АКУСТИЧЕСКИЙ ЖУРНАЛ, 2021, том 67, № 6, с. 659–667

– ОБРАБОТКА АКУСТИЧЕСКИХ СИГНАЛОВ. КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ

УДК 681.7,534.91

ЛОКАЛИЗАЦИЯ ИСТОЧНИКА В СЛУЧАЙНО–НЕОДНОРОДНОМ КАНАЛЕ С ИСПОЛЬЗОВАНИЕМ МНОГОРАНГОВОГО АЛГОРИТМА КЕЙПОНА

© 2021 г. А. Г. Сазонтов^{а, b, *}, И. П. Смирнов^{а, b}

^аИнститут прикладной физики РАН, Нижний Новгород, Россия ^bНижегородский государственный университет им. Н.И. Лобачевского, Нижний Новгород, Россия

> *e-mail: sazontov@ipfran.ru Поступила в редакцию 07.06.2021 г. После доработки 02.08.2021 г. Принята к публикации 03.08.2021 г.

Построена адаптивная версия многорангового алгоритма Кейпона, позволяющая локализовать акустический источник вертикальной антенной решеткой в условиях неполной информации о случайном канале распространения. В предположении, что основным механизмом, вызывающим рассеяние звука, является развитое ветровое волнение, представлены результаты статистического моделирования, показывающие точности оценивания координат источника и вероятности его правильного обнаружения. Приведена экспериментальная апробация предложенного способа, демонстрирующая его работоспособность в акватории Баренцева моря.

Ключевые слова: случайный акустический волновод с неточно известными параметрами, локализация источника, многоранговый алгоритм Кейпона, рассеяние на взволнованной поверхности, статистическое моделирование, экспериментальная апробация

DOI: 10.31857/S0320791921060101

введение

Как известно (см., например, [1, 2]), одной из главных причин, затрудняющих получение приемлемого решения обратной задачи в морских условиях, является неточное соответствие (рассогласование) между расчетной моделью среды распространения и реальным акустическим волноводом. Эффекты рассеяния звука на неоднородностях водной толщи и взволнованной поверхности, приводящие к нарушению когерентности поля на приемной апертуре, дополнительно усложняют поиск координат источника.

При наличии случайных неоднородностей предположение о заданной регулярной пространственной структуре полезного сигнала заведомо не выполняется, и когерентные алгоритмы не в состоянии обеспечить согласование модели с реальными данными. В подобной ситуации согласование может быть выполнено лишь в статистическом смысле. Существующие на сегодняшний день основные методы решения обратной задачи в случайно—неоднородном волноводе описаны в обзоре [2]. Так, для оценки параметров частичнокогерентных сигналов в литературе используется несколько вариантов обобщенного метода MUSIC (см., например [3–5]). Однако указанные способы локализации сталкиваются с проблемой нахождения размерности сигнального подпространства, поскольку во флуктуирующем канале данная размерность в общем случае превышает число некоррелированных источников и является априори неизвестной величиной¹.

Другой подход к построению алгоритмов обработки сигналов с нарушенной пространственной когерентностью основан на использовании критерия, максимизирующего отношение сигнал/шум на выходе антенной решетки (АР). В рамках такого рассмотрения в работе [8] сформулирована процедура оценивания, получившая название обобшенного метода Кейпона. предполагающая априорное знание сигнальной матрицы. Улучшенный вариант этого способа обработки (основанный на наихудшем сценарии приема [9], учитывающем отличие ожидаемого второго момента поля от истинного), приведен в работах [10, 11]. При этом в [11] предложен более общий алгоритм адаптации к статистическому рассогласованию, включающий условие положительной опре-

¹ Один из возможных способов оценки размерности сигнального подпространства основан на методе минимального многочлена выборочной корреляционной матрицы [6, 7].

деленности корреляционной матрицы сигнального поля.

Обратим внимание. что линейная пространственная обработка, использующая обобщенный метод Кейпона, заключается в согласованной фильтрации одной, наиболее мощной компоненты спектрального разложения сигнальной матрицы. В случае, когда соответствующая матрица формируется несколькими главными компонентами. этот метод теряет свою эффективность. В таких условиях необходимо привлекать более сложные квадратичные алгоритмы, осуществляющие матричную фильтрацию входного вектора наблюдения (см., например, [12–15]). Одним из таких алгоритмов является многоранговый метод Кейпона, предложенный Г. Коксом [15] (см., также [16, 17]) применительно к решению обратной задачи в среде с точно известными параметрами.

В настоящей работе в рамках наихудшего сценария приема построена адаптивная версия многорангового алгоритма Кейпона, позволяющая локализовать акустический источник с помощью вертикальной антенны, работающей в условиях неполной информации о случайном канале распространения. Проводимое рассмотрение основано на использовании разложения Карунена—Лоэва для флуктуационной составляющей сигнального вектора и предполагает, что число значимых компонент в этом разложении меньше числа элементов приемной антенны.

Представлены результаты сравнительного анализа эффективности предложенного способа оценивания с методом максимума правдоподобия и обобщенным методом Кейпона. Приведена экспериментальная апробация построенного алгоритма, демонстрирующая его работоспособность в мелководной акватории Баренцева моря, в которой основным источником, вызывающим рассеяние звука, является развитое ветровое волнение.

1. ПОСТАНОВКА ЗАДАЧИ. ИСХОДНЫЕ СООТНОШЕНИЯ

Рассмотрим случайно—неоднородный акустический волновод, в котором звуковое поле создается источником, расположенным в точке с координатами (r_0, z_0) и излучающим узкополосный сигнал с комплексной огибающей s(t). Прием осуществляется линейной вертикальной АР, состоящей из N одинаковых элементов, расположенных на горизонтах $\{z_j\}_{j=1}^N$. (Начало координат по дальности выбрано в месте установки АР.)

В узкополосном приближении поле на входе АР характеризуется N —мерным вектором наблюдения \mathbf{x}_i :

$$\mathbf{x}_l = \mathbf{g}(\mathbf{\theta})\mathbf{s}_l + \mathbf{n}_l, \quad l = 1, 2, \cdots, L.$$
(1)

Здесь *l* — номер выборочного отсчета, **g**(θ) — пространственный сигнальный вектор, зависящий от неизвестных координат $\theta = (r_0, z_0)^T$ (верхний индекс *T* означает операцию транспонирования), **n**_l — вектор аддитивного белого шума, а *L* — объем входной выборки. Задача состоит в построении адаптивного алгоритма обработки, позволяющего по принятой выборке {**x**_l}^{*L*}_{*l*=1} оценить положение источника в случайно-неоднородном канале с неточно известными параметрами.

При дальнейшем анализе будем считать, что **n**_l является случайным гауссовым вектором с нулевым средним значением и характеризуется ковариационной матрицей $\langle \mathbf{n}_l \mathbf{n}_l^+ \rangle = \sigma_n^2 \mathbf{I}$, где σ_n^2 – неизвестный уровень шума, \mathbf{I} – единичная матрица размерности $N \times N$, а (·)⁺ и 〈·) означают операции эрмитового сопряжения и статистического усреднения, соответственно.

В случайном волноводе вектор $\mathbf{g}(\mathbf{\theta})$ представим в виде

$$\mathbf{g}(\mathbf{\theta}) = \overline{\mathbf{g}}(\mathbf{\theta}) + \widetilde{\mathbf{g}}(\mathbf{\theta}), \quad \langle \widetilde{\mathbf{g}}(\mathbf{\theta}) \rangle = 0, \tag{2}$$

где $\overline{\mathbf{g}}(\mathbf{\theta})$ — когерентная компонента соответствующего вектора, а $\tilde{\mathbf{g}}(\mathbf{\theta})$ — его флуктуационная составляющая, ковариационная матрица которой равна $\mathbf{C}_{s}(\mathbf{\theta}) = \langle \tilde{\mathbf{g}}(\mathbf{\theta}) \tilde{\mathbf{g}}^{+}(\mathbf{\theta}) \rangle \in C^{N \times N}$. Для рассматриваемого сценария сигнальная матрица $\mathbf{R}_{s}(\mathbf{\theta}) = \langle \mathbf{g}(\mathbf{\theta}) \mathbf{g}^{+}(\mathbf{\theta}) \rangle$, характеризующая пространственную когерентность поля на апертуре AP, может быть записана следующим образом:

$$\mathbf{R}_{s}(\mathbf{\theta}) = \overline{\mathbf{g}}(\mathbf{\theta})\overline{\mathbf{g}}^{\dagger}(\mathbf{\theta}) + \mathbf{C}_{s}(\mathbf{\theta}), \text{ rank}\{\mathbf{R}_{s}(\mathbf{\theta})\} > 1.$$

Проводимое ниже рассмотрение основано на представлении случайного поля $\tilde{g}(\theta)$ в виде разложения Карунена—Лоэва (см., например, [18])

$$\tilde{\mathbf{g}}(\mathbf{\theta}) = \sum_{p=1}^{N_0} \beta_p \mathbf{u}_p(\mathbf{\theta}), \quad \left\langle \beta_p \right\rangle = 0, \quad \left\langle \beta_p \beta_q^+ \right\rangle = \mu_p \delta_{pq}, \quad (3)$$

в котором $\mathbf{u}_{p}(\mathbf{\theta})$ — собственные векторы матрицы $\mathbf{C}_{s}(\mathbf{\theta})$, отвечающие собственным значениям μ_{p} , и предполагает, что rank { \mathbf{C}_{s} } = $N_{0} < N$. Тогда с учетом (3) и на основании (2) для сигнального вектора получим

$$\mathbf{g}(\mathbf{\theta}) = \overline{\mathbf{g}}(\mathbf{\theta}) + \mathbf{\Phi}_{s}(\mathbf{\theta})\mathbf{\beta},\tag{4}$$

где $\Phi_s(\boldsymbol{\theta}) = [\mathbf{u}_1(\boldsymbol{\theta}), \cdots, \mathbf{u}_{N_0}(\boldsymbol{\theta})] \in C^{N \times N_0}$, а $\boldsymbol{\beta} = (\boldsymbol{\beta}_1, \cdots, \boldsymbol{\beta}_{N_0})^T$ – случайный N_0 -мерный вектор.

= ($\beta_1, \dots, \beta_{N_0}$)^{*} — случайный N_0 —мерный вектор. Полагая $\langle \mathbf{g}(\mathbf{\theta}) \rangle = \overline{\mathbf{g}}(\mathbf{\theta}) / \| \overline{\mathbf{g}}(\mathbf{\theta}) \|$, соотношение (4) можно привести к виду

$$\mathbf{g}(\mathbf{\theta}) = \mathbf{A}(\mathbf{\theta})\mathbf{h},\tag{5}$$

АКУСТИЧЕСКИЙ ЖУРНАЛ том 67 № 6 2021

где $\mathbf{A}(\mathbf{\theta}) = [\langle \mathbf{g}(\mathbf{\theta}) \rangle \mathbf{\Phi}_{s}(\mathbf{\theta})] \in C^{N \times K}, \ \mathbf{h} = (\| \overline{\mathbf{g}}(\mathbf{\theta}) \|, \mathbf{\beta}^{T})^{T} \in \mathbf{G}$ $\in C^{K \times 1}$, a $K = N_0 + 1$.

Обратим внимание, что введенная таким образом матрица A(θ) обладает регулярной пространственной структурой, имеет ранг равный К и удовлетворяет условию нормировки вида $\|\mathbf{A}(\mathbf{\theta})\|_{F}^{2} \equiv \mathrm{Tr}\{\mathbf{A}^{+}(\mathbf{\theta})\mathbf{A}(\mathbf{\theta})\} = K$, где $\|\cdot\|_{F}$ и Tr(·) означают норму Фробениуса и след матрицы, соответственно. Отметим, что при практических расчетах в качестве N₀ может быть выбрано число максимальных сингулярных собственных значений матрицы $C_{s}(\theta)$, привлекая для оценки этого числа метод главных компонент. Ниже в качестве критерия отбора используется правило Кайзера (см., например [19]), согласно которому значимы те главные компоненты, для которых $\mu_p > \mathrm{Tr}\{\mathbf{C}_{\mathbf{s}}\}/N.$

Подстановка (5) в исходное выражение (1) приводит к результату

$$\mathbf{x}_l = \mathbf{A}(\mathbf{\theta})\mathbf{h}\,\mathbf{s}_l + \mathbf{n}_l, \quad l = 1, 2, \cdots, L. \tag{6}$$

Отметим, что соотношение (6) совпадает с выборочным вектором AP, принимающей K взаимно некогерентных сигналов, комплексные огибающие которых описываются вектором \mathbf{h}_{S_l} .

Одним из методов решения обратной задачи в случайно-неоднородном канале (не требующих знания размерности сигнального подпространства) является многоранговый алгоритм Кейпона [15], осуществляющий матричную фильтрацию вектора наблюдения. В результате такой операции средняя мощность сигнала на выходе АР записывается в виле

$$P(\mathbf{\theta}) = \frac{1}{L} \sum_{l=1}^{L} \left| \mathbf{W}^{\dagger}(\mathbf{\theta}) \mathbf{x}_{l} \right|^{2} \equiv \mathrm{Tr} \{ \mathbf{W}^{\dagger}(\mathbf{\theta}) \hat{\mathbf{\Gamma}}_{\mathbf{x}} \mathbf{W}(\mathbf{\theta}) \}, \quad (7)$$

где $\mathbf{W}(\mathbf{\theta}) \in C^{N \times K}$ – весовая матрица (зависящая от информационного параметра $\boldsymbol{\theta}$), а $\hat{\Gamma}_{\mathbf{x}}$ – выборочная ковариационная матрица размерности $N \times N$,

равная
$$\hat{\boldsymbol{\Gamma}}_{\mathbf{x}} = (\mathbf{l}/L) \sum_{l=1}^{L} \mathbf{x}_l \mathbf{x}_l^+.$$

Оптимальная матрица **W**_{орt} может быть найдена из условия минимума выходной мощности (7) при заданном отклике АР на ожидаемую сигнальную компоненту

$$\min_{\mathbf{W}} \operatorname{Tr}(\mathbf{W}^{+} \hat{\boldsymbol{\Gamma}}_{\mathbf{x}} \mathbf{W}) \quad \text{при } \mathbf{W}^{+} \mathbf{A} = \mathbf{I}.$$
(8)

Решение оптимизационной задачи (8) приводит к следующим выражениям для \mathbf{W}_{opt} и реализующейся при этом выходной мощности [15]:

$$\mathbf{W}_{\text{opt}} = \hat{\boldsymbol{\Gamma}}_{\mathbf{x}}^{-1} \mathbf{A}(\boldsymbol{\theta}) [\mathbf{A}^{+}(\boldsymbol{\theta}) \hat{\boldsymbol{\Gamma}}_{\mathbf{x}}^{-1} \mathbf{A}(\boldsymbol{\theta})]^{-1},$$
$$P(\boldsymbol{\theta}) = \text{Tr} \left\{ \left[\mathbf{A}^{+}(\boldsymbol{\theta}) \hat{\boldsymbol{\Gamma}}_{\mathbf{x}}^{-1} \mathbf{A}(\boldsymbol{\theta}) \right]^{-1} \right\}.$$

Положение абсолютного максимума функции $P(\theta)$ служит оценкой искомых координат источника:

$$\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} \operatorname{Tr}\{[\mathbf{A}^{+}(\boldsymbol{\theta})\hat{\boldsymbol{\Gamma}}_{\mathbf{x}}^{-1}\mathbf{A}(\boldsymbol{\theta})]^{-1}\}.$$
(9)

В частности, для пространственно когерентного сигнала (когла K = 1, а матрина A сволится к летерминированному сигнальному вектору) алгоритм (9) переходит в стандартный метод Кейпона.

Приведенный способ оценивания (9) предполагает априорное знание матрицы $A(\theta)$. Однако на практике в качестве этой матрицы (вследствие неполной информации о канале распространения) используется некоторая оценочная матрица $A_0(\theta)$, рассчитываемая для номинальных акустических характеристик волновода. Наличие рассогласования между $A(\theta)$ и $A_0(\theta)$ приводит к значительному ухудшению работоспособности предложенного метода локализации. Ниже мы построим робастную версию алгоритма, позволяющую повысить устойчивость процедуры оценивания и частично скомпенсировать эффект статистического несоответствия.

2. АДАПТИВНАЯ ВЕРСИЯ МНОГОРАНГОВОГО АЛГОРИТМА КЕЙПОНА

При построении адаптивной версии многорангового алгоритма Кейпона, основанной на наихудшем сценарии приема, будем предполагать возможность заданного (по норме) отклонения ожидаемой матрицы $A_0(\theta)$ от истинной $A(\theta)$:

 $\|\mathbf{A}(\mathbf{\theta}) - \mathbf{A}_0(\mathbf{\theta})\|_F^2 \leq \varepsilon$, где ε – положительный пара-метр регуляризации. Адаптация к неизвестным условиям приема состоит в нахождении робастной матрицы А(θ, ε), удовлетворяющей указанному ограничению, условию нормировки и обеспечивающей максимум выходной мощности (9):

$$\max_{\mathbf{A}} \operatorname{Tr}\{[\mathbf{A}^{+}(\mathbf{\theta})\hat{\mathbf{\Gamma}}_{\mathbf{x}}^{-1}\mathbf{A}(\mathbf{\theta})]^{-1}\} \quad при$$

$$\|\mathbf{A}(\mathbf{\theta}) - \mathbf{A}_{0}(\mathbf{\theta})\|_{F}^{2} \leq \varepsilon, \quad \|\mathbf{A}(\mathbf{\theta})\|_{F}^{2} = K.$$
 (10)

.

Решение оптимизационной задачи (10) сталкивается с трудностями вычислительного характера. Ниже мы построим приближенное решение этой задачи, заменяя целевую функцию в (10) ее нижней границей. Для этого воспользуемся неравенством Коши-Буняковского, в соответствии с которым

$$\operatorname{Tr}\left\{\left[\mathbf{A}^{+}(\boldsymbol{\theta})\hat{\boldsymbol{\Gamma}}_{\mathbf{x}}^{-1}\mathbf{A}(\boldsymbol{\theta})\right]^{-1}\right\} \geq \frac{K^{2}}{\operatorname{Tr}\left\{\mathbf{A}^{+}(\boldsymbol{\theta})\hat{\boldsymbol{\Gamma}}_{\mathbf{x}}^{-1}\mathbf{A}(\boldsymbol{\theta})\right\}}$$

Тогда вместо (10) имеем

$$\min_{\mathbf{A}} \operatorname{Tr} \{ \mathbf{A}^{+}(\mathbf{\theta}) \hat{\boldsymbol{\Gamma}}_{\mathbf{x}}^{-1} \mathbf{A}(\mathbf{\theta}) \} \quad \text{при}$$

$$|\mathbf{A}(\mathbf{\theta}) - \mathbf{A}_{0}(\mathbf{\theta})||_{F}^{2} \leq \varepsilon, \quad ||\mathbf{A}(\mathbf{\theta})||_{F}^{2} = K.$$
(11)

Адаптивная матрица $A(\theta, \varepsilon)$, обеспечивающая условный минимум в (11), может быть найдена с помощью метода неопределенных множителей Лагранжа, аналогично тому, как это сделано в [9, 17]. В результате получаем

$$\mathbf{A}(\boldsymbol{\theta}, \boldsymbol{\varepsilon}) = \frac{(K - \boldsymbol{\varepsilon}/2)(\hat{\boldsymbol{\Gamma}}_{\mathbf{x}}^{-1} + \boldsymbol{v}\mathbf{I})^{-1}\mathbf{A}_{0}(\boldsymbol{\theta})}{\mathrm{Tr}[\mathbf{A}_{0}^{+}(\boldsymbol{\theta})(\hat{\boldsymbol{\Gamma}}_{\mathbf{x}}^{-1} + \boldsymbol{v}\mathbf{I})^{-1}\mathbf{A}_{0}(\boldsymbol{\theta})]}, \qquad (12)$$

где v — вещественный множитель Лагранжа, являющийся корнем уравнения

$$g(\mathbf{v}) = \frac{\mathrm{Tr}[\mathbf{A}_{0}^{+}(\hat{\mathbf{\Gamma}}_{\mathbf{x}}^{-1} + \mathbf{v}\mathbf{I})^{-2}\mathbf{A}_{0}]}{\mathrm{Tr}^{2}[\mathbf{A}_{0}^{+}(\hat{\mathbf{\Gamma}}_{\mathbf{x}}^{-1} + \mathbf{v}\mathbf{I})^{-1}\mathbf{A}_{0}]} = \frac{K}{(K - \varepsilon/2)^{2}},$$
 (13)

и удовлетворяющий неравенству $\hat{\Gamma}_{\mathbf{x}}^{-1} + \nu \mathbf{I} > 0.$

Для определения v представим выборочную корреляционную матрицу $\hat{\Gamma}_{x}^{-1}$ спектральным разложением:

$$\hat{\boldsymbol{\Gamma}}_{\mathbf{x}}^{-1} = \hat{\boldsymbol{\Psi}}\hat{\boldsymbol{\Lambda}}^{-1}\hat{\boldsymbol{\Psi}}^{+} = \sum_{j=1}^{N}\hat{\lambda}_{j}^{-1}\hat{\boldsymbol{\psi}}_{j}\hat{\boldsymbol{\psi}}_{j}^{+},$$

$$\hat{\lambda}_{1} > \hat{\lambda}_{2} \ge \cdots \ge \hat{\lambda}_{N},$$
(14)

в котором $\hat{\Psi} = [\hat{\Psi}_1, \cdots \hat{\Psi}_N] \in C^{N \times N}$, $\hat{\Lambda} = \text{diag}(\hat{\lambda}_1, \cdots, \hat{\lambda}_N)$, а $\hat{\Psi}_j$ – собственные векторы, отвечающие собственным значениям $\hat{\lambda}_j$ матрицы $\hat{\Gamma}_x$. Тогда уравнение (13) перепишется следующим образом:

$$g(\mathbf{v}) = \frac{\sum_{j=1}^{N} (\hat{\lambda}_{j}^{-1} + \mathbf{v})^{-2} \|\mathbf{m}_{j}\|^{2}}{\left[\sum_{j=1}^{N} (\hat{\lambda}_{j}^{-1} + \mathbf{v})^{-1} \|\mathbf{m}_{j}\|^{2}\right]^{2}} = \rho,$$
(15)
$$\rho = \frac{K}{(K - \varepsilon/2)^{2}},$$

где $\mathbf{m}_j \in C^{1 \times K} - j$ -ая вектор—строка матрицы $\mathbf{M} = \hat{\mathbf{\Psi}}^+ \mathbf{A}_0 \in C^{N \times K}$, причем $\sum_{j=1}^N ||\mathbf{m}_j||^2 = K$. Отметим, что приведенное выше ограничение $\hat{\Gamma}_{\mathbf{x}}^{-1} + \mathbf{v}\mathbf{I} > 0$, накладываемое на величину v, эквивалентно соотношению $\hat{\lambda}_j^{-1} + \mathbf{v} > 0$, которое будет выполнено для всех *j*, если $\mathbf{v} > -\hat{\lambda}_1^{-1}$.

Простой анализ, аналогичный проведенному в [21], показывает, что $\partial g(v)/\partial v < 0$ при $v > -\hat{\lambda}_1^{-1}$, и следовательно, функция g(v) монотонно убывает

с ростом v. Далее, при v $\rightarrow \infty$, $g(v) \rightarrow 1/K < \rho$ для всех $\varepsilon > 0$, а при v $\rightarrow -\hat{\lambda}_1^{-1}$, $g(v) \rightarrow 1/||\mathbf{m}_1||^2$. Очевидно, что уравнение (15) будет иметь единственное решение, если $g(-\hat{\lambda}_1) > \rho$, или

$$0 < \varepsilon < 2K[1 - \|\mathbf{m}_1(\mathbf{\theta})\| / \sqrt{K}].$$
(16)

Область локализации соответствующего корня удовлетворяет условию

$$-\hat{\lambda}_{1}^{-1} < \nu < \frac{\hat{\lambda}_{N}^{-1} - \hat{\lambda}_{1}^{-1} \sqrt{K\rho}}{\sqrt{K\rho} - 1},$$
(17)

при этом верхняя граница является следствием неравенства, вытекающим из (15):

$$\frac{\sum_{j=1}^{N} (\hat{\lambda}_{1}^{-1} + \nu)^{-2} \|\mathbf{m}_{j}\|^{2}}{\left[\sum_{j=1}^{N} (\hat{\lambda}_{N}^{-1} + \nu)^{-1} \|\mathbf{m}_{j}\|^{2}\right]^{2}} > \rho, \quad или \quad \frac{(\hat{\lambda}_{N}^{-1} + \nu)^{2}}{K(\hat{\lambda}_{1}^{-1} + \nu)^{2}} > \rho.$$

Знание множителя Лагранжа v позволяет на основании (12) найти решение оптимизационной задачи и рассчитать адаптивную матрицу $C(\theta, \varepsilon) = A^+(\theta, \varepsilon)\hat{\Gamma}_x^{-1}A(\theta, \varepsilon) \in C^{K \times K}$. Привлекая спектральное разложение (14), и учитывая, что $(\hat{\Gamma}_x^{-1} + vI)^{-1} = \hat{\Psi}(I + v\hat{\Lambda})^{-1}\hat{\Lambda}\hat{\Psi}^+$, выражение для $C(\theta, \varepsilon)$ можно привести к виду, удобному для вычислений:

$$\mathbf{C}(\boldsymbol{\theta},\varepsilon) = \frac{(K-\varepsilon/2)^2 \mathbf{A}_0^+(\boldsymbol{\theta}) \hat{\boldsymbol{\Psi}} \left(\mathbf{I}+v\hat{\boldsymbol{\Lambda}}\right)^{-2} \hat{\boldsymbol{\Lambda}} \hat{\boldsymbol{\Psi}}^+ \mathbf{A}_0(\boldsymbol{\theta})}{\mathrm{Tr}^2 \left[\mathbf{A}_0^+(\boldsymbol{\theta}) \hat{\boldsymbol{\Psi}} \left(\mathbf{I}+v\hat{\boldsymbol{\Lambda}}\right)^{-1} \hat{\boldsymbol{\Lambda}} \hat{\boldsymbol{\Psi}}^+ \mathbf{A}_0(\boldsymbol{\theta})\right]}.$$
(18)

В итоге искомые координаты источника могут быть оценены из условия максимума выходной мощности робастного многорангового процессора Кейпона

$$\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} P_{\text{RC}}(\boldsymbol{\theta}, \varepsilon), \ P_{\text{RC}}(\boldsymbol{\theta}, \varepsilon) = \text{Tr}\{\mathbf{C}^{-1}(\boldsymbol{\theta}, \varepsilon)\}.$$
 (19)

Для реализации предложенного адаптивного алгоритма используется следующая последовательность операций.

1. По принятой входной реализации вектора наблюдения вычисляется выборочная ковариационная матрица $\hat{\Gamma}_{x}$ и проводится ее спектральное разложение.

2. Для номинальных параметров акустического волновода и преобладающего механизма рассеяния в области поиска рассчитывается среднее значение сигнального вектора, находятся главные компоненты ковариационной матрицы $C_s(\theta)$, и в соответствии с (5) формируется ожидаемая матрица $A_0(\theta)$.

3. Для заданного ε , удовлетворяющего неравенству (16), и текущего значения θ находится

АКУСТИЧЕСКИЙ ЖУРНАЛ том 67 № 6 2021

множитель Лагранжа v как корень уравнения (15), локализованный в интервале (17).

4. Для полученного ν с помощью (18) определяется адаптивная матрица **С**(θ , ε).

5. Вычисляется выходная мощность процессора (19) и находится ее максимум, положение которого служит оценкой координат источника.

Ниже мы сравним предложенный метод с адаптивной версией обобщенного алгоритма Кейпона [11], в соответствии с которой искомые координаты находятся из условия

$$\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} P_{GC}(\boldsymbol{\theta}, \boldsymbol{\varepsilon}),$$

$$P_{GC}(\boldsymbol{\theta}, \boldsymbol{\varepsilon}) = 1 / \lambda_{\max} \{ \mathbf{D}^{+}(\boldsymbol{\theta}, \boldsymbol{\varepsilon}) \hat{\boldsymbol{\Gamma}}_{\mathbf{x}}^{-1} \mathbf{D}(\boldsymbol{\theta}, \boldsymbol{\varepsilon}) \},$$
(20)

где **D**(θ, ε) дается выражением (12), в котором необходимо положить K = 1 и сделать замены **A**(θ, ε) \rightarrow **D**(θ, ε), **A**₀(θ) \rightarrow **D**₀(θ) $\equiv \hat{\mathbf{R}}_{s}^{1/2}(\theta)$. (Величина $\hat{\mathbf{R}}_{s}^{1/2}(\theta)$ имеет смысл матричного квадратного корня от оценочной сигнальной матрицы, рассчитанной для номинальных акустических характеристик волновода).

Отметим, что при отсутствии случайных неоднородностей среды, когда $\mathbf{R}_{s}(\boldsymbol{\theta})$ является матрицей единичного ранга (а матрица $\mathbf{A}_{0}(\boldsymbol{\theta})$ трансформируется в детерминированный сигнальный вектор), приведенные алгоритмы (19) и (20) будут идентичны адаптивному алгоритму Кейпона, рассчитанному на прием пространственно-когерентных сигналов [21].

3. РЕЗУЛЬТАТЫ СТАТИСТИЧЕСКОГО МОДЕЛИРОВАНИЯ

Приведем результаты статистического моделирования, иллюстрирующие работоспособность предложенного способа оценивания (19), и сравним его эффективность с адаптивным обобщенным алгоритмом Кейпона (20), а также с методом максимума правдоподобия, согласно которому положение источника определяется из следующего критерия [22]:

$$\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} P_{ML}(\boldsymbol{\theta}),$$

$$P_{ML}(\boldsymbol{\theta}) = \lambda_{max} \{ \mathbf{A}^{+}(\boldsymbol{\theta}) \hat{\boldsymbol{\Gamma}}_{x} \mathbf{A}(\boldsymbol{\theta}) \} -$$

$$- \ln \lambda_{max} \{ \mathbf{A}^{+}(\boldsymbol{\theta}) \hat{\boldsymbol{\Gamma}}_{x} \mathbf{A}(\boldsymbol{\theta}) \}.$$
(21)

В качестве примера рассмотрим мелководную акваторию глубиной 100 м с типичным зимним профилем скорости звука (изображенным на рис. 1), в которой основным источником флуктуаций акустического поля является развитое ветровое волнение, описываемое спектром Пирсона—Московитца. Для такого сценария расчетные соотношения для ожидаемой матрицы $\hat{\mathbf{R}}_{s}(\boldsymbol{\theta})$ (в приближении малых значений параметра Рэлея) приведены в

Рис. 1. Профиль скорости звука, используемый при моделировании.

работе [23]. Предполагается, что звуковое поле создается неподвижным источником с несущей частотой 250 Гц, расположенным на глубине 75 м и удаленным от антенны на расстояние 20 км. Прием осуществлялся 20-ти элементной эквидистантной (с шагом 3 м) вертикальной АР с центром на глубине 55 м. В рамках численного эксперимента скорость ветра бралась равной 10 м/с. Дно моделировалось жидким поглощающим полупространством с плотностью $\rho_b = 2 \ r/cm^3$, скоростью звука $c_b = 1750$ м/с и коэффициентом поглощения $\alpha = 0.13 \, \text{д} \text{Б} / \lambda$. При расчете ожидаемой матрицы $A_0(\theta)$ (состоящей из K = 7 векторстолбцов) скорость ветра составляла 12 м/с, при этом в качестве номинальных геоакустических параметров дна использовались значения $\rho_b = 1.85 \text{ г/см}^3$, $c_b = 1725 \text{ м/с и } \alpha = 0.1 \text{ дБ/}\lambda$. Выборочная ковариационная матрица оценивалась по L = 100 временным отсчетам. Поиск источника по дальности осуществлялся в диапазоне (1-30) км с шагом 50 м, а по глубине – в интервале (1-100) м с шагом 0.5 м.

На рис. 2 показана зависимость среднеквадратических ошибок (СКО) оценивания положения источника по дальности и глубине (полученная усреднением по 1000 независимым экспериментам) от выходного отношения сигнал/шум SNR, определяемого соотношением SNR = $(\sigma_s^2/\sigma_n^2) \operatorname{Tr}(\mathbf{R}_s)/N$,

Рис. 2. Среднеквадратичные ошибки оценивания координат источника (а) по дальности и (б) глубине в зависимости от входного SNR для рассматриваемых методов обработки.

где σ_s^2 — уровень излучения. Кривые *1* на рис. 2 отвечают методу максимума правдоподобия (21), а кривые *2* и *3* соответствуют обобщенному алгоритму Кейпона (20) и предложенному методу (19) (при $\varepsilon = 0.2$ и $\varepsilon = 1.1K$, соответственно). Как следует из представленного рисунка, адаптивный алгоритм (19) позволяет значительно повысить точность измерения координат по сравнению с существующими методами оценивания (при этом наихудшую эффективность демонстрирует неадаптивный способ обработки (21)).

Рис. 3. Вероятность правильной локализации источника в зависимости от входного SNR для рассматриваемых методов обработки.

На рис. 3 для рассматриваемых значений SNR представлены результаты расчета вероятности правильной локализации P_{CL} , определяемой как доля реализаций, для которых ошибки в определении положения источника по дистанции и глубине не превосходят 400 и 2 м, соответственно. Видно, что наилучшими потенциальными возможностями обладает предложенный метод (19).

4. ЭКСПЕРИМЕНТАЛЬНАЯ АПРОБАЦИЯ МЕТОДА

Для верификации предложенного метода были использованы экспериментальные данные, полученные в октябре 1990 г. в Баренцевом море. Акустическое поле создавалось узкополосным источником с несущей частотой 240 Гц, расположенным на глубине 148 м и удаленным от АР на расстояние 13.82 км. Прием осуществлялся линейной вертикальной антенной, состоящей из 12 элементов, расположенных эквидистантно через 8.5 м. Геометрия эксперимента и номинальные геоакустические параметры волновода показаны на рис. 4. Для рассматриваемого сценария на рис. 5 изображен характерный частотный спектр сигнала (выраженный в децибелах относительно абсолютного максимума), принятого на фиксированной глубине, равной 138 м. Форма этого спектра является типичной для случая, когда основным источником флуктуаций акустического поля является развитое ветровое волнение².

² Более детальное описание данного эксперимента приведено в работах [23, 24].

Рис. 4. Геометрия эксперимента.

Рис. 5. Характерный частотный спектр принятого сигнала.

Ниже при нахождении ожидаемых матриц $\hat{\mathbf{R}}_{s}(\boldsymbol{\theta})$ и $\mathbf{A}_{0}(\boldsymbol{\theta})$ скорость ветра бралась 7 м/с (при этом число вектор-столбцов *K*, используемых при формировании матрицы $\mathbf{A}_{0}(\boldsymbol{\theta})$, принималось равным 3). Выборочная ковариационная матрица $\hat{\Gamma}_{x}$ оценивалась по первым 200 отсчетам, взятым из 3-х минутного фрагмента записи. При расчетах поиск источника по дальности осуществлялся в диапазоне (0–20) км с шагом 50 м, а по глубине – в интервале (1–160) м с шагом 1 м.

максимальное значение) выходная мощность $P_{ML}(\theta)$, построенная согласно (21) с использованием ожидаемой матрицы $A_0(\theta)$, рассчитанной для номинальных параметров волновода. Для сравнения на рис. 6б и 6в показано поведение нормированной выходной мощности адаптивных процессоров (20) и (19). (При расчетах параметр регуляризации ε в рассматриваемых адаптивных алгоритмах выбран 0.5 и 0.5 *K*, соответственно.)

На рис. ба изображена нормированная (на

Рис. 6. Нормированная мощность на выходе процессора, использующего (а) метод максимума правдоподобия, (б) обобщенный алгоритм Кейпона и (в) предложенный способ, в зависимости от ожидаемого положения источника.

Из приведенных графиков видно, что во всех случаях положение абсолютного максимума наблюдается при $\hat{r}_0 = 12.45$ км и $\hat{z}_0 = 148$ м, что довольно близко к истинным значениям координат. Однако применение неадаптивного способа обработки (21) приводит к появлению достаточно интенсивных ложных пиков, что значительно затрудняет решение задачи локализации источника.

ЗАКЛЮЧЕНИЕ

В настоящей работе построен адаптивный многоранговый алгоритм Кейпона, позволяющий локализовать источник в условиях неполной информации о случайном канале распространения. Путем статистического моделирования установлено, что данный способ обладает наилучшими потенциальными возможностями и обеспечивает преимущество в достигаемой с его помощью точности оценивания и вероятности правильной локализации по сравнению с методом максимума правдоподобия и обобщенным методом Кейпона. Верификация приведенного способа на экспериментальных данных, полученных в Баренцевом море, показала, что в реальных условиях соответствующий алгоритм обеспечивает удовлетворительное качество восстановления источника без использования трудоемкой процедуры одновременного поиска как искомых координат, так и неизвестных параметров волновода. Последнее свидетельствует о перспективности применения данного метода в практических задачах подводной акустики.

Авторы благодарны А.Л. Матвееву за предоставленные экспериментальные данные. Работа выполнена при финансовой поддержке РНФ (грант № 20-19-00383).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Baggeroer A.B., Kuperman W.A., Mikhalevsky P.N.* An overview of matched field methods in ocean acoustics // IEEE J. Oceanic Eng. 1993. V. 18. P. 401–423.
- 2. Сазонтов А.Г., Малеханов А.И. Согласованная пространственная обработка сигналов в подводных звуковых каналах (Обзор) // Акуст. журн. 2015. Т. 61. № 2. С. 233–253.
- 3. *Valaee S., Champagne B., Kabal P.* Parametric localization of distributed sources // IEEE Trans. on Signal Process. 1995. V. 43. № 9. P. 2144–2153.
- 4. *Meng Y, Stoica P, Wong K.M.* Estimation of the directions of arrival of spatially dispersed signals in array processing // Proc. of IEE Conf. on Radar, Sonar, and Navig. 1996. V. 143. № 1. P. 1–9.
- 5. *Bengtsson M*. A generalization of weighted subspace fitting to full-rank models // IEEE Trans. on Signal Process. 2001. V. 49. № 5. P. 1002–1012.
- 6. *Ермолаев В.Т., Флаксман А.Г., Елохин А.В., Купцов В.В.* Метод минимального многочлена для оценки параметров сигналов, принимаемых антенной решеткой // Акуст. журн. 2018. Т. 64. № 1. С. 78.

АКУСТИЧЕСКИЙ ЖУРНАЛ том 67 № 6 2021

- Ермолаев В.Т., Флаксман А.Г., Елохин А.В., Шмонин О.А. Угловое сверхразрешение сигналов в антенной решетке с помощью корневого метода минимального многочлена корреляционной матрицы // Изв. вузов. Радиофизика. 2018. Т. 61. № 3. С. 261.
- 8. *Hassanien A., Shahbazpanahi S., Gershman A.B.* A generalized Capon estimator for localization of multiple spread sources // IEEE Trans. on Signal Process. 2004. V. 52. № 1. P. 280–283.
- 9. Robust Adaptive Beamforming / Eds. by Li J. and Stoica P. John Wiley & Sons, Inc., Hoboken, New Jersey, 2006. 422 p.
- Shahbazpanahi S., Gershman A.B., Luo Z.Q., Wong K.M. Robust adaptive beamforming for general-rank signal models // IEEE Trans. on Signal Process. 2003. V. 51. № 9. P. 2257–2269.
- 11. Сазонтов А.Г., Смирнов И.П., Матвеев А.Л. Локализация источника в мелководном канале со взволнованной поверхностью // Акуст. журн. 2015. Т. 61. № 1. С. 114–122.
- Cox H. Line array performance when the signal coherence is spatially dependent // J. Acoust. Soc. Amer. 1973. V. 54. № 6. P. 1743–1746.
- 13. *Vural A.M.* Effects of perturbations on the performance of optimum/adaptive arrays // IEEE Trans. Aerosp. Electron. Syst. 1979. V. 15. № 1. P. 76–87.
- 14. *Morgan D.R. and Smith T.M.* Coherence effects on the detection performance of quadratic array processors with application to large-array matched-field beamforming // J. Acoust. Soc. Amer. 1990. V. 87. № 2. P. 737–747.
- Cox H. Sensitivity considerations in adaptive beamforming // Proc. of NATO Advanced Study Institute of Signal Processing. Loughborough, UK, 1972. P. 621–644.
- Lundberg M., Scharf L.L., Pezeshki A. Multi-rank Capon beamforming // Conf. Rec. 38th Asilomar Conf. Signals, Syst., Comput., Pacific Grove, CA, 2004. P. 2335–2339.
- Pezeshki A., Van Veen B.D., Sharf L.L., Cox H., Lundberg M. Eigenvalue beamforming using a multirank MVDR beamformer and subspace selection // IEEE Trans. on Signal Process. 2008. V. 56. № 5. P. 1954–1967.
- Ван Трис Г. Теория обнаружения, оценок и модуляции. Т. 1 / Пер. с англ. М.: Сов. радио, 1972. 744 с.
- Jolliffe I. T. Principal component analysis / Springer series in statistics, 2nd ed., Springer, NY, 2002. XXIX. 487 p.
- Сазонтов А.Г., Смирнов И.П., Чащин А.С. Локализация когерентного источника излучения в мелководном канале с использованием частично калиброванной адаптивной антенной решетки // Известия Вузов. Радиофизика. 2016. Т. 59. № 2. С. 99– 107.
- Li J., Stoica P., Wang Z. Doubly constrained robust Capon beamforming // IEEE Trans. on Signal Processing. 2004. V. 52. № 9. P. 2407–2423.
- 22. *Tabrikian J., Messer H.* Robust localization of scattered sources // Proc. of the Tenth IEEE Workshop on Statistical Signal and Array Processing. 2000. P. 453–457.
- 23. Sazontov A.G., Matveyev A.L., Vdovicheva N.K. Acoustic coherence in shallow water: Theory and observation // IEEE J. Oceanic Eng. 2002. V. 27. № 3. P. 653–664.
- 24. Вдовичева Н.К., Матвеев А.Л., Сазонтов А.Г. Экспериментальное и теоретическое исследование пространственной когерентности в мелком море // Акуст. журн. 2002. Т. 48. №. 3. С. 309–313.