УДК 532.135

ИССЛЕДОВАНИЕ ОБЪЕМНОЙ ВЯЗКОСТИ НАНОСУСПЕНЗИЙ МЕТОДОМ АКУСТИЧЕСКОЙ СПЕКТРОСКОПИИ

© 2022 г. А. В. Минаков^{а,} *, М. И. Пряжников^а, Б. Б. Дамдинов^а, И. В. Немцев^{а, b}

^аСибирский федеральный университет, Свободный пр. 82А, Красноярск, 660041 Россия

^bКрасноярский региональный центр коллективного пользования (ФИЦ КНЦ СО РАН), ул. Академгородок 50, Красноярск, 660036 Россия

*e-mail: Aminakov@sfu-kras.ru Поступила в редакцию 03.09.2021 г. После доработки 25.11.2021 г. Принята к публикации 30.11.2021 г.

При помощи акустического спектрометра получены данные об объемной вязкости водных суспензий наночастиц SiO₂ и Al₂O₃. Рассмотрен широкий диапазон массовых концентраций наночастиц (от 1 до 50 мас. %) и средних размеров наночастиц (от 18 до 108 нм). В диапазоне от 10 до 100 МГц измерены коэффициенты затухания и скорости звука в наносуспензиях. Получены зависимости коэффициентов динамической и объемной вязкости наносуспензий от концентрации и размера наночастиц различных материалов.

Ключевые слова: поглощение ультразвука, скорость звука, объемная вязкость, суспензия наночастиц, динамическая вязкость, акустическая спектроскопия, скорость звука

DOI: 10.31857/S0320791922020058

введение

Изучение объемной вязкости суспензий и эмульсий в последние два десятилетия становится весьма актуальным. Прежде всего, это связано с созданием разнообразных микроэлектромеханических систем и технологий микро- и наноуровня различного назначения. При этом надо отметить, что объемная вязкость даже чистых жидкостей еще не до конца исследована. Среди известных экспериментальных работ имеются лишь данные об объемной вязкости всего для пары десятков жидкостей. Экспериментальных данных по объемной вязкости дисперсных систем в настоящее время еще меньше. Одной из первых экспериментальных работ, посвященных этой проблеме, по-видимому, следует считать работу С. Сьюэлла 1910 г. [1], исследовавшего малые взвешенные твердые частицы в дыму или в тумане. Он считал, что эти частицы неподвижны и не участвуют в распространении звуковых колебаний. С.М. Рытов с коллегами [2], используя предположения Л.И. Мандельштама о релаксационном нелокальном характере поглощения звука, выдвинули первую теорию вязкостного механизма затухания звука во взвесях твердых частиц. Спустя несколько лет, используя результаты этого исследования, М.А. Исакович развил теорию о распространении звука в эмульсиях, а также обнаружил переход между адиабатической и изотермической скоростями звука [3]. Значительный интерес в этой области представляет работа [4], посвященная исследованию распространения ультразвуковых волн в некоторых структурированных дисперсных системах. В результате проведенной работы было установлено, что коэффициент поглощения во всем исследованном диапазоне концентраций и скорость распространения ультразвука при содержании твердой фазы больше определенного значения зависят от структурообразования системы. Следовательно, значение объемной вязкости зависит от интенсивности взаимодействия частиц дисперсной фазы. Исследованию особенностей поглощения звука нанодисперсными растворами посвящены работы [5-7]. Показано, что поглощение звуковой волны в коллоидном растворе идет по двум механизмам: за счет вязкого трения в жидкости и за счет диссипации энергии на наночастицах. При этом для заряженных коллоидов электростатическое отталкивание приводит к увеличению поглощения при прочих равных условиях. Большой вклад в исследование акустических свойств дисперсных систем внес А.С. Духин, которого можно рассматривать как одного из основоположников метода акустической и электроакустической спектроскопии [8]. Детальный обзор состояния дел в этой области можно найти в его недавней работе [9]. Показано, что акустическая реометрия является

	-		
Материал	PS, нм	Производитель	SSA, $M^2 \Gamma^{-1}$
SiO ₂	18	Bardakhanov	149
	22	Sigma Aldrich	110
	50	Bardakhanov	55
	72	Bardakhanov	38
	91	Bardakhanov	30
Al ₂ O ₃	50	Bardakhanov	31
	75	Bardakhanov	20
	108	Bardakhanov	14

Таблица 1. Измеренные размеры частиц в порошке (PS) и удельная поверхность (SSA)

мощным инструментом для широкого круга задач, в том числе и для исследования объемной вязкости сложных дисперсных систем. Отдельно нужно сказать об исследовании магнитных наносуспензий. В монографии [10] рассмотрено современное представление об акустических свойствах таких магнитных нанодисперсных систем. Описаны особенности распространения звуковых колебаний в намагничивающихся жидкостях и описывающие их модельные теории: учет акустомагнитных эффектов, магнитожидкостное уплотнение, акустомагнитная спектроскопия и т.д.

Вместе с тем, несмотря на значительные усилия, предпринятые за эти десятилетия, поведение объемной вязкости наносуспензий остается недостаточно изученным. Нет окончательной ясности относительно того, как объемная вязкость различных наносуспензий зависит от концентрации, размера, материала наночастиц и свойств базового флюида. Это требует дополнительных систематических экспериментальных исследований. В данной работе при помощи акустической спектроскопии проведено систематическое экспериментальное исследование зависимости объемной вязкости водных наносуспензии от концентрации и размера наночастиц SiO₂ и Al₂O₃.

МЕТОДИКА ПРИГОТОВЛЕНИЯ НАНОСУСПЕНЗИЙ И ИЗМЕРЕНИЯ ИХ СВОЙСТВ

Рассмотренные наносуспензии были приготовлены на основе дистиллированной воды. В качестве наночастиц были использованы частицы оксидов кремния и алюминия разных размеров (компания "Бардаханов") (см. табл. 1). Использовались также готовые суспензии частиц оксида кремния Ludox TM-50 (Sigma-Aldrich). Были рассмотрены только гидрофильные наночастицы. Концентрация частиц в растворах варьировалась от 0.025 до 50 мас. %, а их размер от 18 до 108 нм.

Размеры наночастиц в уже приготовленных наносуспензиях измеряли с использованием акустического спектрометра DT-1202 Dispersion Technologies (США). Для каждого образца измерения размера частиц проводились 4—5 раз. Типичный результат измерения распределения частиц оксида кремния по размерам непосредственно в воде показан на рис. 1а. Кроме того, размер наночастиц контролировался с помощью сканирующего электронного микроскопа сверхвысокого разрешения FE-SEM S-5500 (Hitachi, Japan) (см. рис. 16).

Используемые в описываемых экспериментах наносуспензии приготавливались так называемым двухстадийным методом. Для создания наносуспезий нанопорошок, содержащий частицы заданного среднего размера, добавляется в нужном количестве в дистиллированную воду. Затем наносуспензия тщательно механически перемешивается с помощью высокоскоростной мешалки

Рис. 1. Характеризация наночастиц SiO₂. (а) – Распределение по размерам частиц в жидкости; (б) – SEM фотография первичных частиц оксида кремния (22 нм).

(трехшпиндельная мешалка Hamilton Beach и OFITE 152-18 Prince Castle 20000 об/мин) и далее подвергается обработке ультразвуком для разрушения агрегатов из частиц. Для этих целей в работе использовался ультразвуковой аппарат "Волна" УЗТА-0,4/22-OM (мощность 400 Вт, частота 22 кГц). Время длительности ультразвуковой обработки наносуспензии определялось эмпирическим путем до получения полной стабилизации значений ее вязкости от времени обработки. Кроме этого, проводилось измерение размера наночастиц непосредственно в жидкости с помощью спектрометра DT-1202. Распределение наночастиц по размерам также стабилизировалось после определенного времени ультразвуковой обработки. В нашем исследовании время ультразвуковой обработки в среднем составляло не менее 20 мин. Наносуспензии частиц оксида кремния, приготовленные из готовых суспензий Ludox TM-50 (50 мас. %), были получены разбавлением (раствором 0.01 М КСІ) до нужной концентрации.

Описанная выше методика приготовления позволяет получать коллоидно устойчивые наносуспензии, свойства которых остаются стабильными в течение как минимум нескольких дней с момента приготовления.

Измерение коэффициента сдвиговой вязкости наносуспензий проводилось с помощью ротационного вискозиметра Brookfield DV2T со шпинделями (LV-61, LV-62) и адаптера для низких значений вязкости UL Adapter. Частота вращения шпинделя варьировалась от 1 до 200 об/мин. Диапазон скоростей сдвига для этого вискозиметра в зависимости от шпинделя и адаптера — от 0.01 до $250 \,\mathrm{c}^{-1}$. Вискозиметр Brookfield DV2T имеет заявленную погрешность ±1% (при использовании шпинделей LV) в зависимости от используемого диапазона. При использовании адаптера UL к погрешности прибавляется 1%. Во всех рассмотренных случаях осуществлялось измерение зависимости коэффициента вязкости от скорости сдвига у во всех доступных диапазонах изменения у. Это позволило получить данные относительно реологии наносуспензий. В процессе измерения тщательно контролировалась температура. Все данные, приведенные ниже, получены при температуре 25°C.

Скорость звука и спектр его коэффициента поглощения измеряли при помощи акустического и электроакустического спектрометра DT1202 (Dispersion Technologies). Данный прибор предназначен для характеризации дисперсий в широком диапазоне концентраций частиц (0.1...60 мас. %). Акустический сенсор прибора измеряет коэффициент затухания ультразвука (0...20 \pm 0.01 дБ см⁻¹ МГц⁻¹) в широком динамическом диапазоне частот (от 1 до 100 МГц), а также скорость звука. В спектрометре имеется камера, в которой расположены

излучатель ультразвуковых волн и приемник ультразвукового сигнала. Камера заполняется исследуемой жидкостью, в которой происходит распространение ультразвука от излучателя к приемнику. При этом ультразвуковые волны испытывают рассеяние на частицах, что приводит к изменениям в спектре ультразвукового сигнала, которое фиксируется прибором.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Вначале была исследована зависимость объемной вязкости от концентрации наночастиц. Эти исследования были проведены для наносуспензии частиц оксида кремния (Ludox-TM) [11]. Данная суспензия является устойчивой при очень высоких концентрациях наночастиц (до 50 мас. %).

Для ньютоновских жидкостей коэффициент поглощения α пропорционален так называемой продольной вязкости η_{long}, которая складывается из динамической вязкости и объемной вязкости:

$$\alpha = \frac{\omega^2}{2\rho V^3} \eta_{\text{long}} = \frac{\omega^2}{2\rho V^3} \left[\frac{4}{3} \eta + \eta_{\text{vol}} \right], \tag{1}$$

где V – скорость звука, ρ – плотность жидкости, ω – частота излучения, η , η_{vol} – коэффициенты сдвиговой и объемной вязкости.

Спектры коэффициента поглощения ультразвука для различных концентраций наночастиц показаны на рис. 2а. Как видно, добавление наночастиц приводит к увеличению коэффициента поглощения. С увеличением частоты излучения коэффициент поглощения возрастает для всех концентраций наночастиц, что свидетельствует о вязкостном механизме поглошения. На низких частотах коэффициент поглощения с ростом концентрации наночастиц возрастает сильнее. Зависимость скорости звука в суспензии от концентрации наночастиц приведена на рис. 26. Эта зависимость имеет немонотонный характер. Скорость звука уменьшается с увеличением концентрации частиц, вплоть до 25 мас. %. При концентрации наночастиц 50 мас. % скорость звука резко возрастает. При такой высокой концентрации частиц в жидкости становится так много, что они начинают взаимодействовать с друг с другом.

С помощью ротационного вискозиметра была исследована зависимость сдвиговой вязкости данной наносуспензии от скорости сдвига (см. рис. 3а). Было показано, что данная наносуспензия даже при очень высоких концентрациях частиц в рассмотренном диапазоне скоростей сдвига является ньютоновской. Зависимость сдвиговой вязкости наносуспензии частиц оксида кремния (Ludox-TM) от концентрации приведена на рис. 3б. Для сравнения на графике также отложены значения коэффициента вязкости со-

Рис. 2. (а) – Спектры коэффициента поглощения ультразвука, (б) – скорость звука в суспензиях от концентрации наночастиц SiO₂ (22 нм).

Рис. 3. Зависимости вязкости наносуспензий с частицами SiO₂ (22 нм) от (а) – скорости сдвига и (б) – от концентрации наночастиц.

гласно теориям Эйнштена $\eta = \eta_0(1 + (5/2)\phi)$ и Бэтчелора $\eta = \eta_0 \left[1 + (5/2)\phi + 6.2\phi^2 \right]$, где ϕ – объемная концентрация частиц. Как видно, коэффициент вязкости наносуспензии существенно выше и не описывается классическими формулами.

Используя измеренные данные о коэффициенте поглощения, скорости звука и частоты ультразвука, с помощью формулы (1) были рассчитаны значения продольной вязкости η_{long} , которые приведены на рис. 4.

Коэффициент продольной вязкости суспензий растет с увеличением концентрации наночастиц. При низких концентрациях наночастиц коэффициент затухания не зависит от частоты излучения. При увеличении концентрации наночастиц свыше 10 мас. % такая зависимость появляется. С увеличением частоты излучения продольная вязкость суспензий снижается. Если анализировать поведение сдвиговой вязкости η , то она при всех рассмотренных концентрациях частиц не зависит от скорости сдвига.

С помощью измеренных значений продольной и сдвиговой вязкости для ньютоновских наносуспензий можно вычислить значения объемной вязкости наносуспензии $\eta_{vol} = \eta_{long} - \frac{4}{3}\eta$. Для верификации данной методики в начале было проведено сопоставление измеренного нами значения объемной вязкости для чистой воды при 25°C с другими известными данными. Так было получено значение $\eta_{vol} = 2.45$ мПа с, что хорошо согласуется со значениями 2.4 мПа с из работы [8] и 2.47 мПа с из работы [12].

Данные о зависимости объемной вязкости наносуспензий с частицами SiO₂ (22 нм) приведены в табл. 2.

Полученные данные хорошо описываются выражением:

$$\eta_b(w) = \eta_0(1 + 24w - 58w^2)$$
 для $w \le 0.1$, (2)

где η_0 — коэффициент объемной вязкости воды при 25°С, [мПа с], *w* — массовая доля наночастиц.

Далее была исследована зависимость коэффициента объемной вязкости наносуспензий от среднего размера частиц. Для этого были рассмотрены наносуспензии оксида кремния и алюминия с объемной концентрацией 1%. Для этой серии исследований использовались нанопорошки ООО "Бардаханов". Средний размер наночастиц варьировался в широких пределах согласно данным в табл. 1.

Во всех случаях исследовалась зависимость вязкости от скорости сдвига. Коэффициент динамической вязкости рассчитывался как среднее из пяти измерений. В результате измерений определялась зависимость динамической вязкости исследуемых суспензий от скорости сдвига, концентрации, размера и вида используемых наночастиц. Измерения сдвиговой вязкости этих суспензий показали, что их вязкость не зависит от скорости сдвига и суспензии являются ньютоновскими. Зависимость относительного (приведенного к вязкости воды) коэффициента сдвиговой вязкости этих суспензий от размера наночастиц приведена на рис. 5. Для сравнения на графике отложено значение коэффициента вязкости, рассчитанного по известной для разбавленных суспензий формуле Эйнштейна $\eta = \eta_0 (1 + (5/2) \phi)$, где ϕ — объемная концентрация частиц. Анализ данных на рис. 5 позволяет выделить ряд любопытных тенденций, отличающих наносуспензии от суспензий с крупнодисперными частицами. Во-первых, видно, что

Рис. 4. Зависимости коэффициента продольной вязкости наносуспензии SiO₂ (22 нм) от частоты ультразвука.

сдвиговая вязкость наносуспензий зависит от размера наночастиц. С уменьшением размера частиц вязкость η значительно возрастает. Во-вторых, при малых размерах наночастиц суспензии с разными материалами частиц имеют различную вязкость. Оба эти вывода противоречат классическим представлениям, в рамках которых вязкость суспензий зависит только от концентрации частиц. Подробное исследование вязкости наносуспензии проведено в нашей работе [13]. Тем не менее, с увеличением размера наночастиц коэффициент вязкости обеих суспензий стремится к значению по классической теории.

Коэффициенты затухания наносуспензий с частицами разного размера приведены на рис. 6. Как видно, поведение коэффициентов затухания для суспензий с частицами SiO_2 и Al_2O_3 существенно отличается. Для наносуспензий SiO_2 коэффициенты поглощения возрастают с увеличением частоты излучения, что говорит о преимущественно вязкостном механизме затухания. Для

Таблица 2. Зависимости объемной вязкости наносуспензий с частицами SiO₂ (22 нм) от концентрации.

<i>w</i> , мас. %	Объемная вязкость, мПа с
0	2.45
1	2.93
2.5	3.82
5	5.10
10	6.94

Рис. 5. Зависимость относительного коэффициента вязкости суспензий от размера наночастиц.

суспензий Al_2O_3 поведение коэффициента от частоты имеет более сложный характер. При частотах, меньших 10 МГц, с увеличением частоты излучения коэффициент поглощения снижается. При дальнейшем увеличении частоты коэффициент поглощения возрастает. Такое поведение говорит о том, что в данном случае преимущественным механизмом затухания звука является рассеивание на частицах оксида алюминия. Кроме того, на рис. 6б видно, что с увеличением размера наночастиц характер зависимости коэффициента затухания от частоты меняется. Это показывает, что при малых размерах частиц доминирующим механизмом затухания звука является его вязкостное поглощение, а при увеличении размера наночастиц начинает доминировать рассеивание звука непосредственно на частицах.

Это также объясняет то обстоятельство, что с увеличением размера наночастиц для обеих суспензий в широком диапазоне частот коэффициент поглощения возрастает. Особенно сильно это проявляется для наносуспензии с частицами оксида алюминия при низких частотах. Здесь увеличение среднего размера частиц в два раза приводит к увеличению коэффициента поглощения в 2.6 раз.

Аналогичным образом с помощью формулы (1) были рассчитаны значения продольной и сдвиговой вязкости наносуспензий при различном среднем размере наночастиц и одинаковой объемной концентрации. Было установлено, что в отличие от сдвиговой вязкости, продольная и объемная вязкость исследованных наносуспензий увеличивается с увеличением размера наночастиц (см. рис. 7). Для рассмотренных суспензий коэффициент объемной вязкости зависит от частоты излучения. Таким образом, в данном частотном диапазоне эти наносуспензии имеют неньютоновское поведение. При этом, как видно из данных на рис. 7, чем выше средний размер нано-

Рис. 6. Спектры коэффициента поглощения ультразвука в суспензиях с наночастицами (a) $-SiO_2 u (6) - Al_2O_3 pаз$ личного размера при концентрации частиц 1 мас. %.

АКУСТИЧЕСКИЙ ЖУРНАЛ том 68 № 2 2022

Рис. 7. Зависимость объемной вязкости наносуспензий с наночастицами (a) – SiO₂ и (б) – Al₂O₃ при их объемной концентрации 1% от частоты ультразвука.

частиц, тем сильнее зависимость объемной вязкости наносуспензий от частоты излучения.

Проведенные систематические измерения позволили выявить наличие зависимости объемной вязкости наносуспензий от материала наночастиц (рис. 8). Как видно, при прочих равных условиях (концентрация и средний размер наночастиц) значения объемной вязкостей наносуспензий с различными материалами частиц значи-

Рис. 8. Зависимость объемной вязкости наносуспензий с наночастицами SiO₂ и Al₂O₃ при их объемной концентрации 1% от среднего размера наночастиц при частоте 53.6 МГц.

тельно отличаются. Наносуспензия с частицами оксида алюминия имеет существенно более высокую объемную вязкость, что, очевидно, обусловлено различным взаимодействием излучения с материалом частиц.

ЗАКЛЮЧЕНИЕ

При помощи акустического спектрометра проведено систематическое исследование объемной вязкости водных суспензий наночастиц SiO₂ и Al₂O₃. Получены зависимости коэффициентов динамической и объемной вязкости наносуспензий от концентрации и размера наночастиц различных материалов.

Показано, что коэффициент объемной вязкости суспензий возрастает с увеличением концентрации наночастиц. При этом при низких концентрациях наночастиц коэффициент затухания, как правило, не зависит от частоты излучения. При увеличении концентрации наночастиц такая зависимость появляется. С увеличением частоты объемная вязкость наносуспензий снижается.

Исследована зависимость объемной вязкости наносуспензий от размера частиц. Показано, что с увеличением среднего размера частиц объемная вязкость наносуспензий возрастает. При этом, чем выше средний размер наночастиц, тем сильнее проявляется зависимость объемной вязкости суспензии от частоты излучения.

Показано, что при одинаковой концентрации и близких размерах наночастиц различного материала объемная вязкость их суспензий значительно отличается. Исследование выполнено в рамках государственного задания ФГАОУ ВО Сибирский федеральный университет (номер FSRZ-2020-0012). Авторы также благодарны Красноярскому региональному центру коллективного пользования ФИЦ КНЦ СО РАН за характеризацию наночастиц и выполнение электронной микроскопии.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Sewell C. T.J.* The extinction of sound in a viscous atmosphere by small obstacles of cylindrical and spherical form // Philosophical Transactions of the Royal Society. 1910. V. 210. P. 239–270.
- 2. Рытов С.М., Владимирский В.В., Галанин М.Д. Распространение звука в дисперсных системах // Журн. экспер. теор. физ. 1938. Т. 8. № 5. С. 614–626.
- 3. Исакович М.А. О распространении звука в эмульсиях // Журн. экспер. теор. физ. 1948. Т. 18. № 10. С. 907–912.
- 4. Белый Л.Н. Исследование распространения ультразвука в некоторых структурированных дисперсных системах. Автореф. дис. ... канд. физ.-мат. наук: 01.04.15. Киев, 1974. С. 36.
- 5. Лебедев-Степанов П.В., Рыбак С.А. Поглощение звука раствором наночастиц // Акуст. журн. 2009. Т. 55. № 3. С. 326–330.

- 6. Лебедев-Степанов П.В., Рыбак С.А. Поглощение звука в коллоидном растворе взаимодействующих частиц // Акуст. журн. 2011. Т. 57. № 6. С. 786–791.
- 7. Бадмаев Б.Б., Дамдинов Б.Б. Исследование вязкоупругих свойств органических жидкостей акустическим методом // Акуст. журн. 2001. Т. 47. № 4. С. 561–563.
- 8. *Dukhin A.S., Goetz P.J.* Characterization of liquids, dispersions, emulsions, and porous materials using ultrasound, 3rd Edition. Cambridge: Elsevier, 2017. 590 p.
- Dukhin A.S. Rheology in Longitudinal (Ultrasound) Mode. Review // Colloid J. 2021. V. 83(1). P. 1–19. https://doi.org/10.1134/S1061933X21010051
- Полунин В.М. Акустические свойства нанодисперсных магнитных жидкостей. М.: ФИЗМАТЛИТ, 2012. 384 с. ISBN 978-5-9221-1376-2
- Pryazhnikov M.I., Minakov A.V. Bulk viscosity of a suspension of silicon oxide nanoparticles // Tech. Phys. Lett. 2020. V. 46(6). P. 606–609. https://doi.org/10.1134/S1063785020060243
- Jaeger F., Matar O.K., Müller E.A. Bulk viscosity of molecular fluids // J. Chem. Phys. 2018. V. 148. P. 174504. https://doi.org/10.1063/1.5022752
- Minakov A.V., Rudyak V.Y., Pryazhnikov M.I. Systematic experimental study of the viscosity of nanofluids // Heat Transfer Engineering. 2021. V. 42(12). P. 1024–1040. https://doi.org/10.1080/01457632.2020.1766250