# АКУСТИКА ЖИВЫХ СИСТЕМ. БИОМЕДИЦИНСКАЯ АКУСТИКА

УДК 599.537:534.28

# НЕКОТОРЫЕ ОСОБЕННОСТИ ЧМ-СИГНАЛОВ (СВИСТОВ) НОВОРОЖДЕННОЙ ЧЕРНОМОРСКОЙ АФАЛИНЫ *(TURSIOPS TRUNCATUS*)

© 2022 г. В. А. Рябов\*

Карадагская научная станция им. Т.И. Вяземского — природный заповедник РАН, филиал ФГБУН ФИЦ "Институт биологии южных морей имени А.О. Ковалевского РАН", ул. Науки 24, п. Курортное, Феодосия, Крым, 298188 Россия \*e-mail: ryabofff@inbox.ru Поступила в редакцию 17.02.2021 г. После доработки 09.09.2021 г.

Принята к публикации 25.01.2022 г.

Известно, что неонатальные дельфины начинают издавать ЧМ-сигналы (свисты) сразу после рождения. Цель нашей работы — изучение динамики параметров ЧМ-сигналов новорожденной в первые дни ее жизни. Акустические сигналы новорожденной самки дельфина афалины (*Tursiops truncatus*) и ее родителей были записаны с помощью двухканальной системы в полосе частот 0.1–220 кГц с динамическим диапазоном 81 дБ, через 22, 46, 46.5 и 47 ч после рождения. ЧМ-сигналы сопоставлены с дельфинами, измерены и проанализированы параметры сигналов, особенности их динамики и распределения значений. Показано, что новорожденная периодически продуцирует серии ЧМ-сигналов путем перебора их частотных контуров и значений параметров в случайном порядке без повторений. При этом большинство параметров ЧМ-сигналов имеют квазинормальное распределение значений, поэтому более 90% сигналов не имеют экстремальных (максимальных и минимальных) значений соответствующих параметров. Рассмотренные механизмы формирования ЧМ-сигналов новорожденной, вероятно, играют ключевую роль в оптимизации развития и тестирования совместной работы органов и систем их генерации, рецепции и слуховой обработки в раннем постнатальном онтогенезе.

*Ключевые слова:* дельфин афалина (*Tursiops truncatus*), новорожденная самка, ЧМ-сигнал (свист), перебор частотных контуров без повторений в случайном порядке **DOI:** 10.31857/S032079192203011X

### введение

Дельфины живут в водной среде несколько десятков миллионов лет. Основными сенсорными посредниками животных в этой среде являются звуки. Они общаются и воспринимают мир вокруг себя с помощью различных акустических сигналов и эхолокационной системы [1]. Однако на сегодняшний день знаний об акустических сигналах, их функциональности и обработке слухом дельфинов недостаточно (см. [2] и др.).

Сигналы взрослых дельфинов модифицируются на протяжении всей жизни под воздействием множества факторов, поэтому представляет интерес изучение сигналов новорожденных дельфинов с оригинальными акустическими характеристиками [3]. Наибольшее количество работ на сегодняшний день посвящено изучению частотно-модулированных (ЧМ) сигналов дельфинов, известных как свисты [1–19] и др. Однако реги-

страция этих сигналов производилась в основном только в полосе частот до 22 кГц или меньше.

У изученных прелставителей семейства лельфинов (Delphinidae) взрослые особи используют свисты для поддержания сплоченности и координации действий между собой и группами дельфинов, рассредоточенными в пространстве на расстояниях до 10-12 км [5, 8-10]. Каждый дельфин имеет собственный отличительный свист, с уникальной для каждой особи формой частотного контура, играющий индивидуально опознавательную роль, так называемый "автограф". Форма частотного контура "свиста-автографа" воспроизволится дельфином с сохранением легко узнаваемого паттерна с небольшими изменениями и является доминирующей в индивидуальном репертуаре звуков особи (до 90%), что подтверждается большим количеством работ [5, 9–13] и др. Есть также свисты с вариабельным контуром, фрагментарные свисты и другие, роль которых пока не ясна [14].

337

С точки зрения теории сигналов, ЧМ-сигналы относятся к классу шумоподобных сигналов или сигналов с расширенным спектром [15–18]. База этих сигналов. т.е. произведение длительности сигналов на их диапазон частот,  $TW \gg 1$ , где T средняя длительность сигнала, *W* – средний диапазон частот. Для свистов взрослых дельфинов диапазон их основных частот может достигать 1-42 кГц, а длительность от 0.048 до 4.11 с, и  $TW \approx$  $\approx 10^4 - 10^5$  [15, 16, 5, 18−21]. Число гармоник свиста может изменяться от 1 до 50 и более, и в соответствии с ним изменяется частотное расстояние между гармониками. Диапазон частот ЧМ-сигналов дельфинов, учитывая гармоники, может занимать всю полосу частот их слуха, 1-140 кГц. Скорость изменения основной частоты свистов может составлять от 0 до 250-420 кГц/с [15, 16, 11]. Взрослые дельфины умеют плавно и с высокой точностью изменять частоту ЧМ-сигналов. Вместе с тем, ЧМ-сигналы дельфина рассматриваются в качестве зондирующих сигналов эхолокатора со сжатием импульса и Доплеровского сонара [17, 18]. ЧМ-сигналы дельфинов, как это следует из их характеристик, по-видимому, самые сложные среди сигналов дельфинов.

При рассмотрении ЧМ-сигнала дельфина мы обычно используем термины его спектрограммы, которая представляет собой график зависимости частоты от времени, или просто частотный контур свиста.

Китообразные анализируют ЧМ-сигналы обычным слухом. В то же время в работах [2, 15– 18, 22, 23] авторы обсуждают возможность использования их в качестве зондирующих сигналов ЧМ-сонара и обработки отражений свистов (эха) в согласованном фильтре слуха животных, который, по-видимому, организует их слуховая система для каждого ЧМ-сигнала.

Таким образом, несмотря на сложные особенности ЧМ-сигналов, их неоднозначную роль и различные методы обработки [2, 17, 18, 22, 23], известно, что неонатальные дельфины начинают их продуцировать сразу после рождения [3, 4, 11, 25].

Цель нашей работы — изучение динамики параметров ЧМ-сигналов новорожденной афалины (*Tursiops truncatus*) в первые дни ее жизни. Для этого звуковые сигналы новорожденной и ее родителей были записаны двухканальной системой записи в широком диапазоне частот 0.1—220 кГц с широким динамическим диапазоном 81 дБ. Сигналы были сопоставлены с дельфинами. Параметры ЧМ-сигналов и особенности их динамики измерены и проанализированы. Изучено акустическое поведение дельфинов.

# ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

# Метод

Новорожденная (самка) и ее родители, черноморские дельфины афалины (*Tursiops truncatus*) с именами Яна (22 года, Q) и Яша (32 года, d), размещались в закрытом бассейне (размером 27.5 × 9.5 × 4.5 м) Карадагской научной станции им. Т.И. Вяземского — природный заповедник РАН — филиал ФГБУН ФИЦ "Институт биологии южных морей имени А.О. Ковалевского РАН". Новорожденная родилась 08.06.2015 г. и находилась в бассейне вместе с родителями. Других дельфинов в бассейне не было.

Вскоре после рождения новорожденная начала свистеть, что было слышно в бассейне невооруженным ухом, когда она проплывала рядом. Первая запись ее сигналов была сделана примерно через 22 часа после рождения, в первой половине дня. Всего было сделано четыре записи акустических сигналов новорожденной и ее родителей одновременно с видеозаписями их положения относительно гидрофонов и друг друга в бассейне, примерно через 22, 46, 46.5 и 47 ч после рождения, соответственно. Продолжительность каждой записи около 9 мин, всего около 36 мин.

Акустические сигналы дельфинов регистрировались двухканальной системой синхронно с видеозаписью их положения друг относительно друга и записывающих гидрофонов I и II каналов записи во время их кормления (рис. 1) возле мостков 3. Расстояние между гидрофонами I и II было выбрано равным 5 м для получения необходимой межканальной разности временных задержек и амплитуд уровней звуковых давлений (УЗД) каждого сигнала. Гидрофоны располагались таким образом (рис. 1), что гидрофон I располагался ближе к середине бассейна, а гидрофон II ближе к стенке. Запись видео производилась с балкона, расположенного вдоль бассейна на высоте около 5 м над уровнем воды. Новорожденная в это время обычно плавала вокруг родителей и, соответственно, вокруг гидрофонов (по дуге радиусом 1–5 м). Иногда она заплывала под мостки, иногда в противоположный конец бассейна (около 23 м). Яна в этих случаях, через какое-то время, следовала за ней, несколько минут они могли там оставаться, но потом вместе возвращались к мосткам 3. Яша во время записи сигналов, как правило, находился у мостков.

Гидрофоны I и II (рис. 1) пьезокерамические, сферические, диаметром 14 мм и калиброванной чувствительностью -203.5 и -206 дБ отн. 1 В/мкПа, или 66.5 и 50 мкВ/Па соответственно. Неравномерность АЧХ гидрофонов не превышала  $\pm 3$  дБ на частотах около 160 кГц и  $\pm 10$  дБ на частотах около 220 кГц. Каждый канал записи сигналов состоял из гидрофона, фильтра верхних частот (0.1 кГц), усилителя напряжения (40 дБ) и



**Рис. 1.** Схема эксперимента. (a) – 1, 2 – дельфины Яша и Яна соответственно. І и ІІ – гидрофоны первого и второго каналов регистрации, соответственно, расположены на расстоянии 5 м друг от друга и на глубине 1 м. 3 – мостки, расположены на высоте 0.2 м над уровнем воды. 4, 5 и 6 – длинная, короткая стенка и дно бассейна, соответственно. Расстояние между гидрофоном II и стенкой 4 составляет 0.4 м. Расстояние от гидрофонов I и II до стенки 5 – 3 м. Уровень воды в бассейне 4 м. (б) – Один из кадров видеозаписи. NB – новорожденная, 1 – Яша, 2 – Яна, 3 – мостки, I – гидрофон первого канала записи. (в) – Межканальная временная задержка ЧМ-сигнала (TDOA), который NB продуцировали з местоположения, показанного на рис. 16.

одного из каналов многоканального 14-разрядного аналого-цифрового преобразователя (АЦП) USB-3000. АЦП одновременно оцифровывал сигналы дельфинов с I и II каналов регистрации с частотой дискретизации каждого из них 1 МГц. После АЦП сигналы непрерывно записывались на жесткий диск ноутбука в двухканальном PGC файле для последующего анализа и обработки. Динамический диапазон АЦП и тракта приема сигналов составлял 81 дБ (0.2–3000 Па).

Для определения принадлежности ЧМ-сигнала конкретному дельфину исследователи используют технику записи акустических сигналов с одновременной видеозаписью поведения всех дельфинов. Проанализировав видео, они пытаются определить свист по его аккомпанементу пузырящейся струей, которая часто исходит от дельфина, производящего свист, особенно у новорожденных [3, 4, 6, 25]. Хотя также известно, что не каждый свист дельфина сопровождается пузырьками воздуха [26]. В некоторых случаях исследователи помещают дельфинов в отдельные бассейны, чтобы определить свисты конкретного дельфина. Следовательно, использование этих методов вызывает определенные трудности и неточности при определении продуцента сигнала.

Учитывая эти проблемы, мы попытались определить ЧМ-сигналы новорожденной с учетом всех доступных нам для анализа признаков. С этой целью мы записали акустические сигналы новорожденной афалины на два канала в широком диапазоне частот и с широким динамическим диапазоном. Для идентификации свистов

новорожденной учитывалась межканальная временная задержка свиста (time difference of arrival – TDOA) на I и II гидрофонах (рис. 1). Например, для определения продуцента свиста мы измеряли ТООА свиста в эксперименте (рис. 1в) и сравнивали с рассчитанным TDOA (СТDOА). Последний рассчитывался с учетом разницы расстояний от головы новорожденной до I и II гидрофонов по синхронному видео (рис. 1б). Расстояния рассчитывались с учетом известного расстояния между гидрофонами и других известных видимых размеров объектов и углов, а также известных тригонометрических соотношений. Расчетные расстояния от головы новорожденной до I и II гидрофонов составляют 2.3 и 3.1 м, разница между этими расстояниями составляет 0.8 м, что с учетом скорости звука составляет СТДОА около 0.53 мс, что, в свою очередь, соответствует измеренному TDOA, около 0.5-0.6 мс (рис. 1в). Расчетные расстояния от головы Яши (Яны) до I и II гидрофонов составляют 1.6 и 4.2 м (1.1 и 4.5 м), разница между этими расстояниями составляет 2.6 м (3.4 м), что с учетом скорости звука составляет СТДОА около 1.7 мс (2.2 мс), что не соответствует измеренному ТООА около 0.5-0.6 мс (рис. 1в). Следовательно, свист, показанный на рис. 1, был произведен новорожденной. Максимальное значение TDOA для расстояния между гидрофонами 5 м составляет 3.33 мс.

Вместе с тем, полученные записи позволили идентифицировать сигналы новорожденной по характеру их спектрограмм и спектру, а также по другим признакам. Важнейшие признаки спек-



**Рис. 2.** Пример последовательности ЧМ-сигналов новорожденной, а также Яны (отмечена на рисунке цифрой *I*). (Спектрограмма фрагмента первой записи).

трограмм свистов новорожденной, отличающие их от ЧМ-сигналов взрослых, – динамика продуцирования сигналов во времени. Новорожденная издает ЧМ-сигналы сериями с интервалами времени между свистами, соизмеримыми с длительностью свистов (рис. 2, 3, 5). В этом случае любой ЧМ-сигнал родителей не будет синхронизирован с серией, т.е. неизбежно будет перекрываться с сигналами новорожденной, что легко различить, рис. 2 (линия 1). Когда случались такие редкие случаи (например, как на рис. 3), ЧМ-сигналы, как правило, были свистами-автографами родителей или характерными для них свистами, которые нам хорошо известны. поскольку мы записывали их много раз раньше (в течение примерно 10 лет). Другой важный признак ЧМ-сигналов новорожденной – несовершенство характеристик, например, по сравнению со свистом Яны, рис. 2 (линия 1). Видно, что изменение частоты ЧМ-сигналов новорожденной происходит не плавно, а с заметным тремором, часто с перебоями в их генерации, возбуждением шума (размытость спектро-



Рис. 3. Распределение свистов новорожденной и родителей (Яны и Яши) в первой записи.

АКУСТИЧЕСКИЙ ЖУРНАЛ том 68 № 3 2022

грамм), более широким спектром их основных частот и частот гармоник, что отмечалось и в работах [3, 5, 25].

Запись, визуализация и обработка записанных акустических сигналов дельфинов выполнены с помощью программных пакетов PowerGraph 3.3.8, Adobe Audition 3.0 и Excel 2016 с пакетом "Анализ данных". Для анализа были отобраны все записанные ЧМ-сигналы, т.к. они имели достаточно высокое отношение сигнал/шум. Среднеквадратичные значения (rms) УЗД ЧМсигналов на расстоянии 1 м от дельфина были рассчитаны для всего массива выборок каждого ЧМ-сигнала с использованием функции RMS в окне "обработка сигналов" PowerGraph 3.3.8 с учетом дальности животного от гидрофона, чувствительности гидрофона и усиления приемного тракта.

Для статистического анализа записей новорожденной были измерены и рассчитаны различные параметры ЧМ-сигналов, традиционно используемые для этих целей (табл. 2), такие как:



**Рис. 4.** Распределение интервалов между свистами новорожденной в первой записи (рис. 3). Линия тренда — модель простой линейной регрессии (p = 0.001, r = 0.183).

начальная частота, конечная частота, минимальная частота, максимальная частота, диапазон частот, количество гармоник, длительность, количество точек перегиба основной частоты, а также максимальная частота свиста с учетом гармоник, диапазон его частот с гармониками, произведение длительности свиста на его диапазон частот и тоже самое с учетом гармоник, а также максимальное и минимальное значения этих параметров, соответственно.

Учитывая, что поток энергии излучающей системы ЧМ-сигналов дельфина, в свете теории сигналов и эхолокации, определяют такие их параметры как длительность, межсигнальный интервал и широкополосность, для анализа этих параметров были использованы модели простой линейной регрессии.

Отметим, что диапазон частот свиста дельфина с учетом гармоник (WH) определялся как WH =  $F_{max}$  (NoH) –  $F_{min}$ , где  $F_{max}$  – максимальная основная частота свиста,  $F_{min}$  – его минимальная основная частота, NoH – количество гармоник свиста. Учитывая, что частоты гармоник свиста кратны его основной частоте, максимальная частота свиста с учетом гармоник (FH<sub>max</sub>) определялась как FH<sub>max</sub> =  $F_{max}$  (NoH), где  $F_{max}$  – максимальная основная частота, NoH – количество гармоник свиста.

Учитывая широкий частотный диапазон регистрирующей системы 0.1-220 кГц, мы впервые для зубатых китов измерили базу ЧМ-сигналов новорожденной, т.е. произведение длительности свиста на диапазон его частот (*TW*) и то же самое с учетом гармоник (*TWH*), где *T* – средняя длительность, а *W* – средний диапазон частот ЧМ-сигнала (табл. 2).

Параметры ЧМ-сигналов, их спектры и спектрограммы рассчитаны с помощью Adobe Audition 3.0 с использованием 2048-точечного БПФ с весовой функцией Хэмминга. Статистический и количественный анализ параметров ЧМ-сигналов, генерация гистограмм распределения их значений и построение простых линейных моделей



Рис. 5. Распределение свистов новорожденной и родителей во второй записи.

регрессии выполнены в электронной таблице Excel 2016 с пакетом "Анализ данных".

### РЕЗУЛЬТАТЫ

Новорожденная продуцировала свисты сериями до 54 сигналов подряд с заметными временными паузами между сериями. Паузы между сериями ЧМ-сигналов изменялись от нескольких секунд до 100 с. Условимся, что пауза больше 10 с разделяет одну серию свистов от другой.

Во время первой записи новорожденная издала 120 свистов в течение 339 с (рис. 2, 3, 4, табл. 1), т.е. каждый свист она издавала приблизительно через 339/120 = 2.8 с. Величина среднего значения интервалов между свистами, на протяжении первой записи, в соответствии с моделью простой линейной регрессии имела тенденцию к уменьшению с 3.1 до 2.6 с (p = 0.001; r = 0.183).

Скорость сигнализации при этом составляла 31.2, 31, 24.5 и 27.2 мин<sup>-1</sup> для первой, второй, третьей и четвертой серии свистов, соответственно. При этом межсигнальные интервалы (60/скорость сигнализации) составляли: 1.92, 1.93, 2.44, и 2.2 с, соответственно, и их среднее арифметическое значение составляет 2.12 с. Отметим, что минимальное значение этого интервала могло до-

2022

Nº 3

| Таблина 1. | Количество свистов лель       | <b>ринов в разных записях.</b> | В скобках указано  | количество свистов  | з-автографов |
|------------|-------------------------------|--------------------------------|--------------------|---------------------|--------------|
| таолица т. | Round for the concrete deline | philob b pushbix sunnents.     | D CROOKUN yRubullo | Rominicerbo ebneror | , abioipaqob |

| Номер  |        | Время записи, с |               |      |
|--------|--------|-----------------|---------------|------|
| Sannen | Яна    | Яша             | Новорожденная |      |
| 1      | 7(0)   | 20(17)          | 120           | 543  |
| 2      | 28(0)  | 16(11)          | 85            | 532  |
| 3      | 8(3)   | 10(10)          | 77            | 544  |
| 4      | 24(17) | 3(3)            | 69            | 534  |
| Всего  | 67(20) | 49(41)          | 351           | 2153 |

|                                         | Среднее значение  |                   | max    |       | min  |       |
|-----------------------------------------|-------------------|-------------------|--------|-------|------|-------|
| Номер записи                            | 1                 | 2                 | 1      | 2     | 1    | 2     |
| Начальная частота, кГц                  | $8.55 \pm 2.79$   | $7.01 \pm 2.28$   | 18.12  | 13.63 | 2.50 | 1.73  |
| Конечная частота, кГц                   | $11.77 \pm 2.41$  | $13.2\pm2.93$     | 17.51  | 22.40 | 7.01 | 7.05  |
| Максимальная частота, кГц               | $13.43 \pm 2.23$  | $14.51 \pm 2.42$  | 18.20  | 22.40 | 7.51 | 8.23  |
| Максимальная частота с гармониками, кГц | $36.52 \pm 17.67$ | $38.56\pm20.32$   | 116.10 | 90.21 | 6.16 | 11.17 |
| Минимальная частота, кГц                | $8.01\pm2.20$     | $6.94\pm2.19$     | 14.12  | 12.40 | 2.50 | 1.73  |
| Диапазон частот с гармониками, кГц      | $28.51 \pm 18.01$ | $31.62 \pm 21.10$ | 108.21 | 84.24 | 3.24 | 12.25 |
| Диапазон частот, кГц                    | $5.42 \pm 2.70$   | $7.57\pm3.50$     | 14.23  | 16.85 | 0.51 | 4.25  |
| Число гармоник                          | $2.72 \pm 1.22$   | $2.58 \pm 1.19$   | 8      | 6     | 1    | 1     |
| Длительность, с                         | $0.66 \pm 0.23$   | $0.57\pm0.22$     | 1.34   | 1.20  | 0.07 | 0.08  |
| Число точек перегиба                    | $1.80 \pm 1.39$   | $0.87 \pm 1.15$   | 7      | 6     | 0    | 0     |
| ( <i>TWH</i> )/10 <sup>4</sup>          | $1.88 \pm 1.19$   | $2.2\pm1.21$      | 7.13   | 4.81  | 0.21 | 0.71  |
| $(TW)/10^4$                             | $0.36 \pm 0.18$   | $0.43 \pm 0.2$    | 0.94   | 0.96  | 0.20 | 0.20  |

**Таблица 2.** Среднее значение ± стандартное отклонение, максимальное (max) и минимальное (min) значения различных параметров ЧМ-сигналов новорожденной в первой (1) и второй (2) записях, соответственно

стигать 0.5 с (рис. 4). Учитывая среднюю длительность свистов первой записи, 0.66 с (табл. 2), средний интервал между свистами при измерении его от конца первого сигнала до начала следующего, составит 1.46 с.

Во время второй записи новорожденная издала 85 свистов за 453 с (рис. 5, 6), т.е. каждый свист она издавала приблизительно через 435/85 = 5.3 с. Скорость сигнализации составляла 21.4 и 29.2 мин<sup>-1</sup> для первой и последней серии, соответственно, При этом межсигнальные интервалы (60/скорость сигнализации) составляли: 2.8 и 2.05 с, соответственно, и среднее арифметическое значение этого интервала составляет 2.45 с. Учитывая среднюю длительность свистов второй записи, 0.57 с (табл. 2), средний интервал между свистами (при измерении их от конца первого до начала следующего) составит 1.88 с. Отметим, что на наиболее крутом участке графика от 391 с до 400 с (рис. 5) скорость сигнализации достигала даже 60 мин<sup>-1</sup>. На протяжении второй записи средние значения частотного диапазона, частотного диапазона с гармониками и длительности свистов (рис. 6), при аппроксимации их моделью простой линейной регрессии, имели тенденцию к увеличению с 5.5 до 10 кГц (p = 0.002; r = 0.121), с 13 до 30 кГц (*p* = 0.007; *r* = 0.195) и с 0.54 до 0.59 с (p = 0.005; r = 0.191), соответственно.

В третьей записи она издала 72 свиста за 177 с. В среднем каждый через 2.46 с, и еще 5 свистов были очень редкими (табл. 1). Во время четвертой записи новорожденная издала 44 свиста регулярно за 159 с, в среднем каждый через 3.61 с, и еще 22 свиста за 60 с, т.е. в среднем каждый через 2.72 с, а еще 3 свиста были очень редкими. Впервые для зубатых китов мы измерили УЗД свистов новорожденной. Амплитуда УЗД составила 126—142 дБ отн. 1 мкПа в области гидрофонов и 128—159 дБ отн. 1 мкПа на расстоянии 1 м. Рассчитанные среднеквадратичные (*rms*) значения УЗД в области гидрофонов составили 112— 129 дБ отн. 1 мкПа (*rms*) и 115.6—146 дБ отн. 1 мкПа (*rms*) на расстоянии 1 м. Рассчитанные *rms* значения УЗД для ЧМ-сигналов наших дельфинов были на 11.7—16 дБ, т.е. в среднем примерно на 13 дБ меньше амплитудных.

У Яны УЗД свистов, приведенный к 1 м, достигал 140–158 дБ отн. 1 мкПа и 127–145 дБ отн. 1 мкПа (*rms*). У Яши УЗД свистов, приведенный к 1 м, достигал 138–161 дБ отн. 1 мкПа и 125–148 дБ отн. 1 мкПа (*rms*). В целом УЗД свистов новорожденной в этих записях находился на уровне свистов родителей.

ЧМ-сигналы новорожденной с первых же суток жизни уже достаточно широкополосные, средние значения  $\pm$  стандартное отклонение их максимальной частоты с учетом гармоник в первой и второй записях составляют 36.52 ± 17.67 кГц и 38.56 ± 20.32 кГц, а максимальные значения около 116 и 90 кГц, соответственно (табл. 2). Средние значения ± стандартное отклонение частотного диапазона ЧМ-сигналов с учетом гармоник в первой и второй записях составляют  $28.51 \pm 18.01$  кГи и  $31.62 \pm 21.10$  кГи с максимальными значениями 108 и 84 кГц, соответственно. Средние значения длительности свиста в первой и второй записях составляют 0.66 ± 0.23 с и  $0.57 \pm 0.22$  с, а максимальные значения около 1.34 и 1.20 с соответственно. ЧМ-сигналы уже могут иметь до 11 гармоник (рис. 8). Средние значения базы свистов, т.е. произведения длительноРЯБОВ



**Рис. 6.** (а) — Распределение диапазона частот (W) и диапазона частот с гармониками (WH), а также (б) — длительности свистов новорожденной во второй записи. Приведены линии тренда — модели простой линейной регрессии: (а) для W (p = 0.002, r = 0.121); для WH (p = 0.007, r = 0.195); (б) (p = 0.005, r = 0.191).

сти на диапазон частот свиста (*TW*) в первой и второй записях составляют ( $0.36 \pm 0.18$ ) ×  $10^4$  и ( $0.43 \pm \pm 0.21$ ) ×  $10^4$ , а максимальные значения  $0.94 \times 10^4$ и  $0.96 \times 10^4$ , соответственно. Средние значения этого произведения с учетом гармоник (*TWH*) составляют примерно ( $1.88 \pm 1.19$ ) ×  $10^4$  и ( $2.2 \pm 1.21$ ) ×  $10^4$ , а максимальные значения  $7.13 \times 10^4$  и  $4.81 \times 10^4$ , соответственно.

Впервые для зубатых китов визуальный анализ наших записей показал, что новорожденная периодически продуцировала серии ЧМ-сигналов, форма частотных контуров которых формально различная и не повторялась. При этом большинство параметров свиста (начальная частота, конечная частота, минимальная частота, конечная частота, максимальная частота, максимальная частота, максимальная частота с учетом гармоник, длительность, количество гармоник, количество точек перегиба, межсигнальные интервалы) изменялись случайным образом от свиста к свисту (рис. 2, 4, 6, 7) с распределением значений, когда только около 10% из них являются экстремальными. Назовем условно такой закон распределения значений квазинормальным. Однако такие параметры ЧМ-сигналов, как диапазон частот и диапазон частот с гармониками, меняются от свиста к свисту случайным образом, но имеют квазиравномерное распределение значений (рис. 7).

Факты сложного акустического поведения дельфинов также были зафиксированы, рис. 3, 5.

# ОБСУЖДЕНИЕ

Вскоре после рождения новорожденная афалина периодически продуцировала серии ЧМ-сигналов в течение дня и ночи. Примеры записи ее сигналов и их характеристики показаны на рис. 2–8. Измеренные нами УЗД свистов новорожденной и ее родителей в этих записях принципиально не различались. В то же время амплитуда УЗД ее свистов, 128–159 дБ отн. 1 мкПа на расстоянии 1 м и рассчитанные среднеквадратичные значения их УЗД 115.6–146 дБ отн. 1 мкПа (*rms*) на расстоянии 1 м, были существенно ниже, чем известные из литературы максимальные УЗД взрослых дельфинов афалин в бассейне 173 дБ отн. 1 мкПа на 1 м [27, табл. 7.2] и

АКУСТИЧЕСКИЙ ЖУРНАЛ том 68 № 3 2022





**Рис. 7.** Гистограммы распределения (а) – длительности, (б) – начальной и (в) – конечной частот, а также (г) – диапазона частот с гармониками ЧМ-сигналов новорожденной в первой записи. Значения на гистограммах показывают количество ЧМ-сигналов.



**Рис. 8.** (а) — Спектрограмма трех последовательных свистов новорожденной из четвертой записи и (б) — спектр свиста в момент времени 3.5 с.

на открытой воде – 169 дБ отн. 1 мкПа (*rms*) на 1 м [28], соответственно.

Измеренные и рассчитанные нами значения характеристик свистов новорожденной, традиционно используемых для количественного и статистического анализа (рис. 2–6, табл. 1, 2), в целом согласуются с результатами работ других авторов [3, 7], с учетом времени, прошедшего с момента рождения и полосы частот регистрации. Учитывая широкий частотный диапазон нашей регистрирующей системы 0.1–220 кГц, мы впервые для зубатых китов измерили диапазон частот и максимальную частоту свистов новорожденной с учетом гармоник, количество гармоник, базу сигналов, т.е. произведение длительности ЧМ- сигналов на их диапазон частот (*TW*) и то же с учетом гармоник (*TWH*), а также максимальное и минимальное значения этих параметров, соответственно (табл. 2). Следует отметить, что максимальные значения (*TWH*) в первой и второй записях достигают 7.13 × 10<sup>4</sup> и 4.81 × 10<sup>4</sup>, соответственно, т.е. они практически достигают уровней, характерных для взрослых дельфинов  $10^4$ –  $10^5$  [15, 16].

Во время записи новорожденная продуцировала в несколько раз больше свистов (351), чем ее родители — Яна (67) и Яша (49), соответственно (табл. 1), однако среди разнообразных контуров ее свистов специфического повторяющегося контура не было. Другими словами, свист-автограф новорожденной не зарегистрирован.

Частота продуцирования ЧМ-сигналов новорожденной (рис. 2-6) составляла 24-60 мин<sup>-1</sup>. Средние значения межсигнальных временных интервалов (от конца первого до начала следующего) составляли от 1.46 до 1.88 с, а минимальный интервал между свистами мог составлять всего 0.5 с, в первой и второй записях соответственно. Количество свистов, издаваемых новорожденной в этих записях, даже по самым умеренным оценкам, может достигать примерно  $500 \, \text{ч}^{-1}$ . Хотя в работах с косвенным подсчетом свистов, по наличию пузырьков воздуха одновременно со свистом, это количество на 1-2 порядка меньше. Например, по данным работ [3, 7] количество свистов у новорожденных дельфинов увеличивалось в течение 30 дней от нескольких свистов в час ло 50-80 ч<sup>-1</sup>. Возможно, это было связано с консервативным методом определения продуцента ЧМ-сигнала в этих экспериментах. Тот факт, что новорожденная издает в несколько раз больше свистов, чем родители (рис. 3, 5, табл. 1), согласуется с представлением о том, что свисты новорожденных способствуют воссоединению их с матерью, поскольку косвенно передают информацию об их местонахождении [6, 7].

В работах разных авторов отмечалось, что новорожденные издают свист сразу после рождения, и большинство сигналов еще не совершенно. Они не такие сложные и менее чистые, чем ЧМ-сигналы взрослых дельфинов. Считается, что система продуцирования свистов у новорожденных еще недостаточно развита [11, 25].

Из-за несовершенства ЧМ-сигналов в первые часы жизни их называют свистами-криками [11, 25]. В то же время новорожденные могли издавать отчетливый свист уже в первые 48 ч жизни, но пока не могли делать это надежно [3, 4, 25], что также подтверждается в нашей работе. Присутствие свистов-криков предполагает, что новорожденные дельфины должны развивать мышцы и управление ими, прежде чем они смогут должным образом воспроизводить ЧМ-сигналы [25]. Вокальная тренировка новорожденных для продуцирования ЧМ-сигналов обсуждалась в работах различных авторов [5, 7, 9].

Впервые для зубатых китов анализ динамики параметров ЧМ-сигналов новорожденной показал, что она периодически продуцирует серии ЧМ-сигналов, форма которых формально различная и не повторяется. Другими словами, она продуцирует ЧМ-сигналы путем перебора их частотных контуров без повторений в случайном порядке. При этом большинство параметров сигналов (начальная частота, конечная частота, минимальная частота, максимальная частота, максимальная частота с учетом гармоник, длитель-

ность, количество гармоник, количество точек перегиба, временные интервалы между свистами) меняются от свиста к свисту случайным образом и имеют квазинормальное распределение значений (рис. 2, 4, 6, 7). Благодаря этому более 90% ЧМ-сигналов не имеют экстремальных (минимальных и максимальных) значений соответствующих параметров, что, по-видимому, увеличивает эффективность развития органов, продуцирующих звук, поскольку это согласуется с общими представлениями о том, что сигналы со средними значениями параметров широкого диапазона легче воспроизводить без сбоев и искажений. Однако такие параметры ЧМ-сигналов, как диапазон частот и диапазон частот с гармониками, имели квазиравномерное распределение значений (рис. 7). Это может свидетельствовать о том, что механизмы изменения таких параметров, как глубина частотной модуляции и количество гармоник в сигналах, уже хорошо развиты, и новорожденная, видимо, проверяла правильность формирования ЧМ-сигналов с различными значениями параметров. Благодаря рассмотренному механизму формирования ЧМ-сигналов, по-видимому, развиваются оптимальная подвижность и управление органов продуцирования ЧМ-сигналов новорожденной. В информатике полный перебор, также известный как генерация и проверка, является общим методом решения проблем. В нашем случае новорожденная, вероятно, систематически воспроизводит все необходимые ей частотные контуры ЧМ-сигналов и проверяет верность их воспроизведения, слушая каждый из них. Можно также предположить, что она пыталась исправлять воспроизведение сигналов, но это трудно проверить и не заметно на рис. 2. Рассмотренные механизмы формирования ЧМ-сигналов новорожденной, вероятно, играют ключевую роль в оптимизации развития и тестирования совместной работы органов и систем их генерации, рецепции и слуховой обработки в раннем постнатальном онтогенезе. Об этом также говорят тенденции изменения таких параметров свистов как: длительность, межсигнальный интервал, диапазон частот и диапазон частот с гармониками, проанализированные с помощью регрессионного анализа, примеры которых показаны на рис. 4, 6. Эти параметры определяют поток энергии звукоизлучающей системы ЧМ-сигналов дельфина. Величина среднего значения интервалов между свистами (рис. 4) в соответствии с моделью простой линейной регрессии имела тенденцию к уменьшению с 3.1 до 2.6 с (p = 0.001; r = 0.183), что указывает на возрастание потока энергии в результате уменьшения паузы звукоизлучения. Вместе с тем, это указывает на уменьшение времени готовности системы продуцирования ЧМ-сигналов новорожденной для излучения следующего сигнала и, следовательно, на развитие системы звукоизлучения. Средние значения частотного диапазона, частотного диапазона с гармониками и длительности свистов (рис. 6), при аппроксимации их моделью простой линейной регрессии, имели тенденцию к увеличению с 5.5 до 10 кГц (p = 0.002; r = 0.121), с 13 до 30 кГц (p = 0.007; r == 0.195) и с 0.54 до 0.59 с (p = 0.005; r = 0.191), соответственно, что также может указывать на развитие системы продуцирования свистов новорожденной.

Наши результаты согласуются с данными работы [3], где было показано, что новорожденные произвольно издавали различные типы свистов, за исключением нескольких типов, таких как возрастающий по частоте (Rise). По мнению авторов, новорожденные в эти ранние периоды жизни практикуются для получения стабильного свиста.

Зубатые киты анализируют ЧМ-сигналы обычным слухом. В то же время "щелчки" ремнезуба (Mesoplodon densirostris) и клюворыла кювьера (Ziphius cavirostris) являются ЧМ-сигналами [2, 22], поэтому авторы рассматривают возможность слуховой обработки их отражений (эхо) от жертвы с помощью согласованного фильтра со сжатием импульсов. В работах [15–18] обсуждается возможность использования дельфином свистов в качестве зондирующих сигналов его ЧМ-гидролокатора со сжатием импульсов и ЧМ-Доплеровского гидролокатора. Таким образом, дельфин, по-видимому, обрабатывает эхо этих сигналов в согласованном фильтре, который его слуховая система организует для каждого конкретного ЧМ-сигнала, как у летучих мышей. Эхолокационная система летучей мыши использует зондирующие ЧМ-сигналы [24] и др., аналогичные ЧМ-сигналам зубатых китов. Они охватывают тот же частотный диапазон, содержат гармоники, сопоставимы по длительности, их частотные контуры подобны. ЧМ-сигналы широко используются в эхолокационной технике на различных частотах (сонары, радары и лазеры). Для оптимального приема эха ЧМ-сигнала в технике эхолокации используется согласованная фильтрация или корреляционный прием.

Обращают на себя внимание сложные формы акустического поведения новорожденной. Например, на протяжении первой записи она, повидимому, продуцировала свои ЧМ-сигналы независимо от наличия ЧМ-сигналов родителей (рис. 3). Хотя они пытались продуцировать свисты в паузе от 175 до 205 с – Яна здесь вставила свист с ростом частоты, а Яша издал серию свистов-автографов. Во время паузы с 278 до 322 с Яша продуцировал еще несколько своих свистовавтографов. Однако во время второй записи (рис. 5) новорожденная замолкала каждый раз, когда ее мать продуцировала ЧМ-сигналы и, по-видимому, слушала их. Она возобновляла свисты только тогда, когда мать замолкала. Это повторилось пять раз. Причем во время паузы с 289 до 362 с она, по-видимому, слушала свисты обоих родителей. Но так продолжалось только до 360-х с, после чего она снова продуцировала свисты независимо от наличия ЧМ-сигналов родителей. Этот обмен свистами новорожденная и ее мать совершили в динамичном движении с погружениями, Яша в это время находился у мостков. К сожалению, анализ спектрограмм ЧМ-сигналов ничего не добавил к пониманию этого сложного акустического поведения дельфинов. Но можно предположить, что все дельфины пытались поддерживать контакт с детенышем и друг с другом, как это отмечается и в работах других авторов [29], или показывали свои ЧМ-сигналы друг другу, чтобы оптимизировать правильное продуцирование этих сигналов новорожденной.

Следует отметить, что Яша 41 раз продуцировал свои свисты-автографы (табл. 1), так же, как и Яна 20 раз во время 3-й и 4-й записи. Сложное акустическое поведение дельфинов может свидетельствовать об относительно высоком уровне социального познания у новорожденной с первых дней жизни.

Это исследование выполнено в рамках темы государственного задания (121032300019-0).

Автор выражает благодарность сотрудникам лаборатории биоакустики Карадагской научной станции им. Т.И. Вяземского – природный заповедник РАН, особенно тренерам Светлане Яхно и Надежде Жуковой за неоценимую помощь при проведении исследования.

#### СПИСОК ЛИТЕРАТУРЫ

- 1. Au W.W.L. The sonar of dolphins. New York (NY), 1993.
- Johnson M., Madsen P.T., Zimmer W.M.X., Aguilar de Soto N., Tyack P. Foraging Blainville's beaked whales (Mesoplodon densirostris) produce distinct click types matched to different phases of echolocation // J. Exp. Biol. 2006. V. 209. P. 5038–5050.
- Morisaka T., Shinohara M., Taki M. Underwater sounds produced by neonatal bottlenose dolphins (*Tursiops truncatus*): I. Acoustic characteristics // Aquatic Mammals. 2005. V. 31(2). P. 248–257. https://doi.org/10.1578/AM.31.2.2005.248
- Reiss D. Observations on the development of echolocation in young bottlenose dolphins // In: Animal Sonar: Processes and performance. Eds. Nachtigall P.E., Moore P.W.B. New York (NY): Plenum Press, 1988. P. 121–127.
- Caldwell M.C., Caldwell D.K., Tyack P.L. Review of the signature-whistle hypothesis for the Atlantic bottlenose dolphin // In: The bottlenose dolphin: Recent progress in research. Eds. *Leatherwood S., Reeves R.* San Diego: Academic Press. 1990. P. 199–234.

- 6. *Smolker R., Mann J., Smuts B.* Use of signature whistles during separations and reunions by wild bottlenose dolphin mothers and infants // Behavioral Ecology and Sociobiology. 1993. V. 33. P. 393–402.
- 7. *Jones B.L.* The ontogeny of whistle production in infant atlantic bottlenose dolphins (*Tursiops truncatus*) during the first thirty days of life. *Master's Theses.* 2014. 46 p.
- Janik V.M., Slater P.J.B. Context-specific use suggests that bottlenose dolphin signature whistles are cohesion calls // Animal Behavior. 1998. V. 56. P. 829–838.
- Janik V.M. Whistle matching in wild bottlenose dolphins (*Tursiops truncatus*) // Science. 2000. V. 289. P. 1355–1357.
- Rasmussen M.H., Lammers M.O., Beedholm K., Miller L.A. Source levels and harmonic content of whistles in white-beaked dolphins (Lagenorhynchus albirostris) // J. Acoust. Soc. Am. 2006. V. 120(1). P. 510–517.

https://doi.org/10.1121/1.2202865

- Caldwell M.C, Caldwell D.K. The whistle of the Atlantic bottlenose dolphin (*Tursiops truncatus*) – ontogeny // In: Behavior of Marine Animals, Cetaceans. Eds. Winn H.E., Olla B.L. New York (NY): Plenum Press, 1979. V. 3. P. 369–401.
- Janik V.M., Dehnhardt G., Todt D. Signature whistle variations in a bottlenosed dolphin, *Tursiops truncatus* // Behavioral Ecology and Sociobiology. 1994. V. 35. P. 243–248.
- Sayigh L.S., Tyack P.L., Wells R.S., Scott M.D. Signature whistles of free-ranging bottlenose dolphins, *Tursiops truncatus*: Stability and mother-offspring comparisons // Behavioral Ecology and Sociobiology. 1990. V. 26. P. 247–260.
- Agafonov A.V., Panova E.M. Individual patterns of tonal (whistling) signals of bottlenose dolphins (*Tursiops* truncates) kept in relative isolation // Biology Bulletin. 2012. V. 5. P. 430–440. https://doi.org/10.1134/S1062359012050020
- Ryabov V.A. Some aspects of analysis of dolphins' acoustical signals // Open J. Acoustics. 2011. V. 1. P. 41–54. https://doi.org/10.4236/oja.2011
- Ryabov V.A. Acoustic signals and echolocation system of the dolphin // Biophysics. 2014. V. 59(1). P. 135–147.
- 17. *Ryabov V.A.* Hydroacoustical regularities of food behavior of dolphins // Marine Biological J. 2018. V. 3(2).

P. 81–97.

https://doi.org/10.21072/mbj.2018.03.2.07

- Ryabov V.A. Some aspects of reflection of dolphin FMsignals (Whistles) in an experimental tank // Acoust. Phys. 2019. V. 65(6). P. 750–756. https://doi.org/10.1134/S1063771019060125
- Wang D., Würsig B., Evans E. Whistles of bottlenose dolphins: Comparisons among populations // Aquatic Mammals. 1995. V.21. P. 65–77.
- Buckstaff K.C. Effects of watercraft noise on the acoustic behavior of bottlenose dolphins, Tursiops truncatus, in Sarasota Bay, Florida // Marine Mammal Science. 2004. V. 20. P. 709–725.
- May-Collado L.J., Wartzok D.A. Comparison of bottlenose dolphin whistles in the Atlantic Ocean: Factors promoting whistle variation // J. Mammalogy. 2008. V. 89. P. 1229–1240.
- Zimmer W.M.X., Johnson M.P., Madsen P.T., Tyack P.L. Echolocation clicks of free-ranging Cuvier's beaked whales (*Ziphius cavirostris*) // J. Acoust. Soc. Am. 2005. V. 117. P. 3919–3927. https://doi.org/10.1121/1.1910225
- 23. *Mercado III E.* The Sonar Model for Humpback Whale Song Revised // Front. Psychol. 2018. V. 9. P. 1156. https://doi.org/10.3389/fpsyg.2018.01156
- 24. *Mayberry H.W., Faure P.A.* Morphological, olfactory, and vocal development in big brown bats // Biology Open. 2015. V. 4. P. 22–34. https://doi.org/10.1242/bio.201410181
- Killebrew D.E., Mercado III E., Herman L.M., Pack A.A. Sound production of a neonate bottlenose dolphin // Aquatic Mammals. 2001. V. 27. P. 34–44.
- Fripp D. Bubblestream whistles are not representative of a bottlenose dolphin's whistle repertoire // Marine Mammal Science. 2005. V. 21. P. 29–44.
- 27. *Richardson W.J., Greene C.R., Malme C.I., Thomson D.H.* Marine Mammals and Noise. San Diego: Academic Press, 1995. 576 p.
- Janik V.M. Source levels and the estimated active space of bottlenose dolphin Tursiops truncatus whistles in the Moray Firth, Scotland // J. Comp. Physiol. A. 2000. V. 186. P. 673-680. https://doi.org/10.1007/s003590000120
- Nakahara F., Miyazaki N. Vocal exchanges of signature whistles in bottlenose dolphins (*Tursiops truncatus*) // J. Ethol. 2011. 29. P. 309–320.