АКУСТИЧЕСКИЙ ЖУРНАЛ, 2022, том 68, № 5, с. 530–542

АКУСТИКА СТРУКТУРНО НЕОДНОРОДНЫХ ТВЕРДЫХ СРЕД. ГЕОЛОГИЧЕСКАЯ АКУСТИКА

УДК 534.131.1;532.685;534.141.4

СРАВНЕНИЕ ТЕОРИИ С РЕЗУЛЬТАТАМИ ИЗМЕРЕНИЙ ШУМА ФИЛЬТРАЦИИ ФЛЮИДА В ПОРИСТОЙ СРЕДЕ

© 2022 г. А. В. Лебедев*

Институт прикладной физики РАН, ул. Ульянова 46, Н. Новгород, 603950 Россия *e-mail: swan@appl.sci-nnov.ru Поступила в редакцию 25.03.2022 г. После доработки 25.03.2022 г.

Принята к публикации 30.03.2022 г.

Рассматривается один из методов дистанционных исследований структурно-неоднородных сред – изучение шума фильтрации. Дано краткое описание предложенной ранее модели возникновения шума фильтрации. Приводятся результаты вычислений, отмечаются особенности внутренней структуры природных пористых материалов, обуславливающие генерацию акустического излучения. Результаты расчета сопоставлены с недавно опубликованными в Акустическом журнале экспериментальными данными. Показано, что имеется удовлетворительное согласие между предсказанием в рамках предложенной теоретической модели и результатыи измерений. Это открывает возможности для определения параметров пористых сред и скорости флюида по измерению шума фильтрации.

Ключевые слова: акустика пористых сред, дистанционная акустическая диагностика **DOI:** 10.31857/S0320791922040062

введение

Способность акустических волн проникать на значительные глубины выделяет акустические методы исследования природных сред по сравнению с другими физическими методами. Здесь следует указать на масштабные сейсмоакустические методы исследований (например, [1-3]), которые направлены на исследование недр Земли, поиск полезных ископаемых и решение инженерно-технических задач с использованием искусственных источников пробных волн. Наряду с активными методами исследований в последнее время набирают популярность пассивные методы, использующие природные источники. Здесь также существует большой массив работ по исследованию строения Земли, томографии зон разломов и донных отложений с использованием природного микросейсмического шума (например, [4–9]). Отдельный интерес представляют акустические методы исследования строения природных пористых сред, основанные на анализе шума, возникающего при фильтрации флюида (газ, жидкость). Эти методы занимают промежуточное положение между активными и пассивными сейсмоакустическими методами, поскольку, с одной стороны, источники шума имеют природное происхождение, а с другой, без наличия внешнего воздействия, приводящего к появлению потока флюида в пористой среде, шум фильтрации отсутствует.

В 1973 г. была опубликована работа [10], в которой обсуждалась информативность амплитудно-частотных спектров акустического шума при изучении характеристик турбулентного течения флюидов в эксплуатационной скважине и заколонном пространстве. Результаты [10] дали толчок к развитию диагностики течения флюида в нефтегазовой промышленности и поиску информативных параметров в характеристиках акустического шума, которые можно было бы использовать в диагностических целях. Анализ низкочастотных акустических шумов в полосе от долей Гц до единиц кГц использовался для диагностики скорости притока флюида из пласта в области, примыкающей к скважине. Анализ шума в области 5-100 кГш. который обоснованно связывается с течением флюида в порах, позволяет осуществлять пассивную акустическую диагностику притоков флюида из более удаленных от скважины областей. При этом до настояшего момента времени в качестве источника шума в этих областях рассматривается предложенный в [11] механизм акустического излучения турбулентным течением в порах [12–16], что, на взгляд автора настоящей работы, неверно из-за малости числа Рейнольдса соответствующих течений. Отметим, что течение в самой скважине, являвшееся предметом исследо-

Рис. 1. Типичная схема возникновения потока флюида в пористой среде.

вания в [10], характеризуется значительными величинами числа Рейнольдса, и генерация шума такого течения действительно связана с турбулентными пульсациями потока флюида.

Схема работы нагнетательной и эксплуатационной скважин в однородной пористой среде ("вид сверху") показана на рис. 1 (см. также [17], рис. 40). Сплошными линиями со стрелками показаны линии тока, штриховыми линиями отмечены линии равного давления. Давление в точке А (исток) больше давления в точке В (сток), что заставляет жидкость в порах двигаться в нужном направлении, например, выдавливая нефть из пористой среды (коллектора) в эксплуатационную скважину В. Экспериментам на образцах пористых пород [12–16] отвечает линия тока в виде прямой, соединяющей точки А и В.

Для возникновения звука необходимо отличие от нуля производной по времени от скорости течения [18, 19]. По прошествии некоторого времени (порядка часов или суток [20]), необходимого для установления распределения давления, макроскопические значения давления и скорости течения стационарны. Следовательно, на первый взгляд, причины для возникновения шума фильтрации отсутствуют. Экспериментальные же данные указывают на наличие шума фильтрации, в том числе, и в режиме стационарных значений давления и скорости течения.

Следует коротко остановиться на существующих моделях генерации шума фильтрации. В качестве основной причины нестационарности рассматривалась и продолжает рассматриваться (например, недавние публикации [15, 16]) турбулентность потока жидкости в пористой среде и связанное с турбулентностью излучение звука в классической теории Лайтхилла [18]. Для объяснения наличия характерных частот в спектре мощности шума предлагалось рассматривать набор микроскопических резонаторов в виде выступающих зерен, колебания которых возбуждаются турбулентными пульсациями (в качестве гипотезы эта идея высказана в работе [12]).

В сравнительно недавно опубликованной монографии [13] в качестве основного источника нестационарности потока флюида через пористую среду также указывается на турбулентность. При этом присутствует ошибочное утверждение со ссылкой на [20] о том, что переход к турбулентному режиму течения в пористых средах имеет место при значениях числа Рейнольдса течения R ~ 1-10. В монографии [20] введено понятие числа Рейнольдса для течения в пористых средах, и, действительно, указывается на отклонение закона фильтрации Дарси от линейного для величин $R \sim 1-10$. Там же дано пояснение (страницы 124 и 125), что отклонение от линейного закона Дарси не связано с переходом к турбулентному режиму течения, а обусловлено инерцией жидкости при движении по искривленным каналампорам или членом $(\mathbf{v} \cdot \nabla)\mathbf{v}$, где \mathbf{v} – вектор скорости течения в уравнении Навье-Стокса (см. также разъяснение на странице 14 монографии [21] и выделенный курсивом текст в конце §6 [17]). Еще раз подчеркнем, что в ставшей классической монографии [20], которая была впервые издана в 1949 г., уже указывалось на наличие заблуждений о связи отклонения закона Дарси от линейного с турбулентностью потока. Тем не менее, ошибочное утверждение о переходе к турбулентному режиму при числах Рейнольдса течения R ~ 1-10 оказалось удивительно "живучим", повторяясь в работах различных авторов на протяжении десятилетий.

Кроме турбулентности в качестве источников нестационарности рассматривались и другие механизмы. В монографии [13] представлено выражение для характерного времени пульсации в модели двух полостей, соединенных порой, которая может открываться и закрываться при некоторых пороговых значениях давления. При этом в качестве механизма, управляющего открытием и закрытием поры, предлагается рассматривать изменение давления, вызванное течением флюида (закон Бернулли [18]). Несложные оценки показывают, что для реализации подобного сценария скорость микроскопического течения в поре должна быть сопоставима по порядку величины со скоростью звука в флюиде и/или вмещающей пору среде. Поэтому предложенный механизм представляется маловероятным.

Кроме механизма возбуждения звука турбулентностью рассматривалось излучение звука микроскопическими вихрями в режиме течения с отклонением от линейного закона Дарси. Соответствующие экспериментальные результаты и их обсуждение представлены в [22]. Широкий спектр шума фильтрации связывается с наличием микроскопических вихрей различных пространственных масштабов. Поскольку шум фильтрации наблюдается не только для чисел Рейнольдса $R \gtrsim 1-10$, но и при $R \lesssim 1$, возникает вопрос об универсальности предлагаемого авторами [22] механизма генерации шума. Идея прерывистости течения на микроскопическом уровне развивалась в работе [23], где рассматривалась задача о фильтрации газа с парами жидкости через пористую среду и предполагалось, что течение газа сопровождается отрывом капель жидкости, конденсированной на поверхности пространства пор и перекрывающей микроскопический канал фильтрации газа. Образовавшиеся затем брызги вновь сливаются в новую каплю жидкости и процесс повторяется. Таким образом, скачок давления, сопровождающий расширение газа после прорыва капли, является причиной генерации шума. Развиваемые автором [23] представления идеологически близки к представлениям о наличии предела сдвиговой прочности флюида (реологической или неньютоновской жидкости), когда при превышении предела прочности связи (сил поверхностного натяжения на границе раздела жидкость-газ) начинается движение флюида, что в момент нестационарности приведет к появлению акустического излучения. Однако имеющиеся экспериментальные данные [12] указывают на генерацию шума при фильтрации сухого газа или воды, которая не относится к структурированным жидкостям. Поэтому предложенная модель [23] не может рассматриваться в качестве универсальной. Кроме того, механизм отрыва капли реализуется при величине числа Вебера (отношение кинетической энергии потока к потенциальной энергии сил поверхностного натяжения), превышающей единицу, что, как

правило, отвечает числу Рейнольдса порядка 10³-10⁴

Говоря о моделях генерации шума фильтрации, следует указать на интересный цикл исследований [24]. В этих работах анализируются нелинейные динамические процессы при фильтрации структурированных неньютоновских жидкостей и двухфазных флюидов в пористых средах. Значительное внимание уделено исследованию динамики течения жидкости с растворенным в ней газом, когда давление в порах близко к давлению насыщенных паров и возможно выделение растворенного газа из жидкости. Представленные результаты экспериментальных исследований указывают на появление автоколебаний концентрации двух фаз. Приведенное математическое описание в рамках нелинейной модели типа "хищник-жертва" [25] согласуется с представленными экспериментальными данными. Излучение звука в [24] не рассматривается, но нетрудно догадаться, что обнаруженная нестационарность может быть источником шума. Это нашло подтверждение в недавно опубликованной работе [26], где представлены экспериментальные исследования особенностей генерации шума при выдавливании одного флюида другим. Рассмотренный в [24] механизм возникновения нестационарности связан с наличием двух фаз и особенностями течения вблизи порога перколяции по отношению к величинам относительной фазовой проницаемости (см., например, [21], Глава 4), и поэтому такой механизм также не может объяснить весь набор экспериментальных фактов по возникновению шума фильтрации. Кроме того, характерные временные масштабы, отвечающие выделению растворенного газа и его поглощению, недостаточно малы для объяснения шума фильтрации на частотах в несколько кГц.

Таким образом, анализ литературы, посвященной генерации шума при фильтрации жидкости в пористых средах, показывает отсутствие универсального описания явления. Из анализа литературы также следует, что многие авторы искали механизмы, отвечающие за прерывистый характер течения на микроскопическом уровне. Наличие характерных частот в спектре шума и их независимость от типа флюида указывают на присутствие квазипериодических или релаксационных процессов, связанных с особенностями внутреннего устройства пористых сред. Из результатов исследований [24] следует существование сложных нелинейных режимов и возникновение автоколебаний, в том числе, наблюдавшихся в экспериментах. Все это послужило основой модели генерации шума фильтрации, предложенной в работе [27] и получившей развитие в [28].

532

МОДЕЛЬ ШУМА ФИЛЬТРАЦИИ

Принципиальное отличие моделей [27, 28] от предложенных ранее состоит в механизме возникновения нестационарности. Модель предполагает, что нестационарность обусловлена возникновением режима релаксационных автоколебаний [25, 29]. Источником акустического шума является выброс порций жидкости (простой источник акустического излучения [19]), а шумовой характер акустического излучения обусловлен случайностью таких выбросов от множества структурных элементов, связанных с существованием режима автоколебаний. В работе [27] отмечается, что для возникновения режима релаксационных автоколебаний с медленными и быстрыми движениями [25, 29] принципиально необходимо наличие нелинейного элемента с гистерезисом: т.е. открытие и закрытие канала сброса излишков флюида имеет место при различающемся давлении. Заметим, что модель [27], будучи согласованной с теорией колебаний и физикой горных пород (смотри ниже), с этой точки зрения принципиально отличается от упомянутой выше модели пульсирующего канала [13].

Модель элементарного источника акустического излучения показана на рис. 2 (см. также [27, 28]). Представленная на рис. 2 схема поясняет причины появления шума фильтрации и характерных частот в спектре этого шума. В исходном состоянии термодинамического равновесия давление внутри пласта на заданной глубине одинаково ($p_2 = p_1 = p_0^{(1)} = p_0^{(2)}$ на рис. 2), и движение жидкости отсутствует. При подаче давления извне, например, со стороны нагнетательной скважины, в пористом пласте величина p₂ возрастает, превышая давление p_1 в точке вдоль канала (кластера бесконечной длины в терминологии теории перколяции, например, [30, 31]), отвечающего за ненулевую проницаемость (способность жидкости протекать через пористую среду). Величина p_2 также становится больше $p_0^{(1)}$, что приводит к появлению сил, двигающих жидкость в тупиковый кластер, связанный с основным каналом трещиной, которая в исходном состоянии равновесия закрыта. Возникает переходный процесс, связанный с микроскопическими потоками жидкости, в том числе, и в тупиковые кластеры (полости).

Это течение аналогично течениям в моделях с выдавливанием [32, 33], с которыми связывается наблюдавшаяся в натурных исследованиях дисперсия сейсмических волн в диапазоне ~10 кГц.

Несмотря на похожесть полости объема $V_0^{(1)}$ с каналом длины L_0 (рис. 2) на резонатор Гельмгольца [19], нельзя говорить о резонансных колебаниях (оценка добротности приведена ниже). Дело в

том, что канал L_0 является узким, и поэтому силы вязкого трения превалируют над силами инерции флюида, заполняющего канал. Здесь имеется аналогия с теорией Био [34], в рамках которой силы вязкого трения превышают силы инерции в диапазоне частот ниже сотен кГц. Поэтому модели [32, 33] течения флюида поперек основного потока описывают релаксационные, а не резонансные явления в пористых средах.

Поскольку часть полостей (кластеров) связана друг с другом и с основным перколяционным кластером через исходно закрытые каналы-трещины, приложение внешнего давления приводит к открытию каналов в результате развития неустойчивости контакта с адгезией и разрыву этого контакта при давлении pon [35]. Возникает течение через канал с последующим сбросом давления и закрытием трещины-канала через интервал времени, необходимый для сброса давления до величины *p*_{off}, отвечающей закрытию канала. Закрытие канала также связано с развитием неустойчивости, обусловленной сильным взаимодействием поверхностей через силы Ван-дер-Ваальса. Таким образом, процесс возникновения пульсаций связывается с наличием контактов с адгезией или трещин между зернами, т.е. всегда присутствующих в горных породах структурных элементов (например, обзоры [36, 37], также цветные иллюстрации в [38]), при этом гистерезис адгезии при отрыве/восстановлении контакта поверхностей также хорошо известен [35, 39]. Процесс обратимый, он не связан с разрушением, и может повторяться бесконечное число раз. Возникает режим автоколебаний разрывного типа с быстрыми (отрыв/восстановление контакта с адгезией) и медленными (накопление излишков жидкости и их сброс) движениями, общая теория которых представлена в [25, 29].

Параметрами, определяющими временные масштабы, являются жесткость полостей объема $V_0^{(1,2)}$ (рис. 2) в изначально тупиковых ответвлениях (кластерах) от основного потока жидкости и гидродинамическое сопротивление каналов длины $L_{0,1}$ (рис. 2), соединяющих эти полости с основным потоком. Наличие подобных элементов релаксации физически обосновано и опирается на работы [32, 33], которые получили экспериментальное подтверждение при наблюдении дисперсии сейсмических волн в диапазоне частот порядка 1-10 кГц (см. также [34], где представлено обсуждение этих работ). Наличие тупиковых ответвлений также согласуется с результатами теории перколяции (например, [30, 31]), где показывается, что число тупиковых кластеров стремится к бесконечности вблизи порога перколяции, а затем плавно уменьшается. Нелинейным элементом, обеспечивающим существование "быстрых

ЛЕБЕДЕВ

Рис. 2. Модель пульсирующего канала (адаптировано из [27, 28]).

движений" на фазовой плоскости [25, 29], является контакт с адгезией, который может открываться и закрываться в зависимости от расклинивающего давления жидкости, заполняющей расположенную рядом полость. Наличие таких контактов с адгезией, по-видимому, является отличительной чертой горных пород, поскольку позволяет единообразно описать широкий класс нелинейных явлений в таких средах [35].

Из-за наличия очевидной симметрии относительно направления фильтрации и предполагаемой изотропии природной среды $L_1 = L_0$ и $V_0^{(1)} = V_0^{(2)} = V_0$. Система дифференциальных уравнений, описывающих изменение объемов флюида в полостях $V_0^{(1)}$ и $V_0^{(2)}$, имеет вид:

$$\frac{\rho_f L_0 V_0}{S_0} \left[\ddot{y}_0 + \ddot{y}_1 + \frac{v_f}{k_0} (\dot{y}_0 + \dot{y}_1) + \omega_0^2 y_0 \right] = p_2 - p_1, \quad (1)$$

$$\frac{\omega_0^2 k_0}{v_f} \frac{y_0 - y_1 + y_2}{\kappa} = \dot{y}_1,$$
(2)

$$\omega_0^2(\dot{y}_1 - \dot{y}_2) = \ddot{y}_2 + \frac{\mathbf{v}_f}{k_0} \dot{y}_2, \qquad (3)$$

где безразмерные величины y_j отвечают изменению объема флюида плотности ρ_f в полости $V_0^{(1)}$, открывающемся канале длины L_c (рис. 2) и в полости $V_0^{(2)}$ соответственно. Нормировка изменения объемов выполнена на величину V_0 . Величины S_0 и

АКУСТИЧЕСКИЙ ЖУРНАЛ том 68 № 5 2022

 k_0 определяют площадь поперечного сечения и проницаемость каналов длины L_0 и L_1 , v_f – кинематическая вязкость флюида, ω_0^2 – квадрат собственной частоты резонатора Гельмгольца, образованного полостью объема V_0 и каналом длины L_0 . Величина $\omega_0^2 = \frac{\Re S_0}{\rho_f L_0 V_0}$, где \Re – объемная жесткость полости объема V_0 , учитывающая объемные жесткости скелета пористой среды и флюида. При фильтрации флюида, имеющего низкую объемную жесткость (газа) по сравнению с

жесткостью скелета, величина $\mathscr{K} = \rho_f c_f^2$, где c_f – скорость звука во флюиде.

Акустическое давление от элементарной ячейки (рис. 2) создается простым источником:

$$p_{a}(R,t) = \frac{\rho_{p}V_{0}}{4\pi R} \dot{y}_{2}\Big|_{t-R/V_{p}},$$
(4)

где ρ_p — плотность скелета пористой среды, V_p — скорость продольной волны, распространяющейся в скелете. Значение производной \ddot{y}_2 в выражении (4) берется в момент времени $t - R/V_p$, что учитывает запаздывание при распространении акустической волны.

За генерацию автоколебаний отвечает безразмерная величина κ , которая описывает отношение гидродинамических сопротивлений каналов L_c и L_0 . Значение $1/\kappa$ зависит от времени следующим образом:

$$\frac{1}{\kappa} = \frac{1}{\kappa_0} \begin{cases} 1 - \exp\left(-\frac{t - t_{\text{on}}}{\tau_1}\right), \quad p_0(t) > p_{\text{on}}, \\ \exp\left(-\frac{t - t_{\text{off}}}{\tau_2}\right), \quad p_0(t) < p_{\text{off}}, \end{cases}$$
(5)

где κ_0 – отношение гидродинамического сопротивления полностью открытого канала длины L_c к гидродинамическому сопротивлению канала длины L₀. Величина гидродинамического сопротивления определяется как отношение разности давлений к скорости изменения соответствующего объема. Давление в полости V₀⁽¹⁾ равно $p_0(t) = \mathcal{K} y_0(t)$. Моменты времени t_{on} и t_{off} определяются равенствами $p_0(t_{\rm on}) = p_{\rm on}$ и $p_0(t_{\rm off}) = p_{\rm off}$ для каждого цикла автоколебаний. Величины τ_1 и τ₂ отвечают характерным масштабам времени развития неустойчивости в момент отрыва контакта с адгезией и его восстановления, т.е. ограничивают скорость "быстрых движений" в релаксационных автоколебаниях. Анализ динамических эффектов, связанных с разрывом и восстановлением контактов с адгезией, представляет собой сложную задачу из-за наличия множества релаксационных процессов с плохо определенными параметрами (подробнее в [39]). Поэтому величины $\tau_{1,2}$ являются феноменологическими параметрами модели.

Величина κ_0 зависит от площади поперечного сечения и длины открытого канала сброса излишков флюида. С одной стороны, площадь поперечного сечения отрытого канала много меньше S_0 , поскольку, например, раскрытие трещины в виде разорванного контакта с адгезией может иметь очень малый размер порядка нескольких нанометров (смотри примеры расчета в [35]). С другой стороны, длина этого отрытого канала, очевидно, существенно меньше L_0 , имея порядок размера области контакта зерен, что уменьшает его гидродинамическое сопротивление. Указанные соображения позволяют положить $\kappa_0 \simeq 1$, как это было сделано в [28], либо значительно больше единицы $\kappa_0 \gg 1$ (см. ниже).

Параметры L_0 , S_0 , V_0 и k_0 целесообразно выразить через характерный диаметр зерна D_g . Длину канала L_0 целесообразно выразить в виде $L_0 = \xi_1 D_g$, где $\xi_1 \gtrsim 1$ – безразмерная величина. Объем полости V_0 целесообразно выразить в виде $V_0 = \xi_2 V_g$, где $V_g = \pi D_g^3/6$ – объем, занимаемый зерном, и $\xi_2 \gtrsim 1$ – безразмерная величина. Параметр площади возможно связать с диаметром поры, который составляет примерно $D_g/6$ (см. [34], стр. 269), что отвечает $S_0 \simeq \pi D_g^2/144 \approx 0.022 D_g^2$. Для определения проницаемости k_0 можно воспользоваться теорией Козени–Кармана [34, §8.4]:

$$k_0 = \frac{D_g^2}{72} \frac{\phi^3}{(1-\phi)^2 \alpha^2} = \beta S_0, \tag{6}$$

где ϕ — пористость, равная отношению объема пустот и пор к полному объему пористого материала, $\alpha = 1 + (1 - \phi)/2\phi$ — извилистость пор [34], $\beta = \frac{2\phi^3}{\pi(1 - \phi)^2\alpha^2}$. Характерной величине пористо-

сти $\phi = 0.2$ отвечает $\beta = 8.8 \times 10^{-4}$. Большой набор экспериментальных данных представлен в [40], где показано, что $k_0 \propto \phi^{3m}$ при $1 \le m \le 2$ и для большинства пористых материалов $m \approx 1$, исключая среды с низкой проницаемостью (ил и глина), для которых характерна величина m = 2.

Плотность ρ_f и кинематическая вязкость v_f флюида, а также скорость звука c_f известны, поскольку известен тип флюида, который фильтруется через поры. В частности, для воздуха, фильтрация которого исследовалась в статье [16], плотность, вязкость воздуха и скорость звука составляют [41]: $\rho_f = 1.3 \text{ кг/м}^3$, $v_f = 1.4 \times 10^{-5} \text{ м}^2/\text{c}$, $c_f = 343 \text{ м/c}$ для комнатной температуры. Оценим добротность колебаний резонатора Гельмгольца, образованного полостью объема V_0 и каналом L_0 . Для данных [16] характерный размер зерна $D_g = 0.4 \text{ мм}$, проницаемость $k_0 \sim 10^{-12} \text{ м}^2$ (см. в следующем разделе). Величина $\omega_0 = \sqrt{\frac{0.04}{\xi_1\xi_2}} \frac{c_f}{D_g} \approx$

 $\approx \frac{1.7 \times 10^5}{\sqrt{\xi_1 \xi_2}} c^{-2}$, величина $\frac{v_f}{k_0} \approx 1.4 \times 10^7 c^{-1}$ оказыва-

ется существенно больше ω_0 , что отвечает добротности колебаний значительно меньше единицы при $\xi_{1,2} \ge 1$ или релаксационным колебаниям. Характерное время релаксации $\frac{v_f}{k_0\omega_0^2}$ составляет не более 0.5 мс, что отвечает частоте основной гармоники акустического излучения не менее

ОЦЕНКА ПАРАМЕТРОВ, ОТВЕЧАЮЩИХ ЭКСПЕРИМЕНТУ [16]

2 кГц для $\xi_1 = \xi_2 = 1$.

В подавляющем большинстве работ, посвященных экспериментальным исследованиям шума фильтрации [12–15], ввиду большой сложности измерений и калибровки приемников акустического шума фильтрации приводятся безразмерные (нормированные на максимум) спектральные амплитуды. Это затрудняет сравнение теоретических оценок с результатами измерений. Приятным исключением является недавно опубликованная работа [16], где на одном из графиков (рис. 8 указанной статьи) представлена зависимость интенсивности акустического излучения в Вт/м² от скорости потока в м/с. Отмеченная в [16] квадратичная зависимость интенсивности акустического шумового излучения от скорости потока согласуется с предсказанием теории [27, 28], где мощность акустического шума фильтрации пропорциональна кинетической энергии потока.

К сожалению, при описании рис. 8 авторы статьи не дали достаточно подробного пояснения относительно того, что они понимают под "максимумом звуковой интенсивности" в спектре. Размерность величины по оси ординат на рис. 8 указанной статьи явно не отвечает спектральной плотности интенсивности звукового излучения. Поэтому мы в дальнейшем будем трактовать данные [16] как стандартное определение интенсивности акустического поля [19]:

$$I_a = \frac{p_a^2}{\rho_f c_f},\tag{7}$$

Рис. 3. Вверху показана зависимость среднеквадратичной амплитуды давления от скорости потока, отвечающая данным рисунка 8 из [16]. Внизу – оценки амплитуды деформаций в пористом материале при фильтрации жидкости. Данные для четырех образцов приведены в той же области параметров, что и на рис. 8 статьи [16].

где p_a – среднеквадратичная амплитуда давления, которое регистрировал контактный микрофон (см. схему измерений на рис. 1 статьи [16] и пояснения). Величины среднеквадратичной амплитуды давления определены по формуле (7): $p_a = \sqrt{\rho_f c_f I_a}$, где величина интенсивности взята из данных работы [16]. Анализ представленных в работе спектров указывает на то, что в спектральном анализе использовалось разрешение по частоте $\Delta f = 50$ Гц. Для перехода к спектральной плотности амплитуды акустического шума поделим вычисленное значение p_a на $\sqrt{\Delta f}$.

На рис. 3 представлены зависимости интенсивности шума фильтрации от скорости потока по данным рис. 8 из статьи [16]. Линии на рис. 3 отвечают полученным в статье регрессиям. Величины интенсивности акустического излучения (шума), приведенные на рис. 8 статьи, пересчитаны по формуле (7) к среднеквадратичным амплитудам давления. Давление прямо пропорционально скорости потока. Символы на графике (рис. 3) отвечают символам, использованным в статье [16] для удобства сравнения.

В основе модели возникновения релаксационных автоколебаний лежит предположение о существовании элементов с гистерезисом адгезии. Выше отмечалось, что режим деформации с гистерезисом (отрывом и восстановлением контактов) реализуется при уровне деформации $\varepsilon \gtrsim 10^{-7}$ [42]. Поэтому для дополнительной проверки обоснованности модели необходимо иметь оцен-

АКУСТИЧЕСКИЙ ЖУРНАЛ том 68 № 5 2022

N⁰	φ, %	<i>k</i> ₀ , мД	ρ _{<i>p</i>} , г/см ³	D_g , мм	Символ
31	22.46	3189.8	2.67	0.30	•
2012 - 61	15.79	1116.8	2.66	0.44	
2012 - 11	13.65	598.25	2.69	0.47	A
2012 - 13	11.49	438.6	2.70	0.62	♦

Таблица 1. Характеристики образцов, для которых в [16] приведены размерные величины акустического шума. Размер зерна D_g есть результат оценки (6).

ку уровня деформаций в эксперименте [16]. Подробное описание вычислений опустим из-за ограничений на объем публикации. На нижнем графике (рис. 3) представлены зависимости амплитуды деформации от скорости фильтрации в эксперименте [16], вычисленные по формулам теории Био [34] в предположении свободных боковых границ цилиндрических образцов (в эксперименте образцы крепились через эластичные прокладки. что является основанием для использования указанного предположения). Нетрудно видеть, что скоростям фильтрации, при которых в работе [16] регистрировался шум фильтрации, отвечают деформации порядка $10^{-7} - 10^{-5}$. Отметим, что величина $\varepsilon \sim 10^{-7}$ отвечает переходу от классической нелинейности к нелинейности гистерезисного типа [35, 42], и экспериментальные данные не противоречат исходным предположе-

Параметры модели, связанные с размером зерен, проницаемостью и другими структурными особенностями, возьмем из статьи [16], где в табл. 1 приведены характеристики исследованных образцов пористых сред. Данные рис. 3 отвечают карбонатным горным породам. Для 4-х образцов значения пористости, проницаемости и плотности приведены в табл. 1 (выборка из табл. 1 [16]). Символы в правой колонке (табл. 1) отвечают соответствующим образом отмеченным кривым на графиках (рис. 3). Величина ф отвечает пористости (объемному содержанию пустот), величина k_0 отвечает проницаемости горной породы, значение которой приведено в табл. 1 во внесистемных единицах: 1 Дарси приблизительно равен 0.9869 мкм², ρ_n отвечает плотности горной породы.

ниям теоретической модели [27, 28].

Важным параметром модели [28] является размер зерна. Величина объема полостей и длины каналов связаны с этим размером. Гранулометрический состав в статье [16] представлен только для терригенных образцов горных пород. Графики на рис. 8 статьи [16] отвечают карбонатным породам, для которых результаты гранулометрического анализа не приведены. Поэтому характерный диаметр зерен D_g в табл. 1 оценивался по формуле (6), связывающей проницаемость и размер зерна:

$$D_g = \sqrt{\frac{144k_0}{\pi\beta}} \simeq 0.4 \text{ MM},$$
 (8)

где значение D_g справа отвечает характерной величине $\phi = 20\%$. Величины D_g в табл. 1 отвечают оценкам по формуле (8).

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ДЛЯ УСЛОВИЙ ЭКСПЕРИМЕНТА [16]

На рис. 4 представлены результаты численного интегрирования системы дифференциальных уравнений [28] для одного элементарного источника акустического излучения. Для возникновения режима автоколебаний необходимо выполнение очевидных условий: (1) давление p_{on} , открывающее канал сброса излишков жидкости, должно быть меньше p_2 (рис. 2); (2) давление $p_{\rm off} < p_{\rm on}$, при котором канал сброса излишков жидкости закрывается, должно быть больше равновесного давления при условии постоянно открытого канала. В работе [27] отмечалась аналогия предложенной модели возникновения акустического излучения с процессом заряда и разряда электрической емкости, подсоединенной к неоновой лампе (см. [29], рис. 195). Для возникновения автоколебаний в этой электрической цепи требуется достаточное напряжение для зажигания неоновой лампы и падение этого напряжения до значения, достаточного для исчезновения тлеющего разряда.

Пример № 1 отвечает ситуации, когда условие (1) выполняется, а условие (2) не выполняется. В этом случае исходно закрытый канал сброса излишков жидкости при подаче давления извне открывается, и остается в таком состоянии в дальнейшем. Пример № 2 отвечает случаю, когда условие (1) не выполняется, и канал сброса излишков жидкости не может открыться. Наконец, пример № 3 отвечает случаю, когда оба условия выполнены, и возникает режим релаксационных автоколебаний. Давление в полости V_0 (рис. 2) изменяется между двумя предельными значениями, отвечающими открытию и закрытию канала

Рис. 4. Возникновение режима релаксационных автоколебаний для элементарного источника излучения звука. Параметры $V_0/V_g = 2$, $L_0/D_g = 2$, $\tau_1 = \tau_2 = 0$, скорость фильтрации 2 м/с. На вставке показаны зависимости $p_0(t)$ для $p_{\rm on} - p_{\rm off} = 100$ Па, серая линия отвечает $\tau_1 = \tau_2 = 10^{-5}$ с.

сброса излишков жидкости. Для всех примеров момент времени 1 мс отвечает включению внешнего давления. До момента времени около 4 мс длится переходный процесс, связанный с заполнением объема V_0 до величины, отвечающей избыточному давлению $p_2 - p_0$ (рис. 2).

Упругие характеристики скелета отвечают значениям из справочной литературы, параметры пористости и проницаемости отвечают образцу № 31 (табл. 1 и рис. 3), скорость фильтрации задавалась равной 2 м/с. В этом случае для проницаемости $k_0 \simeq 10^{-12} \text{ м}^2$ оценка с использованием ли-нейного уравнения Дарси приводит к значениям градиента внешнего давления $\left| \nabla p_{\mathrm{ext}} \right| \simeq 10^7 \; \Pi \mathrm{a/w}$ и величине избыточного давления $p_{\text{ext}} = p_2 - p_1 \approx 7 \text{ кПа}$ (предполагается, что характерный пространственный масштаб элементарной ячейки на рис. 2 вдоль направления течения флюида имеет порядок L_0). Длина канала L_0 (рис. 2) задавалась равной $5D_g$, объем полости $V_0 = V_g$, безразмерное сопротивление канала сброса излишков флюида $\kappa_0 = 1$. Значения величин давления, отвечающих за открытие и закрытие канала сброса излишков флюида в примере № 3, равны $p_{on} = 6.8$ кПа, $p_{\rm off} = 4.8 \ {\rm K}\Pi {\rm a} \ {\rm u} \ \Delta p = p_{\rm on} - p_{\rm off} = 2 \ {\rm K}\Pi {\rm a}.$ Указанные величины являются нереалистичными для

заданной скорости фильтрации (см. ниже), а расчет для этих параметров приведен, поскольку в этом случае лучше видны детали зависимости давления $p_0(t)$. Вставка на рис. 4 отвечает величинам давления открытия и закрытия канала сброса излишков флюида $p_{on} = 6 \ \kappa \Pi a \ u \ p_{off} = 5.9 \ \kappa \Pi a$, т.е. разности критических значений $\Delta p = 100 \ \Pi a$. Отметим, что уменьшение величины Δp приводит к увеличению частоты автоколебаний [27]. Учет конечной величины времени развития неустойчивости (серая линия на вставке рис. 4) приводит к возникновению почти синусоидальной зависимости $p_0(t)$.

Значения параметров p_{on} и p_{off} не могут быть заданы произвольно. Эти величины зависят от радиусов кривизны контактирующих поверхностей и величины коэффициента адгезии (пример расчета представлен на рис. 2 в [35]). Сила разрыва контактов с адгезией пропорциональна произведению коэффициента адгезии на приведенный радиус кривизны *R* контактирующих поверхностей. Так, для данных работы [35], где на рис. 2 приведен результат расчета для R = 1 мм и коэффициента адгезии 0.1 Дж/м², разрыв контакта имеет место при напряжении 100 Па, а восстановление контакта при нулевом напряжении. Таким образом, данные на вставке рис. 4 являются более реалистичными по сравнению с $\Delta p \approx 2$ кПа для примера № 3, соответствуя характерным размерам зерен горных пород, исследованных в работе [16].

Были выполнены расчеты, направленные на установление зависимости амплитуды акустического излучения от величин Δp и κ_0 . Соответствующие иллюстрации опущены из-за ограничений на объем публикации. Общий вывод из полученных результатов численного моделирования таков: (1) зависимость $p_{a}(\Delta p)$ слабая, и величина Δp сказывается главным образом на частоте основного тона излучения (см. рис. 4); (2) увеличение ко приводит к уменьшению амплитуды простого источника и подавлению высших гармоник. Отсутствие выраженной зависимости $p_a(\Delta p)$ связано с тем, что пропорционально уменьшению объема выбрасываемого излишка флюида, который линейно зависит от Δp , уменьшается и время, необходимое для этого процесса. Поскольку акустическое давление пропорционально производной от объемной скорости, его амплитуда оказывается приблизительно постоянной. Увеличение ко приводит к уменьшению объема выбрасываемого излишка флюида, что приводит к уменьшению акустического излучения p_a. Ограничение амплитуды высших гармоник излучения связано с появлением механического фильтра, составленного из гидродинамического сопротивления

канала сброса излишков флюида и полости $V_0^{(2)}$. При этом наибольшему подавлению оказываются подвержены четные гармоники акустического излучения, что приводит к ослаблению асимметрии сжатия и разрежения временной зависимости $p_a(t)$.

Наличие большого числа элементарных ячеек акустического излучения, имеющих различные характерные частоты основного тона и времена открытия/закрытия канала сброса излишков флюида, приведет к тому, что в результате интерференции высших гармоник их вклад будет подавлен, а в окрестности основного тона появится максимум спектральной плотности совокупного акустического излучения. Оценим максимально возможное число элементарных источников акустического излучения. В работе [16] исследовались цилиндрические образцы с диаметром $D_s = 25$ мм и длиной $L_s = 30$ мм. Полное число зерен в образцах можно оценить как отношение объема образца к объему, занимаемому зерном:

$$N_g = \frac{\pi D_s^2 L_s}{4V_g} \simeq 10^6 \tag{9}$$

где числовое значение отвечает $D_g = 0.3$ мм (табл. 1).

В случае, когда зерна имеют плотную случайную упаковку, число контактов, приходящихся на каждое зерно, составляет 9 [34]. Поэтому общее число контактов между зернами в образце составляет $9N_{g} \simeq 10^{7}$. При учете контактов неровностей зерен общее число контактов может оказаться еще больше. Рассмотрим данные рис. 3 для образца № 31 при скорости фильтрации флюида 2 м/с. В этом случае измеренная величина составляет $p_a = 0.03 \, \Pi a / \sqrt{\Gamma \mu}$. На рис. 5 жирной линией показан результат расчета акустического излучения одного источника, расположенного в центре цилиндрического образца, при величине гидродинамического сопротивления канала сброса излишков жидкости $\kappa_0 = 100$. Увеличение κ_0 , как указывалось выше, приводит к ослаблению преимущественно четных гармоник, что привело бы к лучшему согласию с экспериментом (см. далее). Однако при этом возникают сложности настройки численной модели из-за необходимости аккуратного подбора параметров p_{on} и p_{off} , и поэтому мы ограничились расчетом для указанного значения κ_0 . На рис. 5 также представлен результат сложения акустических откликов $N_s = 200$ элементарных источников, равномерно распределенных внутри цилиндрического образца и имеющих вариации частоты основного тона автоколебаний в пределах ±5%. Здесь же на рис. 5 штриховой линией показана измеренная в эксперименте [16] величина спектральной плотности амплитуды акустического шума фильтрации на частоте максимума излучения. Следует заметить, что число источников N_s составляет примерно 0.01% от общего числа контактов. Очевидно, что число открывающихся и закрывающихся контактов не может составлять существенную долю от общего числа контактов, поскольку в этом случае неизбежно возникнет вопрос об отсутствии разрушений материала. Таким образом, полученный количественный результат, будучи согласованным с результатами измерений [16], также является непротиворечивым и согласуется с представлением об отсутствии разрушений внутри пористого материала при фильтрации флюида.

Вставка на рис. 5 отвечает рисунку 2 статьи [16] и показывает вид спектра для образца № 2012-13 (табл. 1). Выбор значения $\kappa_0 = 100$ был обусловлен тем, что меньшие значения к₀ приводят к относительному увеличению спектральных амплитуд в окрестности второй гармоники основного тона, а бо́льшие значения к₀ сопряжены с усложнением настройки численной процедуры. Сравнение вида вычисленного спектра шума фильтрации с измерениями на вставке рис. 5 указывает на небольшое различие модельного и измеренного спектров шума. Это различие проявляется в менее выраженной амплитуде составляющих в области частот, отвечающих второй гармонике основного тона автоколебаний, для экспериментальных данных. Поскольку амплитуда второй

Рис. 5. Результат суперпозиции излучения 2000 элементарных источников с отличающимися частотами основного тона. Вставка отвечает рис. 2 статьи [16].

гармоники существенно ослабляется при увеличении гидродинамического сопротивления канала сброса накопленных излишков флюида, можно предположить, что более разумным параметром модели будет $\kappa_0 \ge 1$ (узкий канал с низкой проницаемостью). В качестве таких каналов могут выступать узкие трещины между зернами горной породы. Таким образом, в рамках предложенной модели генерации шума фильтрации открываются интересные возможности по диагностике пространства пор, через которое происходит фильтрация флюида.

ЗАКЛЮЧЕНИЕ

Подведем итог и перечислим основные результаты выполненной работы.

 Проведено сравнение недавно опубликованных в Акустическом журнале результатов измерения акустического шума, возникающего при фильтрации флюида через пористую среду, с результатами численного моделирования на основе предложенной ранее модели.

2. Полученное в результате сравнения согласие экспериментальных и теоретических значений позволяет сделать утверждение о корректности предложенной модели и физического механизма, отвечающего за генерацию шума фильтрации.

3. Удовлетворительное согласие теории с экспериментом создает базу для исследования природных сред по регистрируемому шуму фильтрации: определения параметров пористых сред и характеристик течения. Таким образом, открываются возможности дистанционной диагностики пористых сред и характеристик течения в них.

Представленный материал указывает на необходимость более тонкой настройки расчетной схемы для рассмотрения каналов сброса с величинами $\kappa_0 \ll 1$. В процессе настройки желательно располагать дополнительной информацией о характерной длине каналов и размерах пустот внутри материала, т.е. располагать результатами петрографического, гранулометрического, минералогического и химического анализов. В качестве примера приведем работу [43], где наличие указанных стандартных геологических исследований позволило обосновать выводы, сделанные на основе прецизионных акустических измерений.

Работа выполнена при поддержке Российского научного фонда (проект РНФ № 22-22-00230).

СПИСОК ЛИТЕРАТУРЫ

- Шерифф Р., Гелдарт Л. Сейсморазведка. Т. 1: История, теория и получение данных. 448 с. Т. 2: Обработка и интепретация данных. 400 с. М.: Мир, 1987.
- 2. Нолет Г. Сейсмическая томография. М.: Мир, 1990. 416 с.
- Активная сейсмология с мощными вибрационными источниками. Отв. ред. Цибульчик Г.М. Новосибирск: "ГЕО", 2004. 375 с.
- Brenguier F., Campillo M., Hadziioannou C., Shapiro N., Nadeau R., Larose E. Postseismic relaxation along the San Andreas fault at Parkfield from continuous seismological observations // Science. 2008. V. 321. № 5895. P. 1478–1481.
- Королева Т.Ю., Яновская Т.Б., Патрушева С.С. Использование сейсмического шума для определения структуры верхней толщи Земли // Физика Земли. 2009. Т. 45. № 5. С. 3–14.
- Яновская Т.Б. К теории метода микросейсмического зондирования // Физика Земли. 2017. Т. 53. № 6. С. 18–23.
- 7. *Schuster G.T.* Seismic interferometry. Cambridge UP. 2009. 274 p.
- 8. Тихоцкий С.А., Преснов Д.А., Собисевич А.Л., Шуруп А.С. Использование низкочастотных шумов в пассивной сейсмоакустической томографии дна океана // Акуст. журн. 2021. Т. 67. № 1. С. 107–116.
- 9. Собисевич А.Л., Преснов Д.А., Шуруп А.С. Фундаментальные основы совершенствования пассивных сейсмогидроакустических методов исследования шельфа арктики // Акуст. журн. 2021. Т. 67. № 1. С. 72–97.
- 10. *McKinly R.M., Bower F.M., Rumble R.C.* The structure and interpretation of noise flow behind cemented casing // J. Petrol. Tech. 1973. V. 25. № 3. P. 329–338.
- Афанасьев Е.Ф., Грдзелова К.Л., Плющев Д.В. Об источниках генерации звука в насыщенных флюидом пористых средах // ДАН СССР. 1987. Т. 3. С. 554–557.
- Николаев С.А., Овчинников М.Н. Генерация звука фильтрационным потоком в пористых средах // Акуст. журн. 1992. Т. 38. № 1. С. 114–118.
- Ипатов А.И., Кременецкий М.И. Геофизический и гидродинамический контроль разработки месторождений углеводородов. М.–Ижевск: из-во "Регулярная и хаотическая динамика", 2010. 780 с.
- 14. Марфин Е.А. Скважинная шумометрия и виброакустическое воздействие на флюидонасыщенные пласты. Учебно-методическое пособие. Министерство образования и науки РФ, Казанский (приволжский) федеральный университет. Казань, 2012. 44 с.
- Марфин Е.А., Метелёв И.С., Гарифьянов Б.А., Абдрашитов А.А. Исследование спектров фильтрационных шумов // Ученые записки физического факультета. 2014. Т. 6. С. 146316(1–4).

АКУСТИЧЕСКИЙ ЖУРНАЛ том 68 № 5 2022

- 16. Метелёв С.А., Овчинников М.Н., Марфин Е.А., Гайфутдинов Р.Р., Сагиров Р.Н. Исследование акустических шумов при фильтрации газа через пористую среду // Акуст. журн. 2019. Т. 65. № 2. С. 214– 222.
- 17. *Пыхачев Г.Б., Исаев Р.Г.* Подземная гидравлика. М.: Недра, 1973. 360 с.
- 18. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Гидродинамика. Т. VI. М.: Наука, 1988. 736 с.
- 19. Исакович М.А. Общая акустика. М.: Наука, 1973. 496 с.
- Щелкачев В.Н., Лапук Б.Б. Подземная гидравлика.
 М.: Государственное научно-техническое из-во нефтяной и горно-топливной литературы, 1949.
 525 с. Репринтное издание: Москва–Ижевск, НИЦ "Регулярная и хаотическая динамика", 2001.
 736 с.
- 21. Баренблатт Г.И., Ентов В.М., Рыжик В.М. Движение жидкостей и газов в природных пластах. М.: Недра, 1984. 211 с.
- Sergeev S.I., Ryzhikov N.I., Mikhailov D.N. Laboratory investigation of sound induced by gas flow in porous media // J. Petrol. Sci. and Eng. 2019. V. 172. P. 654–661.
- Заславский Ю.М. К теории акустической эмиссии при фильтрации газа частично флюидонасыщенной средой // Электронный журнал "Техническая акустика". 2005. Т. 5. 11 с.
- 24. Мирзаджанзаде А.Х., Хасанов М.М., Бахтизин Р.Н. Моделирование процессов нефтегазодобычи. Нелинейность, неравновесность, неопределенность. Москва, Ижевск: институт компьютерных исследований, 2004. 368 с.
- 25. *Рабинович М.И., Трубецков Д.И.* Введение в теорию колебаний и волн. М.: Наука, 2001. 560 с.
- Mikhailov D., Sergeev S. Investigation parameters for sound induced by fluid displacement in rock samples // Water Resources Research. 2019. V. 55. № 5. P. 4220– 4232.
- 27. Лебедев А.В. Нелинейный релаксационный механизм генерации шума фильтрации в пористых средах // Изв. вузов. Радиофизика. 2018. Т. 61. № 4. С. 343–357.
- Лебедев А.В. Численное моделирование шума фильтрации // Изв. вузов. Радиофизика. 2020. Т. 63. № 2. С. 155–171.
- 29. Андронов А.А., Витт А.А., Хайкин С.Э. Теория колебаний. М.: Физматгиз, 1959. 915 с.
- 30. *Sahimi M.* Applications of percolation theory. Taylor and Francis, London. 1994. 258 p.
- Клеман М., Лаврентович О.Д. Основы физики частично упорядоченных сред. М.: Физматлит, 2007. 680 с.
- 32. *Dvorkin J., Nur A.* Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms // Geo-physics. 1993. V. 58. № 4. P. 524–533.
- Dvorkin J., Nolen-Hoeksema R., Nur A. The squirt-flow mechanism: Macroscopic description // Geophysics. 1994. V. 59. № 3. P. 428–438.

- Mavko G., Mukeji T., Dvorkin J. The Rock Physics Handbook. Tools For Seismic Analysis in Porous Media. Cambridge University Press. MA. 2-nd edition. 2009. 524 p.
- 35. *Lebedev A.V., Ostrovsky L.A.* A unified model of hysteresis and long-time relaxation in heterogeneous materials // Acoust. Phys. 2014. V. 60. № 5. P. 555–561.
- 36. Brace W.F., Silver E., Hadley K., Goetze C. Cracks and pores: a closer look // Science. 1972. V. 178. P. 162–164.
- Kranz R.L. Microcracks in rocks: a review // Tectonophysics. 1983. V. 100. P. 449–480.
- Guyer R.A., Johnson P.A. Nonlinear mesoscopic elasticity: the complex behaviour of rocks, soil, concrete. Wiley-VCH. 2009. 410 p.

- 39. *Дерягин Б.В., Чураев Н.В., Муллер В.М.* Поверхностные силы. М.: Наука, 1985. 400 с.
- 40. *Chrotiros N.P.* Acoustics of the seabed as a poroelastic medium. ASA press, N.Y.: Springer, 2017. 99 p.
- 41. Кикоин И.К. Справочник физических величин. М.: Атомиздат, 1976. 1008 с.
- 42. *Авербах В.С., Бредихин В.В., Лебедев А.В., Манаков С.А.* Нелинейная акустическая спектроскопия карбонатной горной породы // Акуст. журн. 2017. Т. 63. № 3. С. 323–336.
- Averbakh V.S., Bredikhin V.V., Lebedev A.V., Manakov S.A. Acoustic spectroscopy of fluid saturation effects in carbonate rock // Acoust. Phys. 2010. V. S56. P. 794–806.