——— АТМОСФЕРНАЯ И АЭРОАКУСТИКА ——

УДК 534.21

НАПРАВЛЕННОСТЬ ИЗЛУЧЕНИЯ НИЗКОЧАСТОТНОГО АТМОСФЕРНОГО ЗВУКА, ВОЗБУЖДАЕМОГО ИСТОЧНИКАМИ В ВОДЕ

© 2021 г. А.В. Лебедев*

Институт прикладной физики РАН, ул. Ульянова 46, Нижний Новгород, 603950 Россия *E-mail: swan@appl.sci-nnov.ru Поступила в редакцию 07.12.2020 г.

После доработки 13.05.2021 г. Принята к публикации 10.06.2021 г.

Рассмотрен вопрос о направленности излучения атмосферного инфразвука, возбуждаемого монопольным и дипольным источниками, помещенными в водную среду. Показано, что существуют два типа эквивалентных вторичных источников, которые размещены на границе раздела сред. Один из источников является локальным, и его характеристики полностью определяются ближним полем первичного источника. Второй источник является распределенным и связан с наличием вертикальных возмущений поверхности, которые распространяются со скоростью звука в воде вдоль границы раздела сред. Из-за сильного ослабления амплитуды по мере увеличения расстояния от первичного источника такой вторичный источник имеет широкую диаграмму направленности. Представленные в статье качественные рассуждения и результаты численного моделирования позволяют определить диаграмму направленности низкочастотного звукового излучения в воздухе в зависимости от типа и глубины погружения первичного источника, что может быть использовано для дистанционного исследования свойств атмосферы вблизи морской поверхности и свойств самой поверхности.

DOI: 10.31857/S0320791921050038

введение

Представленная работа возникла под влиянием статьи О.А. Година [1], посвященной прохождению низкочастотного звука из воды в воздух. Указанная статья посвящена энергетике процесса прохождения звука из более плотной и жесткой акустической среды в менее плотную и жесткую. В статье [2] представлен обстоятельный анализ выражений [1] и соответствующий графический материал. Наряду с энергетическими соотношениями, отвечающими интегральному вкладу в акустическое поле в воздушной среде источника, помещенного в жидкую среду, интерес представляет направленность такого излучения. В главе 3 монографии [3] имеются выражения для акустического поля для углов, близких к скользящим. Эти выражения описывают поправки к приближению геометрической акустики, учитывающие преобразование поля неоднородных волн в жидкости в звук в воздухе. Практический интерес представляет также поиск выражений для описания поля в воздушной среде в широком диапазоне углов при различном удалении простого или силового источника от границы раздела сред.

Геометрия рассматриваемой задачи представлена на рис. 1. На глубине $z = z_0$ в жидкости раз-

мещен источник. Параметры сред р_i – плотности, с_i – скорости звука, полные волновые числа в средах $k_j = \omega/c_j$, где ω — круговая частота. Индекс "1" отвечает верхней среде (воздух), индекс "2" – нижней (вода). Далее рассматриваются два типа источников: изотропный (простой, монопольный) и источник вертикальной силы. В отсутствие реакции верхней среды, когда граница жидкости является идеальной с граничным условием равенства нулю давления, возникающее на поверхности распределение вертикальной проекции скорости перемещения границы может быть вычислено через введение зеркального отражения источника (мнимого источника) соответствующего знака [4, 5]. При добавлении воздушной среды, волновое сопротивление которой для плоской волны $\rho_1 c_1$ примерно на 4 порядка меньше, чем волновое сопротивление жидкости $\rho_2 c_2$, амплитуда зеркального источника приобретает поправку порядка $\frac{\rho_1 c_1}{\rho_2 c_2} \ll 1$ (см. также [3]). Малые поправки в поле отраженной волны из-за отличия величины $\frac{\rho_1 c_1}{\rho_1}$ от нуля связаны с особенно-

Рис. 1. Геометрия задачи.

стями угловой зависимости коэффициента отражения (см., например, [3]).

Для воздушной среды имеется иная ситуация. Податливость границы приводит к появлению распределения вертикальной скорости. При этом высокий импеданс границы по отношению к жидкости приведет к тому, что вторичный источник акустического излучения в воздушную среду представляет собой распределенный монопольный источник на акустически жесткой поверхности. Таким образом, для вычисления поля акустического излучения из воды в воздух необходимо определить параметры простого слоя, а затем воспользоваться формулами Грина для потенциалов (например, интегралом Гюйгенса– Рэлея [6]):

$$p(\mathbf{R}) = i \frac{\rho_1 \omega}{2\pi} \int_{S} \tilde{v}_z(\mathbf{R}_1) \frac{\exp\left(+ik_1 |\mathbf{R} - \mathbf{R}_1|\right)}{|\mathbf{R} - \mathbf{R}_1|} d\mathbf{R}_1, \qquad (1)$$

где $\tilde{v}_z(\mathbf{R}_1)$ – вертикальная скорость на поверхности раздела двух сред, вектор **R** направлен из начала координат (рис. 1) в точку верхней среды, вектор **R**₁ лежит на плоскости границы раздела сред z = 0.3апись (1) предполагает наличие зависимости от времени вида $\exp(-i\omega t)$. Напомним, что интеграл Гюйгенса–Рэлея справедлив в случае, когда граница плоская и отсутствуют приходящие из бесконечности волны [6]. Очевидно, эти условия выполняются для рассматриваемой нами задачи. Поскольку поле скорости v_z при удалении от источника спадает пропорционально $1/R^2$ и быстрее (см. выражения ниже), и при этом осциллирует, интеграл (1) является сходящимся.

Большая разница импедансов двух сред должна привести к тому, что скорость $\tilde{v}_z(\mathbf{R}_1)$ будет слабо зависеть от наличия воздушной среды, которая практически не затормаживает движение границы существенно более плотной жидкости. Следовательно, для вычисления акустического поля в воздушной среде в качестве вторичного источника $\tilde{v}_z(\mathbf{R}_1)$ можно в первом приближении задать распределение вертикальной скорости, полученное для идеальной границы.

Выражение (1) позволяет построить качественную картину формирования поля в воздушной среде при размещении источника в жидкости. В области высоких частот $k_2 z_0 \ge 1$ радиус первой зоны Френеля создаваемых источником возмущений $\tilde{v}_z(\mathbf{R}_1)$ равен: $R_F = \sqrt{z_0 \lambda_2/2}$, где $\lambda_2 = 2\pi/k_2 - длина$ звуковой волны в жидкости, и имеет большие волновые размеры $k_2 R_F \ge 1$. Поскольку $c_1 < c_2$, волновые размеры первой зоны Френеля относительно длины волны звука в воздухе тем более велики. При этом угол, под которым первая зона Френеля "видна" из точки расположения источника, мал: $\Delta \theta_F \approx R_F/z_0 \ll 1$, и все источники имеют одинаковые фазы, отвечающие излучению вверх.

Распределению $\tilde{v}_{z}(r)$ для отличных от нуля углов падения первичной волны отвечает условие синхронизма $c_2 \sin \theta_1 = c_1 \sin \theta_2$. Соответствующая зона Френеля представляет собой кольцо ширины $\sqrt{2\lambda_2 R}/\cos^2 \theta_2$, где $R = \sqrt{z_0^2 + r^2}$. Угловой размер зоны Френеля не зависит от угла падения θ_2 . Ширина кольца значительно больше длин акустических волн в обеих средах. Лучи, выходящие из источника под ненулевым углом к нормали, показаны на рис. 2. Используя метод стационарной фазы для оценки интеграла Гюйгенса-Рэлея, где $\tilde{v}_{z}(r)$ отвечает отсутствию верхней среды $(\rho_1 = 0)$, можно показать, что излучение в верхней среде сосредоточено в пределах конуса с углом раскрыва $|\theta| \leq \arcsin(c_1/c_2) \approx 13^\circ$. Никаких других возмущений, затухающих обратно пропорционально расстоянию от источника (от границы раздела сред), в решении не имеется. Таким образом, в области частот $k_2 z_0 \gg 1$ в полной мере применимы хорошо известные формулы Френеля [5], и расчеты могут быть выполнены в рамках приближения геометрической акустики.

По мере приближения источника к границе раздела (см. выражение (12.42) в [3], а также уравнения (6) и (7), приведенные ниже) множитель вида $\exp\left(-k_1z_0\sqrt{\sin^2\theta}-n^2\right)$, где $n = c_2/c_1 > 1$, перестает ограничивать излучение в пределах сектора углов $|\theta| \le \arcsin(1/n)$. Физически это означает, что на круговой площадке в пределах первой "зоны Френеля"¹ укладывается порядка одной дли-

¹ Кавычки неслучайны, поскольку описание в виде зон Френеля справедливо в отсутствие амплитудной зависимости поля на апертуре источника. В случае близкого к границе раздела сред расположения источника такая амплитудная зависимость, очевидно, проявится. Таким образом, приведенные далее соображения носят качественный характер.

ны волны λ₂. Нетрудно оценить волновой параметр $k_2 z_0$, которому отвечает $k_2 R_{\rm F} = \pi/2$ или $R_F = \lambda_2/2$: $z_0 = \lambda_2/8$. Из-за сильного отличия скоростей звука в граничащих средах размер первой зоны Френеля по отношению к длине звуковой волны в воздухе оказывается немалым: $k_1 R_F = \pi n \gg 1$. Направленность излучения диска с приблизительно постоянным распределением скорости на его поверхности определяется выражением $2\frac{J_1(k_1R_F\sin\theta)}{k_1R_F\sin\theta}$ [6]. При условии $k_1R_F \ge 1$ имеет место выраженное направление излучения вверх от поверхности раздела сред, как показано на рис. 2. Для $k_1 R_F \sim 1$ выраженная направленность излучения отсутствует. Дальнейшее приближение источника к границе раздела приведет к появлению локализованной области величин $\tilde{v}_{z}(\mathbf{R}_{1})$, существенно отличающихся от нуля вблизи от источника, что отвечает слабой зависимости излучения в воздушную среду от угла θ_1 .

Величины скорости колебаний границы в отсутствие сверху воздушной среды ($\rho_1 = 0$) могут быть вычислены напрямую через поле, создаваемое первичным и зеркальным источниками [5]. Опуская несложные промежуточные выкладки, запишем выражение для скорости колебаний свободной границы (в случае $\rho_1 = 0$), которая является оценкой $\tilde{v}_z(\mathbf{R}_1)$ в интеграле Гюйгенса–Рэлея:

$$v_z^{(0)}(r) = -\frac{Q(1 - ik_2R)z_0 \exp(+ik_2R)}{2\pi R^3},$$
 (2)

$$v_{z}^{(0)}(r) = -\frac{F \exp(+ik_{2}R)}{2\pi\rho_{2}\omega R^{3}} \times \left[1 - 3\left(\frac{z_{0}}{R}\right)^{2} + (k_{2}z_{0})^{2} + ik_{2}R\left(3\left(\frac{z_{0}}{R}\right)^{2} - 1\right)\right],$$
(3)

где $R = \sqrt{r^2 + z_0^2}$. Выражение (2) отвечает монопольному источнику с объемной скоростью Q в точке (0, z_0), выражение (3) — источнику вертикальной силы $\mathbf{F} = F\mathbf{z}$, помещенному в ту же точку. Амплитуды $v_z^{(0)}(r)$ вблизи источника спадают обратно пропорционально r^3 , а в области $k_2r \ge 1$ осциллируют и спадают обратно пропорционально r^2 . Такое поведение обеспечивает сходимость интеграла (1). На рис. 3 показаны зависимости (2) и (3). Серые сплошные и штриховые линии отвечают асимптотическим зависимостям от расстояния. Справа представлены зависимости при $k_2 = 0$, т.е. отвечающие ближнему полю источников. В этом случае, очевидно, зависимость от волнового параметра $k_2 z_0$ отсутствует. Для силового источника при $r = z_0 \sqrt{2}$ имеется переход величи-

Рис. 2. Схематичное изображение зон Френеля для вторичного источника (1).

ны $v_z^{(0)}(r)$ через ноль, хорошо видимый на рис. 3 справа. Переход через ноль связан с тем, что поле силового источника эквивалентно суперпозиции полей двух простых источников равной амплитуды и противоположных знаков, что приводит к равенству нулю интеграла $\int_{0}^{\infty} v_{z}^{(0)}(r)rdr = 0$, где $v_z^{(0)}(r)$ определено (3). Отметим также пропорциональность $v_z^{(0)}(r)$ глубине источника в выражении (2), что связано с наличием косинуса угла при определении вертикальной проекции скорости монопольного источника. Поле излучения в воздушной среде также должно иметь угловую зависимость, пропорциональную $\cos \theta_2$. В случае векторного силового источника такого множителя нет, поскольку силовой источник $\mathbf{F} = F\mathbf{z}$ генерирует вертикальные же возмущения скорости в своем ближнем поле. Знаки выражений (2) и (3) отвечают выбору направления оси z (рис. 1).

В пределе $k_2 z_0 \rightarrow 0$ для простого источника распределение $\tilde{v}_z(r)$ в интеграле (1) отвечает простому же источнику производительности Q или эквивалентному источнику с постоянной скоростью $v_z^{(0)}(r)$, распределенной по площадке радиуса $r_{\rm eff} = z_0 \sqrt{2}$. Для силового источника интеграл от распределения $v_z^{(0)}(r)$ по всей границе, как и следовало ожидать, равен нулю, и вторичный источник представляет собой источник силы, которая равномерно распределена по площадке того же радиуса $r_{eff} = z_0 \sqrt{2}$.

АКУСТИЧЕСКИЙ ЖУРНАЛ том 67 № 5 2021

Рис. 3. Зависимости $v_{\tau}^{(0)}(r)$ при различной глубине размещения источника.

МАТЕМАТИЧЕСКОЕ ОПИСАНИЕ В ОБЩЕМ СЛУЧАЕ

Опустим хорошо известные выкладки, использующие стандартный метод сшивки решений в частичных областях (например, [4]), и запишем интегральные представления потенциалов скорости частиц $\mathbf{v} = \nabla \boldsymbol{\varphi}$ в воздушной среде для двух типов источников:

$$\begin{split} \phi_{1}(r,z) &= -i \frac{\rho_{2}Q}{2\pi} \int_{0}^{+\infty} \frac{e^{+i\xi_{2}z_{0}}e^{-i\xi_{1}z}}{\rho_{1}\xi_{2} + \rho_{2}\xi_{1}} \varkappa J_{0}(\varkappa r)d\varkappa = \\ &= -i \frac{\rho_{2}Q}{4\pi} \oint_{C} \frac{\xi_{2}e^{+i\xi_{2}z_{0}}e^{-i\xi_{1}z}}{\rho_{1}\xi_{2} + \rho_{2}\xi_{1}} \varkappa H_{0}(\varkappa r)d\varkappa, \end{split}$$
(4)

где $\xi_j = \sqrt{k_j^2 - \varkappa^2}$, $k_j = \omega/c_j$ — полное волновое число, \varkappa — радиальная проекция волнового вектора, $J_0(\cdot)$ — функция Бесселя нулевого порядка, $H_0(\cdot)$ — функция Ханкеля первого рода нулевого порядка, удовлетворяющая условиям излучения для гармонических процессов вида $\exp(-i\omega t)$. Контур интегрирования *C* является стандартным при решении волновых задач, аналогичных рассматриваемой (например, [4, 7, 8]), и показан на рис. 4. Схематично показана одна из двух точек ветвления $\varkappa = k_{1,2}$ и отвечающий ей разрез Рима-

АКУСТИЧЕСКИЙ ЖУРНАЛ том 67 № 5 2021

новой поверхности. Точка ветвления $\kappa = 0$, отвечающая логарифмической особенности функции Ханкеля, не показана.

Давление в воздушной среде вычисляется через потенциал стандартным образом:

$$p_1(r,z) = i\rho_1\omega\phi_1(r,z).$$

Величины Q и F в выражениях (4) и (5) определяют объемную скорость источника и амплитуду силы, направленной по оси z. Интегральные представления (4) и (5) справедливы при $z \le 0$ (рис. 1). Выражения для физических величин в жидкости мы не приводим, поскольку поправки из-за малой величины акустического импеданса верхней среды играют роль малых возмущений.

Интегралы (4) и (5) имеют в знаменателе интегрируемые корневые особенности, связанные с наличием точек ветвления и разрезов на Римановой поверхности. При определении ξ_j в подынтегральных выражениях знак корня $\xi_j = \sqrt{k_j^2 - \varkappa^2}$ выбирается таким образом, чтобы $\exp(+i\xi_2 z)$ и $\exp(-i\xi_1 z)$ отвечали убегающим от источника волнам или затухающим возмущениям. Интегралы (4) и (5) можно оценить методом стационарной фазы [9] (случай близости стационарной точки и точки ветвления рассмотрен в [3]), что отвечает значительному удалению источника от границы $k_2 z_0 \gg 1$. Опуская промежуточные выкладки, запишем конечные выражения с точностью до членов порядка 1/R:

$$\varphi_{1}(r, z) = -\frac{Q \exp(+ik_{1}R)}{2\pi R} \times \frac{\exp(+ik_{2}z_{0}\sqrt{1-n^{2}\sin^{2}\theta_{1}})n\cos\theta_{1}}{n\cos\theta_{1}+m\sqrt{1-n^{2}\sin^{2}\theta_{1}}},$$

$$\varphi_{1}(r, z) = +\frac{F \exp(+ik_{1}R)}{2\pi\rho_{2}c_{2}R} \times \frac{\exp(+ik_{2}z_{0}\sqrt{1-n^{2}\sin^{2}\theta_{1}})n\cos\theta_{1}\sqrt{1-n^{2}\sin^{2}\theta_{1}}}{n\cos\theta_{1}+m\sqrt{1-n^{2}\sin^{2}\theta_{1}}},$$
(6)
(7)

где $m = \rho_1/\rho_2 \ll 1$, $n = c_2/c_1$ и $R = \sqrt{r^2 + z^2}$.

Как уже отмечалось выше при обсуждении простых качественных соображений, вклад стационарной точки отвечает приближению геометрической акустики при $k_1 R \rightarrow \infty$. Выражения, аналогичные (6) и (7), с учетом членов порядка $1/R^2$ приведены в [3]. Нетрудно видеть, что в случае m = 0 выражения (6) и (7) описывают примерно равномерное по амплитуде излучение в пределах сектора углов $|\theta_1| \leq \arcsin(1/n) \approx 13.2^\circ$, а для больших углов наблюдается экспоненциальное ослабление поля тем сильнее, чем больше волновой параметр глубины источника $k_2 z_0$. В предельном случае однородной среды m = n = 1 выражение (6) описывает изотропное поле простого источника, помещенного в точку с координатами $(0, z_0)$. Выражение для силового источника (7) в том же предельном случае приобретает ожидаемый угловой множитель $\cos \theta_1$. В случае нормального падения ($\theta_{1,2} = 0$) нетрудно показать, что выражения (6) и (7) соответствуют хорошо известным формулам Френеля для коэффициента прохождения волны из одной среды в другую [5]. Такой результат ожидаем, он отмечался в [3], и объясняется тем, что вклад стационарной точки отвечает однородным волнам.

За увеличение эффективности излучения из воды в воздух и расширение диаграммы направленности этого излучения отвечают неоднородные волны и ближнее поле источника [1]. Качественно, уширение диаграммы направленности можно видеть из (6) и (7): при $k_2 z_0 \le 1$ экспоненциальный множитель $\exp(+ik_2 z_0 \sqrt{1 - n^2 \sin^2 \theta_1}) =$ $= \exp(-k_2 z_0 \sqrt{n^2 \sin^2 \theta_1} - 1)$ значимо отличен от нуля в области углов $\theta_1 > \arcsin(1/n)$. Поле неоднородных волн описывается интегралом вдоль разреза. Соответствующее выражение для случая $r \ge |z|$, т.е. для углов $\theta_1 \approx \pi/2$, представлено в [3]. Дальнейший интерес представляет описание полей через эквивалентные источники, используя приведенные выше качественные соображения, а

Рис. 4. Контур интегрирования С.

также результаты численного интегрирования (4) и (5).

РЕЗУЛЬТАТЫ ЧИСЛЕННОГО МОДЕЛИРОВАНИЯ

Интегралы (4) и (5) можно вычислить с использованием стандартных процедур численного интегрирования, например, входящих в пакет IMSL языка программирования Фортран. В качестве проверки корректности вычислений было проведено сравнение результатов вычисления $v_z(r,0)$ для случая $\rho_1 = 0$ с аналитическими выражениями (2) и (3). Заметим, что из-за равенства z = 0 соответствующий экспоненциальный множитель $\exp(-i\xi_1 z) = 1$, подынтегральная функция становится осциллирующей со слабой зависимостью от \varkappa , и величину $v_z(r,0)$ вычислить с помощью численного интегрирования сложнее, чем акустическое давление в области r > 0, z < 0.

В диапазоне изменения волнового параметра r/λ_2 , не превышающего 100, было получено хорошее согласие с погрешностью порядка 0.01% в области больших r/λ_2 . В области малых r/λ_2 отличие величин имеет порядок заданной относительной точности интегрирования 10^{-6} . Таким образом, несмотря на сложность численного интегрирования осциллирующих подынтегральных функций, использование стандартных процедур приводит к правильным результатам.

Зададим параметры сред: $\rho_1 = 1 \, \text{кг/м}^3$, $c_1 = 330 \, \text{м/c}$, $\rho_2 = 10^3 \, \text{кг/м}^3$, $c_2 = 1450 \, \text{м/c}$. Будем помещать источники на различные глубины относительно длины звуковой волны в воде таким образом, чтобы размер первой зоны Френеля изменялся от малых волновых размеров до больших, которым отвечает переход к геометрической акустике волн с практически плоским фронтом.

Рис. 5. Диаграммы направленности $G(\theta_2)$ при $z_0 = \lambda_2$.

На рис. 5 представлены диаграммы направленности для простого (нижние графики) и силового (верхние графики) источников, удаленных на расстояние одной длины волны в воде. Диаграмма направленности определена следующим обра-

зом: $G(\theta_2) = \left| \frac{p_1(r, z, z_0)}{p_1(0, z, z_0)} \right|$. Угол θ_2 отвечает лучевой

картине на рис. 2. Определение θ_2 как функции от *r*, *z*, *z*₀ сводится к нахождению корней полинома соответствующей степени (процедура описана в [3]). Излучение в воздух локализовано в пределах конуса с углом раскрыва $\tilde{\theta}_1 = \arcsin(c_1/c_2)$ и экспоненциально быстро ослабевает при $|\theta_1| > \tilde{\theta}_1$. Серыми линиями на рис. 5 показаны зависимости, отвечающие вкладу стационарных точек (6), (7). Нетрудно видеть, что уже при *z*₀ = λ_2 наблюдаются малые отклонения результатов прямого численного интегрирования от высокочастотных асимптотик. Отклонения связаны с проявлением дифракционной волны в области углов, близких к скользящим (см. выражение 12.43 в [3]).

На рис. 6 представлены диаграммы направленности $G(\theta_1)$, где $\theta_1 = \operatorname{arctg}(r/|z|)$. Удаление "приемника" от границы раздела сред задавалось равным $z = -5\lambda_2$, что отвечает $\sqrt{r^2 + z^2} \gg \lambda_1$. Нетрудно видеть, что характеристики направленности излучения в воздушной среде в случае простого и дипольного источников качественно отличаются. Эти отличия и связанный с их наличием дополнительный эквивалентный источник излучения на границе раздела двух сред обсуждаются ниже.

Штриховыми линиями на рис. 6 показаны ожидаемые диаграммы направленности при помещении эквивалентного источника малых волновых размеров $z_0\sqrt{2} \ll \lambda_{1,2}$ на границу раздела

АКУСТИЧЕСКИЙ ЖУРНАЛ том 67 № 5 2021

сред. В этом случае для простого источника направленность отсутствует, и излучение в воздух должно быть изотропным. Глубине погружения $z_0 = \lambda_2/16$ отвечает волновой размер эквивалентного источника $k_2 R_F = \pi/4$. Диаграмма направленности, которая отвечает такому источнику, показана на рис. 6 штрих-пунктирной линией. Нетрудно видеть, что эта линия качественно описывает угловую зависимость поля излучения в области углов меньше 30° , вычисленную интегрированием (4). При увеличении угла θ_1 наблюдается отклонение ожидаемой диаграммы направленно-

сти вида $2 \frac{J_1(k_1 R_F \sin \theta_1)}{k_1 R_F \sin \theta_1}$ от истинной. Это связано,

во-первых, с неравномерностью амплитуды при близком к границе расположении источника, и, во-вторых, с проявлением распределенного эквивалентного источника S_2 (см. ниже).

Для силового источника малых волновых размеров $k_l r_{eff} \ll 1$ ожидаемая направленность излучения пропорциональна $\cos \theta_l$, а само поле должно описываться выражением:

$$p_{1}(R) = -i \frac{k_{1}F \cos \theta_{1}}{2\pi R} \exp(+ik_{1}R),$$

$$k_{1}R \ge 1, \quad R = \sqrt{r^{2} + z^{2}}.$$
(8)

В дальнейшем мы увидим, что выражение (8) не описывает акустическое поле, создаваемое силовым источником в воздушной среде.

Таким образом, результат вычислений интеграла (4) указывает на возможность существенного упрощения вычислений для случая простого источника ($Q \neq 0$), расположенного в непосредственной близости от границы раздела сред $z_0 \ll \lambda_{1,2}$. В этом случае поле в воздушной среде отвечает полю эквивалентного источника той же производительности Q:

$$p_{1}(R) \approx -\rho_{1}c_{1}\frac{k_{1}^{2}Q}{2\pi R}\exp(+ik_{1}R),$$

$$k_{1}R \gg 1, \quad R = \sqrt{r^{2} + z^{2}}.$$
(9)

Как видно из графиков на рис. 6 (серая линия), поле давления при $z_0 \ll \lambda_1$ практически изотропно в области изменения угла $\theta_1 < \pi/2$. Отклонение от изотропности излучения наблюдается при $\theta_1 \rightarrow \pi/2$, где становится заметен вклад дифракционных волн [3], и это отклонение наблюдается тем раньше, чем больше волновая глубина источника $k_2 z_0$.

Вычисление интеграла (5) указывает на невозможность сведения излучения при $z_0 \ll \lambda_2$ к эквивалентному силовому источнику с полем излучения (8). Для понимания причин возникновения

расхождения данных численного интегрирования с (8) на рис. 7 приведены результаты расчета для случаев рис. 6 при добавлении потерь в х под интегралами (4) и (5). Величина потерь была задана равной Im $\varkappa/Re \varkappa = 0.1$, что отвечает затуханию $B \exp(2\pi)$ или приблизительно в 535 раз на расстоянии $20\pi/\text{Re} \varkappa$ (как видно из представленного ниже выражения (10) это отвечает указанной величине затухания на расстоянии $r = 10\lambda_2$). Отметим, что введение затухания возмущений, распространяющихся вдоль границы раздела сред, можно реализовать, например, за счет размещения на этой границе поверхностно-активных веществ с большой вязкостью. Поэтому показанное на рис. 7 влияние потерь на границе раздела сред может быть использовано в дистанционной акустической диагностике поверхностно-активных веществ на морской поверхности.

Введение потерь означает подавление распространяющихся из области источника возмущений границы. Как следует из выражения (3), на больших расстояниях от источника $k_2r \ge 1$ вертикальная проекция скорости перемещения границы приблизительно равна

$$v_{z}^{(0)}(r) \approx +i \frac{k_2 F}{2\pi \rho_2 \omega r^2} \exp(+ik_2 r),$$
 (10)

т.е. наряду с силовым источником, равномерно распределенным по площадке $z_0\sqrt{2}$, появляется простой источник, отвечающий затухающей волне, бегущей со скоростью звука в воде. Поскольку эта волна является быстрой по сравнению со скоростью звука в воздухе, она становится излучающей ("вытекающей"). Быстрое убывание амплитуды $v_{z}^{(0)}(r)$, обратно пропорциональное квадрату расстояния, не позволяет сформироваться направленному излучению в направлении синхронизма $\theta_1 = \tilde{\theta}_1$. Наличие дополнительного источника излучения согласуется с замечанием о большей роли неоднородных волн для источников высокого порядка в прохождении звука через границу раздела жидкости и газа [1]. На связь излучения с источником вида (10) указывает также видимое на рис. 6 возрастание излучения в области углов $\theta_1 > \tilde{\theta}_1 \approx 13^\circ$, где возможна реализация условий синхронизма возмущений (10) со звуковыми волнами в воздушной среде.

Отметим, что наличие множителя вида $\cos \theta_0 = z_0/R$ в выражении (2) для скорости поверхности раздела сред $v_z^{(0)}(r)$, создаваемой простым источником, в пределе $r \gg z_0$ в значительной степени подавляет указанный выше механизм формирования дополнительного распределенного источника излучения в воздушную среду. Поэтому увеличение амплитуды поля в области углов $\theta > \tilde{\theta}_1$

Рис. 6. Диаграммы направленности $G(\theta_1)$ при $z_0 < \lambda_2$.

проявляется слабее в случае простого первичного источника. В результате поле акустического излучения в воздухе удовлетворительно описывается выражением (9) для случая $z_0 \ll \lambda_{1,2}$. Сравнение рис. 6 и рис. 7 указывает на важную роль возмущений с фазовым распределением $\propto \exp(+ik_2r)$ в формировании поля давления в воздухе при увеличении порядка источника.

На рис. 8 схематично показаны вторичные источники на поверхности раздела сред, отвечающие за формирование акустического поля в воздушной среде. Вторичный источник S₁ представляет собой либо равномерно распределенную по круговой площадке радиуса $z_0\sqrt{2}$ вертикальную скорость перемещения границы раздела сред (первичный источник простого типа), либо равномерно распределенную по той же площадке вертикальную силу (первичный источник вертикальной силы). Вторичный источник S₂ представляет собой бесконечно протяженную круговую область, на которой распределены вертикальные скорости перемещения границы раздела. При этом скорости имеют фазовое распределение $\exp(+ik_2r)$ и амплитудное распределение $1/r^2$ при $r \gg \lambda_2$. Источник S_2 обеспечивает излучение вытекающей волны, а уменьшение его амплитуды с ростом расстояния до первичного источника обеспечивает широкую диаграмму направленности в области углов $\theta_1 \gtrsim \tilde{\theta}_1$. Направленность акустического излучения в воздушной среде, создаваемого вторичным источником S_2 , схематично показана стрелками на рис. 8. Вклад этого источника в акустическое поле в воздушной среде значительно подавлен в случае простого (монопольного) первичного источника и стано-

Рис. 7. Диаграммы направленности $G(\theta_1)$ для силового источника при $z_0 < \lambda_2$ при добавлении потерь Іт $\kappa > 0$.

Рис. 8. Первичный источник *S*, помещенный в воду, и вторичные источники *S*₁ и *S*₂ акустического излучения из воды в воздух, расположенные на границе раздела сред.

вится значимым для первичного источника в виде силы, что дополнительно иллюстрирует вывод работы [1] о возрастании вклада неоднородных волн с увеличением порядка источника.

Таким образом, выполненные вычисления позволяют наглядно представить себе систему эквивалентных источников, отвечающих за излучение низкочастотного звука из воды в воздух, и диаграмму направленности акустического излучения, порождаемого этими источниками. Еще раз отметим, что аналитическое выражение для случая $|z|, z_0 \ll r$ или $\theta_1 \approx \pi/2$ представлено в книге [3]. Для углов $\theta_1 \approx \pi/2$ поле, вычисленное путем интегрирования (4) и (5), стремится к нулю (рис. 6), как и предсказывает аналитическое выражение [3]. Как нам представляется, приведенные выше качественные соображения и результаты численного моделирования во всем диапазоне изменения углов излучения θ_1 являются хорошим дополнением к описанию [1, 3].

В процессе подготовки статьи к печати в Акустическом журнале вышла интересная работа [10], содержащая результаты экспериментальных исследований прохождения звука из воды в воздух для первичного источника монопольного типа ($Q \neq 0$). Представляет интерес сопоставить данные измерений с приведенными выше диаграммами направленности. На рис. 9 работы [10] представлена зависимость коэффициента прохождения по давлению из воды в воздух от глубины расположения источника. Диапазону глубин на этом рисунке отвечает изменение безразмерных величин 1/75 $\leq z_0/\lambda_2 \leq 2/3$, что включает интервал безразмерных глубин источника для данных, представленных на нижнем графике рис. 6. Расположению микрофона в эксперименте [10] отвечает угол θ₁ ≈ 79°. Если построить зависимость величины $G(\theta_1)$ при указанном значении θ_1 от глубины источника z_0 , то получится ярко выраженная экспоненциальная зависимость вида $exp(-\alpha z_0)$, где z_0 выражено в метрах и $\alpha \approx 16.7 \text{ м}^{-1}$ – коэффициент аппроксимации. По оси ординат рис. 9 работы [10] отложен коэффициент прохождения по давлению в децибелах. При этом хорошо видна линейная зависимость коэффициента прохождения, выраженного в децибелах, от глубины источника при $z_0/\lambda_2 \leq 1/8$. Таким образом, результаты, представленные в настоящей статье, находятся в удовлетворительном согласии с экспериментальными данными работы [10].

выводы

В работе исследована направленность излучения атмосферного инфразвука, возбуждаемого монопольным и силовым источниками, помещенными в водную среду. Показано, что существуют два типа вторичных эквивалентных источников, которые размещены на границе раздела сред. Эти источники определяют поле акустического излучения в воздушной среде и его направленность. Один из источников по существу локальный, и его характеристики полностью определяются ближним полем первичного источника. Второй источник является распределенным монопольным источником и связан с наличием вертикальных возмущений поверхности, распространяющихся со скоростью звука в воде. Из-за сильного ослабления амплитуды по мере увеличения расстояния от первичного источника такой источник имеет широкую диаграмму направленности. Результаты численного моделирования позволяют составить представление о диаграмме направленности инфразвукового излучения в воздухе в зависимости от глубины погружения первичного источника и его типа. Полученные результаты также подтверждают вывод работы [1] о возрастании вклада неоднородных волн по мере увеличения порядка источника.

Наиболее простое аналитическое выражение для поля в воздушной среде (9) имеет место для случая простого первичного источника (акустического монополя). В этом случае достаточно учесть только один из эквивалентных источников, а его характеристики определены ближним полем первичного источника, расположенного около идеальной границы с нулевым акустическим импедансом. В случае силового источника направленность излучения зависит от затухания индуцированных колебаний поверхности, что, предположительно, может быть использовано для акустической диагностики поверхностно-активных веществ. Полученные результаты представляются нам интересными для прикладной гидроакустики и организации дистанционного зондирования приповерхностных областей моря в области низких частот.

Автор выражает благодарность Ю.А. Кобелеву за полезные замечания и дискуссии по теме представленной работы.

Работа выполнена при частичной поддержке гранта РФФИ № 18-05-520006, а также при частичной поддержке госзадания ИПФ РАН по теме № 0030-2021-0009.

СПИСОК ЛИТЕРАТУРЫ

 Годин О.А. Прохождение низкочастотного звука из воды в воздух // Акуст. журн. 2007. Т. 53. 3. С. 353–361.

- Волощенко А.П., Тарасов С.П., Эффект аномальной прозрачности границы раздела жидкость-газ для звуковых волн // Акуст. журн. 2013. Т. 59. 2. С. 186– 192.
- 3. *Бреховских Л.М., Годин О.А.* Акустика слоистых сред. М.: Наука, 1989. 416 с.
- 4. *Бреховских Л.М.* Волны в слоистых средах. М.: Наука, 1973. 343 с.
- 5. Исакович М.А. Общая акустика. М.: Наука, 1973. 496 с.
- 6. *Скучик Е.* Основы акустики. Т. 2. М.: Мир, 1976. 542 с.
- 7. *DeSanto J.A.* Ocean acoustics. Springer-Verlag: Berlin, Heidelberg, New York, 1979. 285 p.
- 8. *Аки К., Ричардс П.* Количественная сейсмология (в 2-х томах). М.: Мир, 1983. 880 с.
- 9. *Федорюк М.В.* Асимптотика, интегралы и ряды. М.: Наука, 1987. 544 с.
- Волощенко А.П. Анализ эффекта аномальной прозрачности границы раздела вода-воздух // Акуст. журн. 2020. Т. 66. 3. С. 242–250.