УДК 523-52

УСТОЙЧИВЫЕ ОРБИТЫ В ЗОНЕ ПИТАНИЯ ПЛАНЕТЫ ПРОКСИМА ЦЕНТАВРА *с*

© 2023 г. С. И. Ипатов*

Институт геохимии и аналитической химии им. В.И. Вернадского РАН, Москва, Россия *e-mail: siipatov@hotmail.com

> Поступила в редакцию 03.11.2022 г. После доработки 06.12.2022 г. Принята к публикации 13.12.2022 г.

Проведены оценки размеров зоны питания планеты Проксима Центавра *с* при начальных эксцентриситетах орбит планетезималей, равных 0.02 или 0.15. Исследования основаны на результатах моделирования эволюции орбит планетезималей под влиянием звезды и планет Проксима Центавра *с* и *b*. Рассматриваемый интервал времени достигал миллиарда лет. Получено, что после аккумуляции планеты Проксима Центавра *с* некоторые планетезимали могли продолжать двигаться по устойчивым эллиптическим орбитам внутри ее зоны питания, в основном очищенной от планетезималей. Обычно такие планетезимали могут двигаться в некоторых резонансах с планетой (Проксима Центавра *c*), например, в резонансах 1 : 1 (как троянцы Юпитера), 5 : 4 и 3 : 4, и обычно имеют небольшие эксцентриситеты. Некоторые планетезимали, двигавшиеся долгое время (1–2 млн лет) по хаотическим орбитам, попадали в резонансы 5 : 2 и 3 :10 с планетой Проксима Центавра *с* и двигались в них минимум десятки миллионов лет.

Ключевые слова: Проксима Центавра, планетезимали, резонансные орбиты, зона питания планеты **DOI:** 10.31857/S0320930X23030039, **EDN:** HYSOIV

введение

Тела, находящиеся в некоторой окрестности орбиты растущей планеты, могут выпадать на нее. Эта окрестность называется зоной питания планеты. Опубликовано много работ, посвященных оценкам размеров этой зоны и исследованию эволюции орбит двух гравитационно взаимодействующих тел, движущихся вокруг массивного центра по близким орбитам (Artymowicz, 1987; Брюно, 1990; Gladman, Duncan, 1990; Goldreich, Tremaine, 1982; Gladman, 1993; Demidova, Shevchenко, 2016; Демидова, Шевченко, 2020, 2021; Dermott, 1981a; 1981b; Farinella и др., 1994; Greenzweig, Lissauer, 1992; Duncan и др., 1989; Hasegawa, Nakazawa, 1990; Holt и др., 2020; Ida, Nakazawa, 1989; Ипатов, 1981; 1994; 2000; Kaplan, Cengiz, 2020; Kohne, Batygin, 2020; Levison и др., 1997; Lissauer, Kary, 1991; Маркеев, 1978; Mikkola, Innanen, 1990; 1992; Morrison, Malhotra, 2015; Nishida, 1983; Petit, Henon, 1986; Rabe, 1961; 1962; Shevchenko, 2020a; 2020b; Szebehely, 1967; Tanikawa и др., 1991; Weissman, Wetherill, 1974; Zhang-yin, Lin, 1992; и др.). В основном такие исследования проводились в рамках задачи трех тел (Солнце-планета-тело), причем чаще рассматривались первоначально круговые гелиоцентрические орбиты планеты и тела.

тания планет Солнечной системы и движению тел на устойчивых орбитах внутри зон питания, а также оценки параметров неустойчивых орбит вне этих зон. В следующих разделах приводятся результаты расчетов для планетной системы Проксима Центавра (Proxima Centauri). В этой системе масса звезды Альфа Центавра С (α Centauri C) равна 0.1221 от массы Солнца. Эта звезда

свободные от астероидов.

Зона питания планеты не является монолитной. Нельзя сказать, что все тела с большими по-

луосями начальных орбит, находящимися в неко-

тором интервале, выпадут на планету или будут

выброшены на гиперболические орбиты через

достаточно большой интервал времени. Возмож-

ны устойчивые орбиты внутри этого интервала и

неустойчивые орбиты вне этого интервала. На-

пример, некоторые тела могли остаться внутри

зоны питания планеты при резонансе 1 : 1 с дви-

жением планеты. Известно много троянцев

Юпитера, но отдельные тела для этого резонанса

обнаружены и для Земли, Марса, Урана и Непту-

на. В то же время существуют люки Кирквуда,

работ, посвященных изучению размеров зон пи-

является членом тройной звездной системы, ко-

торая включает также двойную звезду с массами

В настоящей работе сначала приводится обзор

порядка массы Солнца: Альфа Центавра А (Rigil Kentaurus) и Альфа Центавра В (Toliman). Расстояние между Альфой Центавра С (α Cen C) и Альфа Центавра АВ (α Cen AB) равно 12 950 а. е. Расчеты, проведенные в (Schwarz и др., 2018), показали, что гравитационное влияние α Cen AB мало влияет на движение тел-экзокомет даже по сильно эксцентричным орбитам около α Cen C.

Начальные эксцентричные и наклоненные орбиты планетезималей находились в некоторой окрестности орбиты планеты Проксима Центавра c (α Cen Cc). Учитывалось гравитационное влияние звезды и планет Проксима Центавра с и b (α Cen Cb), двигавшихся по эксцентричным орбитам. Ниже при обозначениях планет слово Центавра часто опускается (например, Проксима c). Оценивались основные границы зоны питания планеты Проксима с при различных начальных эксцентриситетах орбит планетезималей (равных 0.02 или 0.15). Основное внимание уделялось изучению орбит планетезималей. оставшихся внутри зоны питания планеты Проксима с, и начальным значениям больших полуосей орбит планетезималей, которые столкнулись с планетами или звездой, или были выброшены на гиперболические орбиты, хотя эти значения находятся вне зоны питания.

ЭВОЛЮЦИЯ ОРБИТ ТЕЛ ПОД ВЛИЯНИЕМ ПЛАНЕТЫ, ДВИЖУЩЕЙСЯ ВОКРУГ СОЛНЦА

Изучение гравитационных взаимодействий двух объектов, движущихся вокруг массивного центра, ранее проводилось в основном для Солнечной системы. Можно выделить несколько типов N_t изменений элементов орбит двух гравитапионно взаимодействующих тел (Weissman, Wetherill, 1974; Gladman, 1993; Dermott, 1981a; 1981b; Duncan и др., 1989; Ипатов, 1981; 1994; 2000). Ипатов (1981; 1994; 2000) привел результаты исследований взаимодействий двух материальных точек (МТ), движущихся вокруг массивного центрального тела, Солнца, по первоначально близким орбитам. Взаимное гравитационное влияние МТ учитывалось путем численного интегрирования уравнений движения. В случае первоначально круговых орбит двух гравитационно взаимодействующих МТ Ипатов (1994; 2000) рассматривал области начальных значений больших полуосей орбит МТ и начального угла с вершиной в Солнце между направлениями на МТ, соответствующие нескольким типам эволюции. Диапазон значений отношения ц (суммы масс двух МТ к массе гравитирующего центра (Солнца)) варьировался от 10⁻⁹ до 10⁻³. При *N*-типе графики изменений больших полуосей орбит МТ со временем t имеют *N*-образный вид. В этом случае в синодических (вращающихся вокруг Солнца с угловой скоростью, равной угловой скорости первой МТ) координатах орбита второй MT охватывает одну треугольную точку либрации и при почти круговой орбите первой МТ имеет вид головастика (серпа). В случае М-типа графики зависимости большой полуоси а орбиты от времени t имеют M- или П-образный вид. В синодических координатах орбита второй МТ охватывает обе треугольные точки либрации. В случае первоначально круговых сидерических орбит при $N_t = M$ синодическая орбита имеет подковообразный вид. Тесные сближения МТ возможны только при А-типе. Изменения элементов орбит в этом случае являются хаотическими и большие полуоси орбит МТ в некоторые моменты времени могут быть одинаковыми. При С-типе элементы орбит меняются хаотически, но тесных сближений нет и значения больших полуосей орбит МТ не могут стать одинаковыми. Если тип $N_t = P$, то *а* и эксцентриситет *е* меняются периодически, а синодическая орбита второй МТ охватывает Солнце так же. как и при хаотических изменениях. Для этого типа можно выделить большое число подтипов, каждый из которых характеризуется своими взаимосвязями изменений элементов орбит.

В случае первоначально круговых орбит при начальном угле фо между направлениями от Солнца на МТ, равном 60° , и $10^{-9} \le \mu \le 2 \times 10^{-4}$, максимальные значения $\varepsilon_0 = (a_{2_0} - a_{l_0})/a_{l_0}$, которые соответствуют типам N, M, A и C, были получены равными $\alpha = (1.63 - 1.64)\mu^{1/2}, \beta = (0.77 - 0.81)\mu^{1/3},$ $\gamma = (2.1 - 2.45)\mu^{1/3}$, $\mu \delta = (1.45 - 1.64)\mu^{2/7}$, cootberственно. Здесь a_{l_0} и a_{2_0} – начальные значения больших полуосей *а* орбит двух МТ, а µ – отношение суммы масс МТ к массе Солнца. Значения ү были близки к значениям δ . Значения α , β , γ и δ в основном меньше при других (чем 60°) значениях ϕ_0 . При $\varepsilon_0 = 0$ меньшие значения ϕ_0 , которые соответствуют типам N и M, примерно равны 0.4 и $4\mu^{1/3}$ радиан, соответственно. В случае большой разницы в массах объектов (планеты и тела), двигавшихся первоначально по круговым орбитам, максимальные эксцентриситеты орбит тел при $\mu \le 10^{-5}$ обычно не превышали (7–8) $\mu^{1/3}$ для типа *A* и (4-6)µ^{1/3} для типа *С*.

В данном абзаце для случая первоначально круговых орбит приведем значения α , β , γ и δ , полученные в других работах. Іда и Nakazawa (1989) получили $\beta = 1.24\mu^{1/3}$ аналитически и $\beta = 1.3\mu^{1/3}$ при численных оценках. Nishida (1983) получил $\beta = 1.04\mu^{1/3}$. При численных расчетах Gladman и Duncan (1990) и Gladman (1993) получили $\gamma = 2.1\mu^{1/3}$ при $\varphi_0 = 0$ и $\gamma = 2.4\mu^{1/3}$ при $\varphi_0 = 180^\circ$. Исследуя интеграл Якоби в ограниченной задаче трех тел, Вігп (1973) показал, что $\gamma \approx 2.4 \mu^{1/3}$. Демидова и Шевченко (2020) рассматривали 1.38 $a\mu^{0.29}$ и 2.54 $a\mu^{0.34}$ для внутренней и внешней границ ха-

Рис. 1. Начальные значения a_0 больших полуосей орбит (в а. е.) планетезималей, которые имели эллиптические орбиты в конце рассматриваемого интервала времени при $e_0 = 0.02$ и $e_0 = 0.15$. Большая полуось орбиты планеты Проксима Центавра c равна 1.489 а. е.

отической зоны, соответственно. Значения границ областей начальных расстояний от гравитирующего центра (в радиусах сферы Хилла), соответствующих различным конечным эксцентриситетам, приведены на рис. 3 в работе (Демидова, Шевченко, 2021). Эти значения немного меньше приведенных выше значений β и γ. Duncan и др. (1989) численно получили $\delta = 1.49\mu^{2/7}$, а в (Morrison, Malhotra, 2015) $\delta = 1.5\mu^{2/7}$, B (Shevchenko, 2020a) $\delta = 1.62\mu^{2/7}$. Gladman (1993) исследовал значения γ при одинаковых массах тел. Другие авторы, цитируемые в этом абзаце, рассматривали только случай нулевой массы второго тела. Зоны значений ε_0 , при которых за время $t \leq T_s$ ($T_s - синодический$ период обращения) происходит столкновение объектов, исследовались рядом авторов (Greenzweig, Lissauer, 1992; Ida, Nakazawa, 1989; Lissauer, Kary, 1991; Petit, Henon, 1986; Tanikawa и др., 1991) при изучении формирования осевого вращения и скорости аккреции планет. Численные исследования в (Lissauer, Kary, 1991) показали, что большинство планетезималей при e = i = 0 (е и i - эксцентриситеты и наклонения орбит планетезималей) и $0.9\mu^{1/3} < \epsilon_0 < 2.2\mu^{1/3}$ сближается с планетой на расстояние 0.1*h* ($h = a (\mu/3)^{1/3}$) за 20*T*_s.

Проведенные в (Mikkola, Innanen, 1990) расчеты показали, что β уменышается с увеличением *i*. При исследовании круговой задачи трех тел в случае $\mu \ll 1$, $e \ll 1$, $i \ll 1$ рад. и $a \approx$ const получено (Artymowicz, 1987; Ida, Nakazawa, 1989; Hasegawa, Nakazawa, 1990), что $\gamma^2 = 4(e^2 + i^2)/3 + 12(h/a)^2$. В (Greenzweig, Lissauer, 1992; Тапікаwа и др., 1991) также получено возрастание γ и убывание β с увеличением *e*. Gratia и Lissauer (2020) изучали времена до тесных сближений в системе из пяти планет с массами Земли в зависимости от начальных расстояний между орбитами планет. В (Goldberg и др., 2022) рассматривались критерии устойчивости орбит планет в цепи резонансов.

Движение тел при резонансе 1 : 1 (в том числе около треугольных точек либрации) рассматривалось, например, в (Goldreich, Tremaine, 1982; Dermott, 1981a; 1981b; Ипатов, 1994; 2000; Levison и др., 1997; Маркеев, 1978; Mikkola, Innanen, 1990; 1992; Qi, Qiao, 2022; Rabe, 1961; 1962; Szebehely, 1967; Weissman, Wetherill, 1974; Zhang-yin, Lin, 1992). В качестве большего тела в основном брались конкретные тела Солнечной системы. В (Dermott, 1981a) аналитически было показано, что α пропорционально µ^{1/2}. Треугольные точки либрации неустойчивы в смысле Ляпунова при u > > $(9 - \sqrt{69})/18 \approx 0.04$ (Маркеев, 1978). Согласно (Jewitt и др., 2000), среднее наклонение орбит троянцев Юпитера равно 13.7°. В (Holt и др., 2020) отмечалось, что орбиты некоторых троянцев Юпитера устойчивы за время существования Солнечной системы. В (Kohne, Batygin, 2020) pacсматривалась связь между обратными троянцами Юпитера и сильно наклоненными кентаврами и транснептуновыми объектами. Kaplan и Cengiz (2020) изучали движение малых тел в резонансе 1:1 с Землей (одиннадцати тел на подковообразных синодических орбитах и одного троянца).

В ряде случаев (особенно при $\mu_1 \sim 10^{-5} \gg \mu_2$, через μ_1 и μ_2 обозначены отношения масс первой и второй МТ к массе гравитирующего центра) для $N_t = A$ Ипатовым (1994; 2000) были получены выходы МТ на резонансные орбиты. Обычно, через несколько сотен оборотов МТ вокруг Солнца эти резонансные соотношения нарушались. При большинстве рассмотренных резонансов ($T_1: T_2 = 1:2$, 5:12, 5:13, 5:6, 5:7, 5:4, *T_i* – период обращения *i*-ой МТ вокруг Солнца) большие полуоси и эксцентриситеты орбит менялись периодически с небольшой амплитудой, а изменения долготы перигелия были невелики. Движения около резонансов в этих случаях являются колебаниями около периодических решений, представляющих в синодических координатах замкнутые кривые и исследованных многими авторами (см., например, Брюно, 1990, и главы 8 и 9 в (Szebehely, 1967)). В одном из вариантов расчетов (рис. 2.4 в (Ипатов, 2000)) при резонансах 5 : 6 и 4 : 5 боль-

АСТРОНОМИЧЕСКИЙ ВЕСТНИК том 57 № 3 2023

Рис. 2. Значения эксцентриситетов *е* орбит в зависимости от значений *а* больших полуосей орбит (в а. е.) планетезималей в конечные рассматриваемые моменты времени при $e_0 = 0.02$ (рис. 2a) и $e_0 = 0.15$ (рис. 2б). Большая полуось орбиты планеты Проксима Центавра *с* равна 1.489 а. е.

шая полуось орбиты меньшего тела менялась незначительно, эксцентриситет почти монотонно возрастал, а долгота перигелия убывала. В этих случаях в синодических координатах кривая, около которой происходили малые колебания, не была замкнутой. На рис. 2 в работе Демидова и Шевченко (2020) рассматривали распределение частиц в диске по удалению от звезды после 10^4 оборотов планеты вокруг звезды для ряда значений масс планеты. На этом рисунке видно уменьшение числа частиц при резонансах 2 : 1, 3 : 2, 4 : 3, 5 : 4, 4 : 5, 3 : 4 и 1 : 2 и увеличение числа частиц при резонансе 1 : 1. Для резонансов 2 : 1 и 1 : 2 аналогичное уменьшение отмечалось в (Demidova, Shevchenko, 2016).

В (Farinella и др., 1994; Ипатов, 1989; 1992; Ipatov, 1992; Kazantsev, Kazantseva, 2021; Scholl, Froeschle, 1975; 1990; 1991; Sidlichovsky, Melendo, 1986; Wisdom, 1982; 1983; Yoshikawa, 1991 и др.) показано, что астероиды, находившиеся в некоторых резонансах с Юпитером (3:1, 5:2, 2:1, 7:3) и в вековых резонансах $(\upsilon_5, \upsilon_6, \upsilon_{16})$, могли значительно увеличивать эксцентриситеты своих орбит и покидать резонансы из-за сближений с планетами. Зависимости наклонений *i* от больших полуосей *a* орбит для вековых резонансов представлены на рис. 8.21 в монографии (Shevchenko, 2020b).

Shevchenko (2022) рассматривал зону слабого хаоса между резонансами 2 : 1 и 1 : 1 с планетой. Он показал, что для Юпитера времена удаления тел из этой зоны в основном не превышали 10⁹ лет. Для Земли эти времена были больше. В этой работе показано, что материал, захваченный в резонансы 3 : 2 и 4 : 3 с Юпитером, мог выжить. Астероиды семейств Хильды и Туле являются примером таких резонансов. Согласно (Dvorak, Kubala, 2022), большие полуоси сравнительно

Рис. 3. Значения наклонений *i* орбит (в градусах) в зависимости от значений *a* больших полуосей орбит (в а. е.) планетезималей в конечные рассматриваемые моменты времени при $e_0 = 0.02$ (рис. 3а) и $e_0 = 0.15$ (рис. 3б). Большая полуось орбиты планеты Проксима Центавра *c* равна 1.489 а. е.

устойчивых орбит находятся в интервале от 7.12 до 7.23 а. е. Этот интервал находится рядом с резонансами 5 : 8 (7.12 а. е.) и 3 : 2 (7.28 а. е.) с Юпитером.

ВАРИАНТЫ РАСЧЕТОВ

Приводимые ниже оценки параметров зоны питания Проксима Центавра c (α Cen Cc) основаны на результатах расчетов эволюции орбит планетезималей, первоначально находившихся в некоторой окрестности орбиты этой планеты, расположенной за линией льда. В (Іраtov, 2021; 2022) было получено, что масса воды, доставленной из зоны питания этой планеты к внутренней планете Проксима Центавра b (α Cen Cb) могла превышать массу земных океанов, и немного меньшее количество ледяных планетезималей могло быть доставлено к планете Проксима Центавра d (α Cen Cd). Количество планетезималей, выбро-

шенных на гиперболические орбиты, было не меньше числа планетезималей, столкнувшихся с планетами. Ниже обсуждаются размер зоны питания планеты Проксима *с* и орбиты отдельных планетезималей, оставшихся внутри этой зоны питания.

При моделировании движения планетезималей учитывалось гравитационное влияние звезды с массой, равной 0.1221 массы Солнца, планеты Проксима *c* ($a_c = 1.489$ а. е., $e_c = 0.04$, $m_c = 7m_E$, m_E – масса Земли) и планеты *b* ($a_b = 0.04857$ а. е., $e_b = 0.11, m_b = 1.17m_E$). Проводились также расчеты с массой зародыша Проксимы *c*, равной $k_c = 0.5$ или $k_c = 0.1$ от ее современной массы m_c . Если не оговорено особо, то ниже речь идет о расчетах с $k_c = 1$ ($m_c = 7m_E$). Наклонения орбит планет брались равными нулю. Начальные эксцентриситеты орбит планетезималей равнялись $e_0 = 0.02$ или

 $e_0 = 0.15$. Небольшие начальные эксцентриситеты были у первоначальных планетезималей, а большие эксцентриситеты могли образоваться в результате взаимного гравитационного влияния планетезималей. Расчеты эволюции дисков тел, соответствующих зоне питания планет земной группы, показали рост среднего эксцентриситета орбит тел до 0.2 и даже до 0.4 на последних стадиях эволюции дисков (Ипатов, 1993; 2000). Начальные наклонения орбит планетезималей равнялись $e_0/2$ радиан (т.е. равнялись 0.57° или 4.3° при $e_0 = 0.02$ или $e_0 = 0.15$ соответственно). В каждом варианте расчетов начальные значения a_0 больших полуосей орбит планетезималей варьировались от a_{\min} до $a_{\max} = a_{\min} + 0.1$ а. е. Для (i + 1)-й планетезимали значение a_0 вычислялось по формуле $a_{0(i+1)} = (a_{0i}^2 + [(a_{\min} + d_a)^2 - a_{\min}^2]/N_0)^{1/2}$, где a_{0i} – это значение a_0 для *i*-й планетезимали, $d_a =$ = 0.1 а. е., а начальное число планетезималей в каждом варианте (с фиксированными значениями a_{\min} и e_0) равнялось $N_0 = 250$. Значения a_{\min} варьировались от 0.9 до 2.2 а. е. с шагом в 0.1 а. е. Рассматриваемый интервал времени в расчетах был не меньше 100 млн лет (если эволюция не заканчивалась раньше). В вариантах с a_{\min} от 1.2 до 1.7 а. е. вычисления проводились в течение нескольких сотен миллионов лет (до 1000 млн лет). В отличие от задачи трех тел с круговыми начальными орбитами, рассмотренной в (Ипатов, 1994; 2000), в рассматриваемых исследованиях движения планетезималей в системе Проксима Центавра начальные эксцентриситеты орбит планеты Проксима c ($e_{c0} = 0.04$) и планетезималей (e_0) не были равны нулю.

Для интегрирования уравнений движения использовался симплектический алгоритм из пакета SWIFT (Levison, Duncan, 1994). Из интегрирования исключались тела, которые столкнулись с планетами или звездой или достигли 1200 а. е. Согласно (Schwarz и др., 2018), радиус сферы Хилла звезды Проксима Центавра (α Cen C) равен 1200 а. е. Расчеты с различными значениями шага интегрирования t_s, равными 0.1, 0.2, 0.5, 1 или 2 земным суткам, дали примерно одинаковые результаты (с учетом того, что при тесных сближениях эволюция орбит является хаотической). Ниже результаты приведены при t_s , равном одному дню (кроме рис. 10 и 11). В (Frantseva и др., 2022) отмечалось, что в алгоритме (Levison, Duncan, 1994) шаг интегрирования значительно уменьшается при расстояниях, меньших 3.5 радиуса Хилла.

ЗОНА ПИТАНИЯ ЭКЗОПЛАНЕТЫ ПРОКСИМА ЦЕНТАВРА *с*

Планета Проксима Центавра *с* движется далеко от планет Проксима Центавра *b* и *d* и имеет го-

раздо большую массу, чем эти две планеты. Поэтому движение большинства планетезималей по орбитам, близким к орбите планеты Проксима с, может быть близко к движению тел для задачи трех тел. Начальные значения a_0 больших полуосей орбит планетезималей, которые еще имели эллиптические орбиты в конце рассматриваемой эволюции при $e_0 = 0.02$ и $e_0 = 0.15$, приведены на рис. 1. Основные границы между значениями a_{i0} , соответствующими планетезималям, выброшенным на гиперболические орбиты или столкнувшимся с планетами, и еще движущимся по эллиптическим орбитам планетезималям, были равны $a_{\min 002} = 1.194$ а. е. и $a_{\max 002} = 1.786$ а. е. при $e_0 = 0.02$ и считались равными $a_{\min 015} = 1.082$ а. е. и $a_{\max 015} = 2.238$ а. е. при $e_0 = 0.15$. Для $e_0 = 0.15$ и $1.786 \le a_{i0} \le 2.237$ а. е. при некоторых a_{i0} планетезимали оставались на эллиптических орбитах, но при других близких значениях *a_{i0}* планетезимали выбрасывались на гиперболические орбиты.

Для планеты Проксима *c* с массой $m_c = 7m_E$ имеем $\mu = 1.721 \times 10^{-4}$, так как отношение массы звезды к массе Солнца равно 0.1221. Такое значение μ соответствует $57m_E$ в нашей Солнечной системе. Для Проксимы *c* имеем $\mu^{1/3} = 0.0556$, $(\mu/3)^{1/3} = 0.0386$, $a_c \mu^{1/3} = 0.0828$ а. е., а радиус сферы Хилла равен $a_c (\mu/3)^{1/3} = 0.0574$ а. е. Результаты расчетов показали, что

$$a_c - a_{\min 002} = 3.5 a_c \mu^{1/3} = 0.295$$
 a.e.,
 $a_{\max 002} - a_c = 3.6 a_c \mu^{1/3} = 0.298$ a.e.,
 $a_c - a_{\min 015} = 4.9 a_c \mu^{1/3} = 0.407$ a.e.,
 $a_{\max 015} - a_c = 9.0 a_c \mu^{1/3} = 0.749$ a.e.

Если рассматривать начальные значения произведения $a \times e$, характеризующего изменения расстояния от звезды до двигавшихся планеты и планетезимали (например, $0.04a_c \times 0.02a_{\min 002}$), то имеем

$$a_{c} - a_{\min 002} = 0.04a_{c} + 0.02a_{\min 002} + 2.54a_{c}\mu^{1/3},$$

$$a_{\max 002} - a_{c} = 0.04a_{c} + 0.02a_{\max 002} + 2.40a_{c}\mu^{1/3},$$

$$a_{c} - a_{\min 015} = 0.04a_{c} + 0.15a_{\min 015} + 2.23a_{c}\mu^{1/3},$$

$$M a_{\max 015} - a_{c} = 0.04a_{c} + 0.15a_{\max 015} + 4.3a_{c}\mu^{1/3}$$

 $(e_c = 0.04 \text{ и } e_0 = 0.02 \text{ или } e_0 = 0.15)$. Коэффициенты перед $a_c \mu^{1/3}$ в трех вышеприведенных формулах составляют примерно 2.2–2.5, т.е. близки к коэффициентам в $\gamma = (2.1-2.45)\mu^{1/3}$ для круговых начальных орбит. Для $a_{\max 015}-a_c$ коэффициент 4.3 был больше вышеуказанных значений. Для последнего случая коэффициент 2.5 соответствует $a_{\max 015} = 2.07$ а. е. Для a_{i0} между 1.79 и 2.237 а. е. и $e_0 = 0.15$ было несколько планетезималей, которые все еще двигались по эллиптическим орби-

там в конце рассматриваемого времени, но большинство планетезималей для такого интервала a_{i0} были выброшены на гиперболические орбиты или столкнулись с планетой Проксима *с*. Приведенные выше исследования могут быть интересны для изучения зон начальных значений больших полуосей орбит тел, которые могли продолжать движение по эллиптическим орбитам в некоторых других планетных системах с одной доминирующей планетой.

При массе зародыша планеты Проксима *c*, равной $k_c = 0.1$ от ее современной массы m_c (т.е. при массе, равной $0.7m_E$) и $e_0 = 0.02$ было получено, что $a_c \mu^{1/3} = 0.0266$ а. е., $a_{\max 002} = 1.5953$ а. е., $a_{\max 002} - a_c = 4.0a_c \mu^{1/3} = 0.04a_c + 0.02a_{\max 002} + 0.54a_c \mu^{1/3} = 0.1063$ а. е. Здесь коэффициент 0.54 перед $a_c \mu^{1/3}$ меньше, чем коэффициент 2.4 при $k_c = 1$.

ДВИЖЕНИЕ ПЛАНЕТЕЗИМАЛЕЙ ПО УСТОЙЧИВЫМ ОРБИТАМ ВНУТРИ ЗОНЫ ПИТАНИЯ ПЛАНЕТЫ ПРОКСИМА ЦЕНТАВРА с

На рис. 1 видно, что внутри интервалов ($a_{\min 002}$, $a_{\max 002}$) и ($a_{\min 015}$, $a_{\max 015}$), оценивающих размер зоны питания планеты Проксима Центавра с, есть некоторые начальные значения *a*_{i0} больших полуосей орбит планетезималей, соответствующие планетезималям, продолжающим двигаться по эллиптическим орбитам, и есть некоторые значения *a*_{i0}, соответствующие планетезималям, выброшенным на гиперболические орбиты или столкнувшимся с планетами, вне таких интервалов. Такие подобласти обычно соответствуют резонансам средних движений планетезималей с планетой Проксима с. Примеры таких подобластей представлены в табл. 1-2. Некоторые небольшие подобласти не были включены в таблицы. На рис. 2 для значений а больших полуосей орбит планетезималей в конечные рассматриваемые моменты времени (не для начальных значений a_{i0} , как для рис. 1 и табл. 1–2) приведены эксцентриситеты орбит в эти моменты времени. На рис. 3 приведены наклонения орбит (в градусах) для этих значений а и конечных моментов времени. На рис. За не попала точка (a = 1.147 a. e., $i = 4.6^{\circ}$). На рис. 2 почти все значения эксцентриситетов, в том числе и для подобластей, приведенных в табл. 1, не превышали 0.15 и 0.3 при $e_0 = 0.02$ и $e_0 = 0.15$ соответственно. На рис. 3 большинство значений наклонений *i* орбит не превышало 1° и 10° при $e_0 = 0.02$ и $e_0 = 0.15$ соответственно. Значительная часть значений і отличалась от начальных значений не более, чем на 0.2° и 1° , соответственно при $e_0 = 0.02 \text{ M} e_0 = 0.15.$

Эксцентриситеты орбит, большие 0.14 на рис. 2 при $e_0 = 0.02$, были получены для планетезима-

Таблица 1. Подобласти ($a_{\min i}$, $a_{\max i}$) начальных значений a_{i0} (в а. е.) больших полуосей орбит, для которых планетезимали продолжали двигаться по эллиптическим орбитам в конце рассматриваемого интервала времени. n_{rel} — отношение среднего движения планетезималей к среднему движению планеты Проксима Центавра c

e_0	$a_{\min i}, a_{\max i}$ (a. e.)	n _{rel}
0.02	1.205, 1.209	1.42
0.02	1.273, 1.291	5/4
0.02	1.467, 1.476	1.02
0.02	1.500, 1.512	0.98
0.15	1.125, 1.149	3/2
0.15	1.282, 1.284	5/4
0.15	1.789, 1.818	3/4
0.15	1.928, 1.972	2/3
0.15	2.155, 2.159	4/7

Таблица 2. Подобласти ($a_{\min i}$, $a_{\max i}$) начальных значений a_{i0} (в а. е.) больших полуосей орбит, для которых планетезимали выбрасывались на гиперболические орбиты или сталкивались с планетами. n_{rel} — отношение среднего движения планетезималей к среднему движению планеты Проксима Центавра c

e_0	$a_{\min i}, a_{\max i}$ (a. e.)	<i>n</i> _{rel}
0.02	1.186, 1.187	7/5
0.02	1.838, 1.841	8/11
0.02	1.860, 1.862	4/5
0.02	1.884, 1.888	7/10
0.15	1.024, 1.025	7/4
0.15	1.052, 1.053	1.68
0.15	1.064, 1.068	1.65
0.15	2.208, 2.213	5/9
0.15	2.223, 2.234	0.546

лей, движущихся в резонансе 3 : 2 с движением планеты Проксима *с*. Эксцентриситеты орбит, большие 0.25 на рис. 2 при $e_0 = 0.15$, были получены для планетезималей, движущихся в резонансах 2 : 1, 5 : 3, 4 : 3 и 5 : 4 с движением Проксимы *с*.

На рис. 2 эксцентриситеты орбит планетезималей, находившихся в резонансе 1 : 1 с планетой Проксима *c*, не превышали 0.1 при $e_0 = 0.02$ и равнялись 0.15 при $e_0 = 0.15$. Отметим для сравнения, что на рис. 1 в статье (Holt и др., 2020) видно, что эксцентриситеты орбит троянцев Юпитера не превышают 0.2. Для троянцев Юпитера почти все значения наклонений были меньше 35°, а их среднее наклонение равнялось 13.7° (Jewitt и др., 2000). Наклонения орбит планетезималей при резонансе 1 : 1 на рис. 3 были близки к начальным

255

наклонениям при расчетах, то есть в основном были в несколько раз меньше, чем для троянцев Юпитера.

Орбиты двух известных троянцев Земли имеют эксцентриситеты, равные 0.19 и 0.38, и наклонения, равные 20.9° и 13.8° (https://en.wikipedia.org/wiki/2010_TK7, https://en.wikipedia.org/wiki/ (614689) 2020 XL5). Большее число астероидов, находящихся в резонансе 1:1 с движением Земли, движется в синодических координатах по подковообразным орбитам, а не вокруг одной из точек либрации. Значения их эксцентриситетов и наклонений могут достигать 0.5° и 20° соответственно (Kaplan, Cengiz, 2020). Возможно, большие, чем на рис. 3, наклонения орбит астероидов, находящихся в резонансе 1:1 с движением Юпитера и Земли, связаны с тем, что в наших расчетах орбиты планетезималей из окрестности планеты Проксима с раскачивались в основном только этой планетой.

Примеры резонансов средних движений для стабильных орбит включают резонанс 5 : 4 для обоих значений e_0 , а также резонансы среднего движения 3 : 2, 3 : 4, 2 : 3, 4 : 7 и 5 : 9 для $e_0 = 0.15$. При $e_0 = 0.02$ вблизи резонанса 1 : 1 имелись две подобласти с отношением n_{rel} среднего движения планетезималей к среднему движению планеты Проксима с, близким к 0.98 и 1.02. Только одна планетезималь (с *a*_{*i*0} ≈ 1.5004 а. е.) все еще двигалась вблизи резонанса 1 : 1 для $e_0 = 0.15$ при T == 1000 млн лет. Значение *n*_{rel} = 1.42 в табл. 1 близко к 7/5. Астероид 279 Туле в Солнечной системе движется в резонансе 4 : 3 с Юпитером. В наших расчетах для планеты Проксима с не было никаких планетезималей, находящихся в резонансе 4 : 3 через несколько сотен миллионов лет.

Резонансы среднего движения для a_{i0} , при которых планетезимали выбрасывались на гиперболические орбиты или сталкивались с планетами, включали резонансы 5:4,8:11,4:5 и 7:10 для $e_0 = 0.02$ и резонанс 7:4 для $e_0 = 0.15$. В табл. 2 значения отношения n_{rel} среднего движения планетезималей к среднему движению планеты Проксима c, равные 1.68 и 1.65, близки к 5/3. Для этого резонанса на рис. 1 вместо одной щели имеются две близкие узкие щели.

В планетных системах с одной доминирующей планетой, таких как Проксима Центавра, внутри зоны питания планеты могло быть несколько подобластей (не только троянцев) больших полуосей орбит, в которых тела могут двигаться длительное время. Аналогов астероидного и транснептунового поясов у Проксимы Центавра (α Cen C) может быть больше, чем у Солнечной системы. Меньшее отношение массы планеты Проксима *с* к массе звезды, чем у Юпитера, большее отношение больших полуосей орбит планет Проксима Центавра *с* и *b*, чем аналогичное отношение для Юпитера и Марса, и только одна крупная планета в системе Проксима Центавра могут быть причинами таких возможных различий в поясах и возможного существования планеты (планет) между орбитами планет Проксима *b* и *c*. Столкновения и взаимное гравитационное влияние планетезималей могли препятствовать долгому движению планетезималей по устойчивым орбитам внутри зоны питания планеты. Эти же эффекты могли способствовать попаданию тел в подобласти вне зоны питания планеты, из которых тела могут удаляться из-за их движения при некоторых резонансах.

На рис. 4–5 приведены примеры изменений а, q = a(1 - e), и Q = a(1 + e) со временем для орбит планетезималей, движущихся в резонансе 5:4 с планетой Проксима c при $e_0 = 0.02$ и $e_0 = 0.15$. Эти планетезимали еще двигались в этом резонансе, хотя рисунки приведены через 300 или 910 млн лет после начала эволюции орбит. Элементы е, q и Q их орбит изменялись с периодом T_0 , равным 885 годам при $e_0 = 0.02$ и 36 тыс. лет при $e_0 = 0.15$, т.е. период был значительно больше при больших начальных эксцентриситетах. На рис. 6-7 показаны изменения a, q и Q со временем для орбит планетезималей. движушихся в резонансе 1 : 1 с планетой Проксима с. Периоды основных изменений q и Q составляют около 15 тыс. лет при $e_0 =$ = 0.02 и 8 тыс. лет при $e_0 = 0.15$. Эти изменения в основном соответствуют изменениям большой полуоси на рис. 6 и изменениям эксцентриситета на рис. 7. Планетезимали все еще двигались в резонансе 1 : 1 спустя сотни миллионов лет. На рис. 8-9, планетезимали двигались в резонансе 3 : 4. Для этих рисунков период T_q равен 3 тыс. лет при $e_0 = 0.02$ и 12.45 тыс. лет при $e_0 = 0.15$. Отношение периодов T_q при $e_0 = 0.15$ к периодам при $e_0 = 0.02$ составило 4 и 41 для резонансов 3 : 4 и 5 : 4 соответственно. Максимальные эксцентриситеты орбит планетезималей в вариантах, представленных на рис. 4, 6 и 8 (при $e_0 = 0.02$), равнялись 0.12, 0.09 и 0.12 соответственно. В вариантах, приведенных на рис. 5, 7 и 9 (при $e_0 = 0.15$), такие максимальные эксцентриситеты равнялись 0.31, 0.15 и 0.22 соответственно.

На рис. 10 и 11 приведены примеры эволюции орбит, при которых планетезималь, двигавшаяся долгое время (1–2 млн лет) по хаотической орбите, попадала в резонансы 5 : 2 и 3 : 10 с планетой Проксима c. В вариантах, представленных на этих рисунках, планетезимали продолжали двигаться в этих резонансах на всем рассмотренном интервале времени (равном 100 млн лет).

В расчетах с массой зародыша планеты Проксима c, равной $k_c = 0.5$ или $k_c = 0.1$ от ее современной массы m_c (т.е. равной $3.5m_{\rm E}$ или $0.7m_{\rm E}$), при

Рис. 4. Эволюция со временем (в млн лет) большой полуоси *a*, перигелийного и афелийного расстояний *q* и *Q* (в а. е.) орбиты планетезимали при $a_0 = 1.28062$ а. е., $a_{\min} = 1.2$ а. е., $e_0 = 0.02$, $k_c = 1$, и $t_s = 1^d$. Планетезималь двигалась в резонансе 5 : 4 с планетой Проксима Центавра *c*.

Рис. 5. Эволюция со временем (в млн лет) большой полуоси *a*, перигелийного и афелийного расстояний *q* и *Q* (в а. е.) орбиты планетезимали при $a_0 = 1.28530$ а. е., $a_{\min} = 1.2$ а. е., $e_0 = 0.15$, $k_c = 1$, и $t_s = 1^d$. Планетезималь двигалась в резонансе 5 : 4 с планетой Проксима Центавра *c*.

Рис. 6. Эволюция со временем (в млн лет) большой полуоси *a*, перигелийного и афелийного расстояний *q* и *Q* орбиты (в а. е.) планетезимали при $a_0 = 1.50824$ а. е., $a_{\min} = 1.5$ а. е., $e_0 = 0.02$, $k_c = 1$, и $t_s = 1^d$. Планетезималь двигалась в резонансе 1 : 1 с планетой Проксима Центавра *c*.

Рис. 7. Эволюция со временем (в млн лет) большой полуоси *a*, перигелийного и афелийного расстояний *q* и *Q* (в а. е.) орбиты планетезимали при $a_0 = 1.50041$ а. е., $a_{\min} = 1.5$ а. е., $e_0 = 0.15$, $k_c = 1$, и $t_s = 1^d$. Планетезималь двигалась в резонансе 1 : 1 с планетой Проксима Центавра *c*.

Рис. 8. Эволюция со временем (в млн лет) большой полуоси *a*, перигелийного и афелийного расстояний *q* и *Q* (в а. е.) орбиты планетезимали при $a_0 = 1.78634$ а. е., $a_{\min} = 1.7$ а. е., $e_0 = 0.02$, $k_c = 1$, и $t_s = 1^d$. Планетезималь двигалась в резонансе 3 : 4 с планетой Проксима Центавра *c*.

Рис. 9. Эволюция со временем (в млн лет) большой полуоси *a*, перигелийного и афелийного расстояний *q* и *Q* (в а. е.) орбиты планетезимали при $a_0 = 1.78830$ а. е., $a_{\min} = 1.7$ а. е., $e_0 = 0.15$, $k_c = 1$, и $t_s = 1^d$. Планетезималь двигалась в резонансе 3 : 4 с планетой Проксима Центавра *c*.

АСТРОНОМИЧЕСКИЙ ВЕСТНИК том 57 № 3 2023

Рис. 10. Эволюция со временем (в млн лет) большой полуоси *a*, перигелийного и афелийного расстояний *q* и *Q* (в а. е.) орбиты планетезимали при $a_0 = 1.53877$ а. е., $a_{\min} = 1.5$ а. е., $e_0 = 0.15$, $k_c = 1$, и $t_s = 2^d$. Планетезималь двигалась в резонансе 5 : 2 с планетой Проксима Центавра *c* после 0.9 млн лет.

Рис. 11. Эволюция со временем (в млн лет) большой полуоси *a*, перигелийного и афелийного расстояний *q* и *Q* (в а. е.) орбиты планетезимали при $a_0 = 2.01877$ а. е., $a_{\min} = 2.0$ а. е., $e_0 = 0.15$, $k_c = 1$, и $t_s = 2^d$. Планетезималь двигалась в резонансе 3 : 10 с планетой Проксима Центавра *c* после 2.4 млн лет.

 $e_0 = 0.02$ через 100 млн лет планетезимали продолжали двигаться по эллиптическим орбитам в случае, когда начальные большие полуоси *a*_{i0} (в а. е.) орбит находились в пределах (1.464, 1.514) и (1.472, 1.507) при $k_c = 0.5$ и $k_c = 0.1$ соответственно. При $k_c = 1$ и $e_0 = 0.02$ в середине аналогичного интервала для устойчивых орбит, который находится вблизи резонанса 1 : 1 с планетой Проксима c_{1} находился подинтервал (1.476, 1.500 а. е.), соответствующий планетезималям, выброшенным на гиперболические орбиты или столкнувшимся с планетами (см. табл. 1). В случае $e_0 = 0.15$ интервал a_{i0} (в а. е.), соответствующий планетезималям, которые продолжали двигаться по эллиптическим орбитам, составлял (1.478, 1.502 а. е.) при $k_c = 0.1$, было два диапазона (1.4805, 1.4848 а. е.) и (1.493, 1.498 a. е.) (с тремя значениями *a*_{i0} между ними) при $k_c = 0.5$, и было только одно значение $a_{i0} = 1.504$ а. е. при $k_c = 1$. То, что планетезимали двигались в резонансе 1 : 1 при разных массах планеты, может свидетельствовать в пользу того, что часть троянцев Юпитера — это не пришлые тела, а те, что могли остаться со времени образования Юпитера.

выводы

Рассмотрена зона питания планеты Проксима Центавра c, включая подинтервалы больших полуосей устойчивых орбит внутри основной зоны питания и люки вне основной зоны. Исследования основаны на результатах моделирования эволюции орбит планетезималей под влиянием звезды и планет Проксима c и b на интервале времени до миллиарда лет. Начальные эксцентриситеты e_0 орбит планетезималей равнялись 0.02 или 0.15, а их начальные наклонения равнялись $e_0/2$ радиан.

Исследования были поддержаны грантом 075-15-2020-780 Министерства науки и высшего образования Российской Федерации.

Автор выражает глубокую признательность ре-

УСТОЙЧИВЫЕ ОРБИТЫ В ЗОНЕ ПИТАНИЯ ПЛАНЕТЫ

Если рассматривать начальные значения произведения $a \times e$, характеризующего изменения расстояния от звезды до двигавшихся планеты Проксима *с* и планетезимали (например, $e_c a_c$ и $e_0 a_{\min 002}$), то имеем

$$a_c - a_{\min 002} = 0.04 a_c + 0.02 a_{\min 002} + 2.54 a_c \mu^{1/3},$$

 $a_{\max 002} - a_c = 0.04 a_c + 0.02 a_{\max 002} + 2.40 a_c \mu^{1/3},$
 $a_c - a_{\min 015} = 0.04 a_c + 0.15 a_{\min 015} + 2.23 a_c \mu^{1/3},$
и $a_{\max 015} - a_c = 0.04 a_c + 0.15 a_{\max 015} + 4.3 a_c \mu^{1/3},$

где a_c и $e_c = 0.04$ — большая полуось и эксцентриситет орбиты планеты Проксима c, μ — отношение массы планеты Проксима c к массе звезды, a_{min002} , a_{max002} , a_{min015} и a_{max015} — минимальные и максимальные начальные значения больших полуосей рассмотренных орбит планетезималей в зоне питания планеты Проксима c при начальных эксцентриситетах e_0 орбит планетезималей, равных 0.02 и 0.15 соответственно. Коэффициенты перед $a_c \mu^{1/3}$ в трех вышеприведенных формулах составляют примерно 2.2—2.5, т.е. близки к коэффициентам в $\gamma = (2.1-2.45)\mu^{1/3}$ для круговых начальных орбит.

После аккумуляции планеты Проксима c некоторые планетезимали могли продолжать двигаться по устойчивым эллиптическим орбитам внутри ее зоны питания, в основном очищенной от планетезималей. Обычно такие планетезимали могут двигаться в некоторых резонансах с планетой Проксима c, например, в резонансах 1 : 1 (как троянцы Юпитера), 5 : 4 и 3 : 4, и обычно имеют небольшие эксцентриситеты. Некоторые планетезимали, двигавшиеся долгое время (1–2 млн лет) по хаотическим орбитам, попадали в резонансы 5 : 2 и 3 : 10 с планетой Проксима c и двигались в них минимум десятки миллионов лет.

Динамические характеристики планетной системы у Проксимы Центавра таковы, что аналогов астероидного и транснептунового поясов в этой системе может быть больше, чем в Солнечной системе. Меньшее отношение массы планеты Проксима *с* к массе звезды, чем у Юпитера, большее отношение больших полуосей орбит планет Проксима *с* и *b*, чем аналогичное отношение для Юпитера и Марса, и только одна крупная планета в системе Проксима Центавра могут быть причинами таких возможных различий в поясах и возможного существования планеты (планет) между орбитами планет Проксима *b* и *c*.

⁴ *Брюно А.Д.* Ограниченная задача трех тел. Плоские периодические орбиты. М.: Наука, 1990. 295 с.

Демидова Т.В., Шевченко И.И. Долговременная динамика планетезималей в хаотических зонах планет // Письма в Астрон. журн. 2020. Т. 46. № 11. С. 827– 836

СПИСОК ЛИТЕРАТУРЫ

- Демидова Т.В., Шевченко И.И. Эволюция хаотических зон планет в планетезимальных дисках // Письма в Астрон. журн. 2021. Т. 47. № 11. С. 800-811.
- Ипатов С.И. О гравитационном взаимодействии двух планетезималей // Астрон. журн. 1981. Т. 58. № 3. С. 620–629.
- Ипатов С.И. Изменения эксцентриситетов орбит астероидного типа в окрестности резонанса 2 : 5 // Письма в Астрон. журн. 1989. Т. 15. № 8. С. 750–760.
- Ипатов С.И. Изменения элементов орбит астероидного типа при резонансе 2 : 5 // Астрон. вестн. 1992. Т. 26. № 6. С. 26–53. (*Ipatov S.I.* Numerical model of the evolution of asteroid orbits at the 2 : 5 resonance // Sol. Syst. Res. 1992. V. 26. № 6. P. 520–541.)
- Ипатов С.И. Миграция тел в процессе аккумуляции планет // Астрон. вестн. 1993. Т. 27. № 1. С. 83–101. (*Ipatov S.I.* Migration of bodies in the accretion of planets // Sol. Syst. Res. 1993. V. 27. № 1. Р. 65–79.)
- Ипатов С.И. Гравитационное взаимодействие двух планетезималей, движущихся по близким орбитам // Астрон. вестн. 1994. Т. 28. № 6. С. 10–33. (*Ipatov S.I.* Gravitational interaction of two planetesimals moving in close orbits // Sol. Syst. Res. 1994. V. 28. № 6. P. 494–512. https://www.academia.edu/44448100/Gravitational _interaction_of_two_planetesimals_moving_in_close_orbits.)
- Ипатов С.И. Миграция небесных тел в Солнечной системе. М.: Изд-во УРСС, 2000. 320 с. Изд. стереотип. М.: URSS (Ленанд), 2021. 320 с. https://doi.org/10.17513/np.451.
- *Маркеев А.П.* Точки либрации в небесной механике и космодинамике. М.: Наука, 1978. 312 с.
- *Artymowicz P.* Self regulating protoplanet growth // Icarus. 1987. V. 70. P. 303–318.
- *Birn J.* On the stability of the planetary system // Astron. and Astrophys. 1973. V. 24. P. 283–293.
- *Demidova T.V., Shevchenko I.I.* Three-lane and multilane signatures of planets in planetesimal disks // Mon. Notic. Roy. Astron. Soc. 2016. V. 463. P. L22–L25.
- *Dermott S.F.* The dynamics of tadpole and horseshoe orbits. I. Theory // Icarus. 1981a. V. 48. № 1. P. 1–11.
- *Dermott S.F.* The dynamics of tadpole and horseshoe orbits. II. The coorbital satellites of Saturn // Icarus. 1981b. V. 48. P. 12–22.
- *Duncan M.J., Quinn T., Tremaine S.* The long-term evolution of orbits in the Solar System: a mapping approach // Icarus. 1989. V. 82. P. 402–418.
- Dvorak R., Kubala M. Are the long-living Hilda-like asteroids between Jupiter and Saturn? // Astron. Nachr.

2022. V. 343. id. e220009 (13 p.). https://doi.org/10.1002/asna.20220009

- Farinella P., Froeschlé Ch., Froeschlé C., Gonczi R., Hahn G., Morbidelli A., Valsecchi G.B. Asteroids falling onto the Sun // Nature. 1994. V. 371. P. 314–317.
- Frantseva K., Nesvorný D., Mueller M., van der Tak F.F.S., ten Kate I.L., Pokorný P. Exogenous delivery of water to Mercury // Icarus. 2022. V. 383. id. 114980 (11 p.).
- Gladman B. Dynamics of systems of two close planets // Icarus, 1993. V. 106. № 1. P. 247–263.
- Gladman B., Duncan M. On the fates of minor bodies in the outer Solar System // Astron. J. 1990. V. 100. № 5. P. 1680–1693.
- *Goldreich P., Tremaine S.* The dynamics of planetary rings // Annu. Rev. Astron. and Astrophys. 1982. V. 20. P. 249–284.
- *Goldberg M., Batygin K., Morbidelli A.* A criterion for the stability of planets in chains of resonances // Icarus. 2022. V. 388. id. 115206 (6 p.).
- Gratia P., Lissauer J.J. Eccentricities and the stability of closely-spaced five-planet systems // Icarus. 2020. V. 358. id. 114038 (9 p.).
- Greenzweig Y., Lissauer J.J. Accretion rates of protoplanets. II. Gaussian distribution of planetesimal velocities // Icarus. 1992. V. 100. P. 440–463.
- Hasegawa M., Nakazawa K. Distant encounter between Keplerian particles // Astron. and Astrophys. 1990. V. 227. P. 619–627.
- Holt T.R., Nesvorný D., Horner J., King R., Marschall R., Kamrowski M., Carter B., Brookshaw L., Tylor C. Stability of Jovian Trojans and their collisional families // Mon. Notic. Roy. Astron. Soc. 2020. V. 495. P. 4085–4097. https://doi.org/10.1093/mnras/staa1348
- *Ida S., Nakazawa K.* Collisional probability of planetesimals revolving in the solar gravitational field. III // Astron. and Astrophys. 1989. V. 224. P. 303–315.
- *Ipatov S.I.* Evolution of asteroidal orbits at the 5 : 2 resonance // Icarus. 1992. V. 95. P. 100–114.
- *Ipatov S.I.* Delivery of water and volatiles to planets in the habitable zone in the Proxima Centauri system // Abstracts of the AASTCS Habitable Worlds 2021 Workshop (22–26 February 2021, a virtual conference). Open Engagement Abstracts, Bulletin of the American Astronomical Society, 2021. V. 53. № 3. id 2021n3i1126 (5 p.)

https://baas.aas.org/pub/2021n3i1126/release/2.

- *Ipatov S.I.* Scattering of planetesimals from the feeding zone of Proxima Centauri c // Thirteenth Moscow Solar System Symposium (13M-S3) (October 10–14, 2022, Moscow, the Space Research Institute). P. 372–374. https://doi.org/10.21046/13MS3-2022. 2022. 13MS3-EP-08.
- Jewitt D.C., Trujillo C.A., Luu J.X. Population and size distribution of small Jovian Trojan asteroids // Astron. J. 2000. V. 120. № 2. P. 1140–1147. https://doi.org/10.1086/301453
- Kaplan M., Cengiz S. Horseshoe co-orbitals of Earth: current population and new candidates // Mon. Notic.

Roy. Astron. Soc. 2020. V. 496. P. 4420–4432. https://doi.org/10.1093/mnras/staa1873

- *Kazantsev A., Kazantseva L.* On the possibility of transfer of asteroids from the 2 : 1 mean motion resonance with Jupiter to the Centaur zone // Mon. Notic. Roy. Astron. Soc. 2021. V. 505. P. 408–414.
- Kohne T., Batygin K. On the dynamical origins of retrograde Jupiter Trojans and their connection to high-inclination TNOs // Celest. Mech. and Dyn. Astron. 2020. V. 132. id. 44 (11 p.).
- *Levison H.F., Duncan M.J.* The long-term dynamical behavior of short-period comets // Icarus. 1994. V. 108. P. 18–36.
- *Levison H.F., Shoemaker E.M., Shoemaker C.S.* Dynamical evolution of Jupiter's Trojan asteroids // Nature. 1997. V. 385. P. 42–44.
- *Lissauer J.J., Kary M.* The origin of the systematic component of planetary rotation. I. Planet on a circular orbit // Icarus. 1991. V. 94. P. 126–159.
- Mikkola S., Innanen K.A. Studies on Solar System dynamics. II. The stability of Earth's Trojans // Astron. J. 1990. V. 100. № 1. P. 290–293.
- Mikkola S., Innanen K.A. A numerical exploration of the evolution of Trojan-type asteroidal orbits // Astron. J. 1992. V. 104. № 4. P. 1641–1649.
- *Morrison S., Malhotra R.* Planetary chaotic zone clearing: Destinations and timescales // Astrophys. J. 2015. V. 799. id. 41 (8 p.)
- Nishida S. Collisional processes of planetesimals with a protoplanet under the gravity of the proto-Sun // Prog. Theor. Phys. 1983. V. 70. № 1. P. 93–105.
- *Petit J.M., Henon M.* Satellite encounters // Icarus. 1986. V. 66. № 3. P. 536–555.
- *Qi Y., Qiao D.* Stability analysis of Earth co-orbital objects // Astron. J. 2022. V. 163. id. 211 (14 p.).
- Rabe E. Determination and survey of periodic Trojan orbits in the restricted problem of the three bodies // Astron. J. 1961. V. 66. № 9. P. 500–513.
- *Rabe E.* Periodic librations about the triangular solutions of the restricted Earth-Moon problem and their orbital stabilities // Astron. J. 1962. V. 67. № 10. P. 732–739.
- Shevchenko I.I. Lyapunov and clearing timescales in planetary chaotic zones // Astron. J. 2020a. V. 160. № 5. id. 212 (12 p.).
- *Shevchenko I.I.* Dynamical chaos in planetary systems // Astrophys. and Space Sci. Library. Springer, 2020b. 376 p. https://doi.org/10.1007/978-3-030-52144-8.
- Shevchenko I.I. Extended planetary chaotic zones // Mon. Notic. Roy. Astron. Soc. 2022. V. 515. P. 3996–4004. https://doi.org/10.1093/mnras/staa1348.arXiv:2207.12747.
- Schwarz R., Bazso A., Georgakarakos N., Loibnegger B., Maindl T.I., Bancelin D., Pilat-Lohinger E., Kislyakova K.G., Dvorak R., Dobbs-Dixon I. Exocomets in the Proxima Centauri system and their importance for water transport // Mon. Notic. Roy. Astron. Soc. 2018. V. 480. P. 3595–3608.

https://doi.org/10.1093/mnras/sty2064

261

- Scholl H., Froeschle C.F. Asteroidal motion at the 5/2, 7/3 and 2/1 resonances // Astron. and Astrophys. 1975. V. 42. P. 457–463.
- Scholl H., Froeschle C.F. Orbital evolution of known asteroids in the v_5 secular resonance region // Astron. and Astrophys. 1990. V. 227. P. 255–263.
- Scholl H., Froeschle C.F. The υ₆ secular resonance region near 2 AU: A possible source of meteorites // Astron. and Astrophys. 1991. V. 245. P. 316–321.
- Sidlichovsky M., Melendo B. Mapping for 5/2 asteroidal commensurability // Bull. Astron. Inst. Czech. 1986. V. 37. № 2. P. 65–80.
- *Szebehely V.* Theory of orbits. The restricted problem of three bodies. N.Y. and London: Acad. Press, 1967. 684 p.
- *Tanikawa K., Kikuchi N., Sato I.* On the origin of the planetary spin by accretion of planetesimals. II. Collisional orbits at the Hill surface // Icarus. 1991. V. 94. P. 112–125.

- Weissman P.R., Wetherill G.W. Periodic Trojan-type orbits in the Earth-Sun system // Astron. J. 1974. V. 79. № 3. P. 404–412.
- *Wisdom J*. The origin of the Kirkwood gaps: a mapping for asteroidal motion near the 3/1 commensurability // Astron. J. 1982. V. 87. P. 577–593.
- Wisdom J. Chaotic behavior and the origin of the 3/1 Kirkwood gap // Icarus. 1983. V. 56. P. 51–74.
- *Yoshikawa M.* Motions of asteroids at the Kirkwood gaps. II. On the 5 : 2, 7 : 3, and 2 : 1 resonances with Jupiter // Icarus. 1991. V. 92. P. 94–117.
- Zhang-yin Z., Lin L. The stable regions of the triangular libration points of the planets // Icarus. 1992. V. 100. P. 136–142.