученные результаты свидетельствуют, что доноры H_2S и CO снижают амплитуду редоксстимулированного ΓO , развитие которого обеспечивается Gardos-каналами и транспортом анионов хлора.

Исследование влияния газомедиаторов на изменения объема эритроцитов. С помощью фотометрического метода было показано, что стимуляция Ca^{2+} -зависимой калиевой проницаемости мембраны эритроцитов с помощью редокс-системы «аскорбат— Φ MC» вызывает увеличение оптической плотности суспензии эритроцитов (p < 0.05), что может отражать процесс сжатия клеток (таб-

лица). Инкубация эритроцитов с блокатором K_{Ca} -каналов клотримазолом (3 мкМ) устраняла описанный эффект.

Добавление к суспензии эритроцитов NaHS в концентрациях 5 и 10 мкМ на фоне активации Gardos-каналов вызывало уменьшение показателя оптической плотности (p < 0.05) по сравнению с контролем. Таким образом, донор H_2S снижал эффект сжатия эритроцитов, возникающий в результате активации K_{Ca} -каналов. Сходное влияние на величину оптической плотности оказывал и донор CO в различных концентрациях, тем самым приводя к увеличению объема красных клеток (таблица).

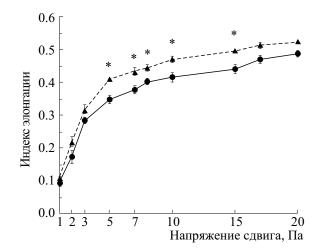
Блокирование Cl $^-$ /HCO $_3^-$ -обменника приводило к статистически значимому увеличению показателя оптической плотности на 15% (n=10, p<0.05) по сравнению с контролем. Присутствие доноров H $_2$ S или CO в концентрациях 5, 10 мкМ в суспензии эритроцитов совместно с SITS вызывало снижение показателя оптической плотности суспензии эритроцитов, что свидетельствовало о набухании эритроцитов.

Изучение деформируемости эритроцитов при действии сероводорода. Исследование деформируемости эритроцитов эктацитометрическим методом показало, что обработка красных клеток крови донором H_2S в концентрации 10 мкМ вызывала увеличение индекса элонгации при различных величинах напряжения сдвига, что свидетельствовало об увеличении деформируемости красных клеток крови (рис. 2).

Изменение оптической плотности суспензии эритроцитов при действии NaHS и CORM-2

	Оптическая плотность (D)		
Группа	– Аскорбат–ФМС	+ Аскорбат-ФМС	+ Аскорбат—ФМС + SITS, 100 мкМ
Контроль	0.793	0.825	0.912
	(0.784; 0.802)	(0.818; 0.836)	(0.905;0.918)
NaHS, 5 MKM	0.766*	0.815*#	0.896*#
	(0.757; 0.775)	(0.757; 0.775)	(0.886; 0.905)
NaHS, 10 mkM	0.761*	0.786* [#]	0.875***
	(0.756; 0.768)	(0.770; 0.798)	(0.870; 0.883)
CORM-2, 5 MKM	0.755*	0.820*#	0.882* [#]
	(0.748; 0.760)	(0.815; 0.830)	(0.905; 0.918)
CORM-2, 10 мкМ	0.746*	0.788* [#]	0.870*#
	(0.739; 0.754)	(0.774; 0.795)	(0.864; 0.879)

Примечание. Данные приведены в виде $Me(Q_1; Q_3)$; * -p < 0.05 по сравнению с контролем в каждой группе; * -p < 0.05 по сравнению с действием NaHS или CORM-2 в отсутствии редокс-системы «аскорбат— Φ MC».


ОБСУЖДЕНИЕ

В течение последних трех десятилетий электрофизиологические исследования показали, что мембрана эритроцитов наделена большим разнообразием ион-транспортных систем, которые участвуют в гомеостазе катионной и, в меньшей степени, анионной проводимости клеток [6, 16]. Известно, что активация K_{Ca} -каналов, способствуя массивной утечке ионов калия наружу из клеток, приводит к их обезвоживанию и сжатию [4, 8].

В настоящем исследовании для стимуляции К_{Са}-каналов эритроцитов была использована искусственная электронно-донорная система «аскорбат— Φ MC». Согласно работе [12], данная система модулирует Ca^{2+} -зависимую калиевую проницаемость мембраны за счет увеличения сродства K_{Ca} -каналов к ионам Ca^{2+} . Однако возможны и другие пути регуляции калиевой проницаемости мембраны эритроцитов, не связанные с ионами кальция. Показано, что добавление аскорбата и ФМС в среду инкубации эритроцитов приводит к образованию редокс-агентов, которые, возможно, оказывают свое влияние на Ca²⁺зависимую калиевую проницаемость мембраны эритроцитов опосредованно через SH-группы [4, 17], которые являются конечным или промежуточным акцептором в электронном транспорте на мембране эритроцитов [18].

Как было установлено в настоящей работе, в присутствии различных концентраций доноров H_2S или CO наблюдается снижение амплитуды FO мембраны эритроцитов, что свидетельствует о подавлении FO сависимой калиевой проводимости мембраны и, соответственно, уменьшении потерь ионов калия клеткой. Наиболее вероятными причинами обнаруженного эффекта может

быть взаимодействие H₂S или CO с белками канала или его регуляторными белками, в частности протеинкиназами [19]. Отмечено, что для Н₂S основными мишенями для передачи сигналов являются окисленное железо, которое в небольшом количестве присутствует в эритроцитах, и тиоловые группы белков. При этом наиболее вероятно образование в клетках производных H₂S персульфида (R-SSH) и полисульфидов (R-SnH) [20, 21], которые оказывают влияние на функциональную активность белков, в том числе и ионных каналов. Также H₂S может вызывать модификацию белков за счет реакций сульфгидрирования, в том числе образования сульфгемоглобина [10]. В то же время, несмотря на высвобождение СО из CORM-2, который связывается с гемоглобином

Рис. 2. Влияние NaHS на деформируемость эритроцитов: сплошная линия — изменение индекса элонгации в отсутствие NaHS, пунктирная линия — в присутствии NaHS (10 мкM); * — p < 0.05 по сравнению с показателем в отсутствие донора H2S.

эритроцитов с образованием карбоксигемоглобина (HbCO), отмечается, что содержание HbCO составляет менее 5% [11].

Важно, что стимуляция К_{Са}-каналов также создает движущую силу для удаления хлора из эритроцитов. В работе [22] было показано, что блокаторы хлорного тока оказывают определенное воздействие на калиевую проницаемость мембраны эритроцитов. В настоящем исследовании блокирование хлорной проводимости мембраны клеток крови с помощью SITS приводило к существенному росту амплитуды гиперполяризационного ответа. Инкубация эритроцитов с донорами H₂S или CO существенно снижала этот эффект. Полученные данные свидетельствуют о влиянии газотрансмиттеров не только на K_{Ca} -каналы, но и на анионный транспорт. Важно отметить, что анион-транспортную функцию осуществляет белок полосы 3 мембраны эритроцитов, который является одним из белков цитоскелета красных клеток крови [15]. Это позволяет предположить, что мишенью для H₂S и CO могут быть и белки цитоскелета эритроцитов, участвующие в регуляции трансмембранного транспорта ионов.

Так же как и в других клетках, в эритроцитах реализуется Са²⁺-зависимая передача сигналов не только в обеспечении физиологических параметров, но и для управления биофизическими свойствами, такими как объем клеток и деформируемость [23-25]. В настоящем исследовании спектрофотометрическим методом было показано, что активация K_{Ca} -каналов с помощью искусственной редокс-системы, как и блокирование $Cl^-/HCO_{\overline{3}}$ -обменника, вызывала увеличение показателя оптической плотности суспензии клеток, что может объясняться сжатием эритроцитов. В то же время инкубация эритроцитов с NaHS или CORM-2 нивелировала уменьшение объема клеток, вызванное системой «аскорбат-ФМС» и SITS, что подтверждают данные потенциометрического исследования о роли калиевой и хлорной проводимости в развитии ГО. Также было обнаружено увеличение деформируемости красных клеток крови в присутствии донора H₂S. Учитывая результаты проведенного исследования, можно предположить, что этот эффект связан с влиянием H₂S на ион-транспортные системы клетки, в первую очередь, на K_{Ca} -каналы.

выводы

Выяснение механизмов воздействия газотрансмиттеров на клетки крови имеет существенное значение не только с позиции получения фундаментального знания о принципах внутри- и межклеточной сигнализации, но и для последую-

щей разработки подходов к управлению газовой коммуникацией.

Полученные данные свидетельствуют, что H_2S и CO оказывают существенное влияние на ионтранспортную функцию мембраны эритроцита. Уменьшение амплитуды редокс-вызванной гиперполяризации мембраны в присутствии газотрансмиттеров имеет важное значение в механизмах регуляции объема и деформируемости эритропитов.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований (в рамках научного проекта №19-415-703015) и Совета по грантам Президента Российской Федерации (грант МК-143.2020.4).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СОБЛЮДЕНИЕ ЭТИЧЕСКИХ СТАНДАРТОВ

В работе соблюдались этические стандарты, разработанные в соответствии с Хельсинкской декларацией (с поправками 2013 г.) и Правилами надлежащей клинической практики (приказ МЗ РФ от 01.04.2016 г.). Все лица, участвующие в исследовании, дали информированное согласие.

СПИСОК ЛИТЕРАТУРЫ

- 1. R. Huisjes, A. Bogdanova, W. W. van Solinge, et al., Front. Physiol. 9, 656 (2018).
- 2. H. Guizouarn, N. Gabillat, R. Motais, and F. Borgese, J. Physiol. 535 (Pt 2), 497 (2001).
- 3. A. Bogdanova, A. Makhro, J. Wang, et al., Int. J. Mol. Sci. 14, 9848 (2013).
- A. D. Maher and P. W. Kuchel, Int. J. Biochem. Cell Biol. 35 (8), 1182 (2003).
- F. Lang, E. Lang, and M. Föller, Transfus. Med. Hemother. 39 (5), 308 (2012).
- 6. S. L. Thomas, G. Bouyer, A. Cueff, et al., Blood Cells, Molecules & Diseases 46 (4), 261 (2011).
- J. S. Gibson, A. R. Cossins, and J. C. Ellory, J. Exp. Biol. 203 (Pt 9), 1395 (2000).
- 8. A. Bogdanova, M. Berenbrink, and M. Nikinmaa, Acta Physiol. 195, 305 (2009).
- 9. S. V. Gusakova, I. V. Kovalev, Y. G. Birulina, et al., Biophysics 62 (2), 220 (2017).
- 10. E. Dongó, G. Beliczai-Marosi, A. S. Dybvig, and L. Kiss, Nitric Oxide 81, 75 (2018).
- 11. I. Barbagallo, G. Marrazzo, A. Frigiola, et al., Curr. Pharm. Biotechnol. 13 (6), 787 (2012).

- 12. I. Bernhardt and J. C. Ellory, *Red Cell Membrane Transport in Health and Disease* (Springer, Berlin, 2013).
- 13. S. P. Srinivas, J. A. Bonanno, E. Lariviere, et al., Pflugers Arch. 447 (1), 97 (2003).
- 14. S. Shin, Y. Ku, M. S. Park, and J. S. Suh, *Korea Australia Rheology Journal* 16 (2), 85 (2004).
- 15. A. C. Kalli and R. A. F. Reithmeier, PLOS Comput. Biol. 14 (7), 1 (2018).
- 16. А. А. Платонова, С. В. Кольцова, Г. В. Максимов и др., Биофизика 58 (3), 501 (2013).
- 17. А. В. Ситожевский, И. В. Петрова, С. В. Кремено и др., Рос. физиол. журн. им. И.М. Сеченова 92 (4), 461 (2006).
- 18. Y. Yang, X. Jin, and C. Jiang, Antioxid. Redox Signal. 20 (6), 937 (2014).

- 19. B. Del Carlo, M. Pellegrini, and M. Pellegrino, Biochim. Biophys. Acta 1612 (1): 107 (2003).
- 20. C. L. Bianco, A. Savitsky, M. Feelisch, and M. M. Cortese-Krott, Biochem. Pharmacol. 149, 163 (2018).
- M. L. Jennings, Am. J. Physiol. Cell Physiol. 305, C941 (2013).
- 22. Y. V. Kucherenko, L. Wagner-Britz, I. Bernhardt, and F. Lang, J. Membr. Biol. 246 (4), 315 (2013).
- 23. E. Lang, S. M. Qadri, K. Jilani, et al. Basic Clin. Pharmacol. Toxicol. 111 (5), 348 (2012).
- С. Н. Орлов, И. В. Петрова, Н. И. Покудин и др., Биол. мембраны 9 (9), 885 (1992).
- 25. A. Dyrda, U. Cytlak, A. Ciuraszkiewicz, et al., PLoS One **5** (2), e9447 (2010).

The Effects of Gasomediators on the Ca²⁺-Dependent Potassium Permeability of the Red Blood Cells Membrane

I.V. Petrova*, Yu.G. Birulina*, S.N. Belyaeva**, O.A. Trubacheva*, **, A.V. Sidekhmenova***, L.V. Smagliy*, I.V. Kovalev*, and S.V. Gusakova*

*Siberian State Medical University, Moskovsky trakt 2, Tomsk, 634050 Russia

**Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Kievskaya ul. 111a, Tomsk, 634012 Russia

***Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center of the Russian Academy of Sciences, prosp. Lenina 3, Tomsk, 634028 Russia

We investigated the effects of gasomediators H_2S and CO on Ca^{2+} -dependent potassium channels and an anion exchanger, which participate in the induction of a hyperpolarization response of the erythrocyte membrane and also play an important role in regulation. We showed that in the presence of H_2S and CO donors, the amplitude of redox-stimulated membrane hyperpolarization decreases significantly due to a decrease in the activity of Ca^{2+} -dependent potassium channels. In addition, it was found that gasomediators eliminate the compression of red blood cells observed during activation of Ca^{2+} -dependent potassium channels or inhibition of the anion exchanger. It was shown that the H_2S donor significantly increases the deformability of red blood cells.

Keywords: erythrocytes, carbon monoxide, hydrogen sulfide, Ca^{2+} -dependent potassium channels, anion exchanger, deformability