——— ФИЗИЧЕСКАЯ АКУСТИКА ——

УДК 534.08;534.222.2

ПРЕОБРАЗОВАНИЕ ТЕРМООПТИЧЕСКИ ВОЗБУЖДАЕМЫХ ШИРОКОПОЛОСНЫХ ИМПУЛЬСОВ ПРОДОЛЬНЫХ АКУСТИЧЕСКИХ ВОЛН В ИМПУЛЬСЫ СДВИГОВЫХ ВОЛН В ИЗОТРОПНОЙ ТВЕРДОТЕЛЬНОЙ ПЛАСТИНЕ В ЖИДКОСТИ

© 2021 г. Н. Б. Подымова^{а, *}, А. А. Карабутов^{а, b}

^аМГУ имени М.В. Ломоносова, физический факультет, Ленинские горы 1, стр. 2, Москва, ГСП-1, 119991 Россия ^bНациональный исследовательский технологический университет "МИСиС", Ленинский пр-т 4, Москва, 119991 Россия *e-mail: продуточа@mail.ru Поступила в редакцию 28.03.2021 г. После доработки 21.04.2021 г. Принята к публикации 23.04.2021 г.

Теоретически проанализированы временные профили широкополосных импульсов сдвиговых акустических волн, получаемых в результате преобразования термооптически возбуждаемых импульсов продольных волн при падении под различными углами на плоскопараллельную изотропную твердотельную пластину, помещенную в иммерсионную жидкость. Показано, что при определенном угле падения временная форма импульса сдвиговых волн в пластине повторяет форму падающего импульса продольных волн. Для сравнения теоретических и экспериментальных результатов исследовалось преобразование термооптически возбуждаемых импульсов продольных волн в импульсы сдвиговых волн и обратно в алюминиевой и кварцевой плоскопараллельных пластинах, помещенных в дистиллированную воду. Экспериментальные временные профили ультразвуковых импульсов совпадают с теоретически рассчитанными профилями за исключением увеличенной длительности экспериментальных импульсов. На основе такой схемы двойного преобразования предложена и экспериментально реализована методика широкополосной акустической спектроскопии продольных и сдвиговых волн с термооптическим источником ультразвука в спектральном диапазоне 1–40 МГц.

Ключевые слова: сдвиговые акустические волны, лазерное возбуждение ультразвука, широкополосная акустическая спектроскопия, коэффициенты затухания ультразвуковых волн **DOI:** 10.31857/S0320791921040110

введение

Ультразвуковые волны различных типов широко используются лля исслелования механических свойств и микроструктуры большого числа разнообразных конструкционных материалов (металлов, сплавов, композитов, и др.). Взаимодействие ультразвуковых волн с неоднородностями структуры твердых тел, приводящее к рассеянию и отражению волн, лежит в основе работы многочисленных систем акустической диагностики структуры и неразрушающего контроля (дефектоскопии). Для оптимального выбора типа ультразвуковых волн и рабочего частотного диапазона при исследовании конкретных материалов и изделий необходимо, в частности, знание ключевых характеристик распространения этих волн в исследуемом материале - скорости и коэффициента затухания (см., например, [1-3]). Ультразвуковые методы исследования особенностей микроструктуры различных материалов основаны на анализе частотных зависимостей коэффициента затухания продольных и сдвиговых акустических волн в этих материалах. Применение этих методов для количественного анализа микроструктуры требует разработки детальных теоретических моделей рассеяния ультразвука в неоднородных конструкционных материалах и сравнения экспериментальных результатов с теоретическими расчетами. Две наиболее широко известные теоретические модели, описывающие связь между частотными зависимостями коэффициентов затухания продольных и сдвиговых ультразвуковых волн и структурными характеристиками поликристаллических металлов, были развиты в [4, 5]. Известно, что характер частот-

Рис. 1. Схема преобразования плоской монохроматической продольной акустической волны в сдвиговую волну на границе раздела жидкость/твердое тело.

ных зависимостей коэффициентов затухания ультразвуковых волн различных типов в гетерогенных материалах существенным образом зависит от соотношения размеров и формы структурных неоднородностей и длины зондирующей акустической волны (см., например, [3, 6–9]). Таким образом, количественная оценка микроструктурных неоднородностей, существенно различающихся по форме и размерам, требует проведения широкополосной акустической спектроскопии — измерения коэффициента затухания ультразвуковых волн в широкой полосе частот [10–12].

Для получения широкополосных зондирующих импульсов в системах акустической спектроскопии целесообразно применение лазерного термооптического механизма возбуждения ультразвука – оптико-акустического эффекта [13]. Малая длительность (от единиц до сотен наносекунд) и большая амплитуда (вплоть до десятков атмосфер) термооптически возбуждаемых акустических импульсов позволяет существенно повысить чувствительность акустической спектроскопии к структурным неоднородностям с размерами от десятков микрометров до нескольких миллиметров в сильно поглощающих и рассеивающих ультразвук конструкционных материалах [14-19]. Известно, что сдвиговые волны являются более чувствительными к мелкомасштабным неоднородностям структуры, поскольку для одной и той же частоты длина сдвиговой волны меньше длины продольной волны. Лазерное термоупругое возбуждение ультразвука позволяет непосредственно получать только импульсы продольных акустических волн [13]. Импульс сдвиговых волн появляется в результате преобразования импульса продольных волн на границе твердого тела, поглощающего лазерное излучение. При этом эффективное возбуждение сдвиговой волны происходит лишь в том случае, когда характерный диаметр поглощенного лазерного пучка сравним с длиной этой волны [20, 21]. Широкая диаграмма направленности получаемых сдвиговых волн [21] затрудняет их применение в системах широкополосной акустической спектроскопии. Другой технической проблемой является обеспечение равномерности частотной характеристики пропускания сдвиговых волн тонкими контактными слоями в акустическом тракте широкополосного спектрометра.

Целью настоящей работы является теоретическое и экспериментальное исследование преобразования термооптически возбуждаемых широкополосных импульсов продольных акустических волн в импульсы сдвиговых волн и обратно в зависимости от угла падения на плоскопараллельную изотропную твердотельную пластину, помещенную в иммерсионную жидкость. На основе этих исследований разрабатывается система широкополосной акустической спектроскопии сдвиговых волн с лазерным источником и иммерсионной методикой регистрации широкополосных импульсов продольных волн. Такая система позволит также измерять частотную зависимость коэффициента затухания продольных акустических волн в спектральном диапазоне лазерного источника ультразвука. Получаемые экспериментальные данные могут использоваться для оптимального выбора рабочего частотного диапазона в системах ультразвукового неразрушающего контроля, а также для верификации теоретических моделей рассеяния продольных и сдвиговых ультразвуковых волн в изотропных поликристаллических материалах.

ПОСТАНОВКА ЗАДАЧИ И ТЕОРЕТИЧЕСКИЕ РАСЧЕТЫ

Рассмотрим преобразование плоской монохроматической продольной акустической волны с циклической частотой ω , падающей из жидкости на границу твердого тела, в сдвиговую волну (рис. 1). Фазовые скорости продольных волн в жидкости и в твердом теле обозначим как *C* и *C*_{*l*}, а фазовую скорость сдвиговых волн в твердом теле как *C*_s. Волновой вектор **k** волны, падающей под углом θ на границу раздела *z* = 0, лежит в плоскости *XZ*, в этой же плоскости лежат волновые вектора преломленной продольной волны **k**_{*l*} и возбуждаемой сдвиговой волны **k**_s в твердом теле. Коэффициент преобразования продольных волн в сдвиговые на границе раздела жидкость/твердое тело традиционно выводится с использованием представления векторов колебательной скорости частиц в жидкости **v**_{liq} и в твердом теле **v**_{solid} через соответствующие потенциалы [22]:

$$\mathbf{v}_{\text{liq}} = \operatorname{grad} \boldsymbol{\varphi},$$

$$\mathbf{v}_{\text{solid}} = \operatorname{grad} \boldsymbol{\varphi}_l + \operatorname{rot} \boldsymbol{\psi}.$$
(1)

В возбуждаемой в твердом теле сдвиговой волне вектор колебательной скорости частиц \mathbf{v}_s лежит в плоскости XZ и перпендикулярен волновому вектору \mathbf{k}_s , поэтому у векторного потенциала $\boldsymbol{\psi}$ имеется только одна y-компонента. Для комплексных амплитуд колебательных скоростей частиц в жидкости V_{in} и в твердом теле V_s коэффициент преобразования W_s продольной гармонической волны в сдвиговую может быть получен из выражения для коэффициента преобразования для соответствующих потенциалов (формула (7.15) в [22]) с учетом (1):

$$W_s = \frac{V_s}{V_{in}} = \frac{k_s}{k} \frac{2\rho}{\rho_s} \frac{Z_s \sin 2\theta_s}{Z_l \cos^2 2\theta_s + Z_s \sin^2 2\theta_s + Z},$$
 (2)

где ρ и ρ_s – плотности жидкости и твердого тела, $k = \omega/C$ и $k_s = \omega/C_s$ – волновые числа продольной волны в жидкости и сдвиговой волны в твердом теле, $Z = \rho C/\cos \theta$, $Z_l = \rho_s C_l/\cos \theta_l$ и $Z_s = \rho_s C_s/\cos \theta_s$.

Рассмотрим преобразование продольных волн в сдвиговые в случае $\theta_{cr1} < \theta < \theta_{cr2}$ (θ_{cr1} и θ_{cr2} – критические углы для продольной и сдвиговой волны, соответственно). В этом случае в прошедшем акустическом поле преобладает сдвиговая компонента, а соз θ_l и Z_l являются чисто мнимыми величинами. Из условия ограниченности потенциала продольных волн в твердом теле при $z \to \infty$ следует, что соз $\theta_l = i |\cos \theta_l|$ и $Z_l = -i\rho_s C_l/|\cos \theta_l|$. Таким образом, величина W_s оказывается комплексной и может быть представлена в виде $W_s =$ = M + iN; действительная M и мнимая N части определяются следующими выражениями, полученными из (2):

$$M(\theta) = \frac{4T_{s}\sin\theta \left(T_{l}^{2}\sin^{2}\theta - 1\right) \left(4\gamma T_{s}^{3}\sin^{2}\theta \sqrt{1 - T_{s}^{2}\sin^{2}\theta} + \frac{1}{\cos\theta}\right)}{\left(T_{l}\gamma\right)^{2} \left(1 - 2T_{s}^{2}\sin^{2}\theta\right)^{4} + \left(T_{l}^{2}\sin^{2}\theta - 1\right) \left(4\gamma T_{s}^{3}\sin^{2}\theta \sqrt{1 - T_{s}^{2}\sin^{2}\theta} + \frac{1}{\cos\theta}\right)^{2}},$$

$$N(\theta) = \frac{4T_{l}T_{s}\gamma\sin\theta \sqrt{T_{l}^{2}\sin^{2}\theta - 1} \left(1 - 2T_{s}^{2}\sin^{2}\theta\right)^{2}}{\left(T_{l}\gamma\right)^{2} \left(1 - 2T_{s}^{2}\sin^{2}\theta\right)^{4} + \left(T_{l}^{2}\sin^{2}\theta - 1\right) \left(4\gamma T_{s}^{3}\sin^{2}\theta \sqrt{1 - T_{s}^{2}\sin^{2}\theta} + \frac{1}{\cos\theta}\right)^{2}},$$
(3)

где $\gamma = \rho_s / \rho$, $T_l = C_l / C$, $T_s = C_s / C$.

В дальнейшем будем анализировать преобразование термооптически возбуждаемых широкополосных импульсов продольных акустических волн в импульсы сдвиговых волн. При расчете временной формы импульса сдвиговых волн с использованием преобразования Фурье, коэффициент преобразования W_s (2) должен использоваться в виде $W_s = M + i \operatorname{sign}(\omega) N$, поскольку для отрицательных частот знак у мнимой части меняется на противоположный [2].

Величина сдвига фаз δ = arctg(N/M) в возбуждаемой сдвиговой волне относительно падающей продольной волны максимальна при углах падения θ , близких к критическим, при

$$\theta = \theta_0 = \arcsin\left(\frac{C}{\sqrt{2}C_s}\right)$$
сдвиг фаз $\delta = 0$ и временная

форма возбуждаемого импульса сдвиговых волн повторяет форму падающего импульса продольных волн. Рассчитанные зависимости $M(\theta)$ и $N(\theta)$ в диапазоне углов падения $\theta_{crl} < \theta < \theta_{cr2}$ для пар вода/алюминий и вода/плавленый кварц, ис-

пользуемых в дальнейшем для экспериментальных исследований, показаны на рис. 2. В первом случае $\theta_{cr1} = 13.7^{\circ}$, $\theta_{cr2} = 28.4^{\circ}$, $\theta_0 = 19.7^{\circ}$; во втором $\theta_{cr1} = 14.4^{\circ}$, $\theta_{cr2} = 23.4^{\circ}$, $\theta_0 = 16.4^{\circ}$. Для расчетов брались значения $\gamma(Al) = 2.69$, $\gamma(SiO_2) = 2.5$ и значения скоростей C = 1490 м/с, $C_l(Al) = 6280$ м/с, $C_s(Al) = 3130$ м/с, $C_l(SiO_2) = 5970$ м/с, $C_s(SiO_2) = 3740$ м/с [23].

Для исследования особенностей распространения широкополосных импульсов сдвиговых волн в плоскопараллельных твердотельных пластинах используется хорошо известная схема (рис. 3) с поворотом исследуемой пластины в иммерсионной жидкости относительно направления падающего импульса продольных волн и без необходимости регистрации импульсов сдвиговых волн (см., например, [24, 25]). В нашей работе в качестве источника широкополосных импульсов продольных акустических волн используется лазерный (или оптико-акустический (OA)) источник ультразвука — оптический фильтр C3C-22 [26]. Он представляет собой плоскопараллельную

АКУСТИЧЕСКИЙ ЖУРНАЛ том 67 № 5 2021

Рис. 2. Действительная *М* и мнимая *N* части коэффициента преобразования *W*_s продольной плоской гармонической волны в сдвиговую волну на границе раздела (а) вода/алюминий, (б) вода/плавленый кварц.

Рис. 3. Схема методики исследования распространения импульсов сдвиговых акустических волн в плоскопараллельной твердотельной пластине с лазерным источником широкополосных импульсов продольных акустических волн.

пластину из плавленного кварца, допированного ионами меди в концентрации, обеспечивающей определенное значение коэффициента поглощения света на рабочей длине волны используемого лазерного импульса (1064 нм). Возбуждение ультразвука происходит за счет термооптического механизма (ОА эффекта) [13], который заключается в генерации импульса звукового давления при поглощении короткого (наносекундного) лазерного импульса в СЗС-22 и последующего нестационарного теплового расширения его нагретого приповерхностного слоя. Значения всех параметров C3C-22, необходимых для определения рабочего спектрального диапазона возбуждаемых ультразвуковых импульсов, приведены ниже (после обсуждения формулы (7) и в разделе "Экспериментальная установка"). В рассматриваемой схеме (рис. 3) регистрируется импульс продольных волн в иммерсионной жидкости (дистилированной воде), полученный в результате преобразования импульса продольных волн ОА источника в импульс сдвиговых волн на входной поверхности исследуемой твердотельной пластины и обратного преобразования сдвиговых волн в продольные на выходной поверхности пластины.

Отношение комплексной амплитуды V_{out} колебательной скорости частиц в продольной монохроматической волне в жидкости на выходе из пластины к амплитуде V_{in} для продольной волны ОА источника, падающей из жидкости на лицевую поверхность пластины, связано с коэффициентом преобразования W_s (2) следующим образом:

$$W(\theta) = \frac{V_{\text{out}}}{V_{\text{in}}} = \frac{T_s \gamma \sqrt{1 - T_s^2 \sin^2 \theta}}{\cos \theta} W_s^2 =$$

$$= A W_s^2(\theta) = P(\theta) + i \operatorname{sign}(\omega) Q(\theta),$$
(4)

где реальная P и мнимая Q части выражаются через реальную M и мнимую N части коэффициента преобразования W_s как:

$$P = A(M^2 - N^2), \quad Q = 2AMN.$$
 (5)

При двойном преобразовании при угле падения $\theta = \theta_0$ временная форма импульса продольных волн в жидкости (на выходе из пластины) повторяет форму падающего импульса ОА источника при условии, что в пластине отсутствуют затухание и дисперсия фазовой скорости сдвиговых волн.

Рассмотрим двойное преобразование термооптически возбуждаемого широкополосного импульса продольных акустических волн в импульс сдвиговых волн и обратно в плоскопараллельной твердотельной пластине в геометрии, изображенной на рис. 3. Поскольку в качестве ОА источника в дальнейших экспериментах будет использоваться оптический фильтр C3C-22 с акустически свободной границей, все расчеты будут проведены для его оптических и термофизических параметров. Известно [13], что спектральные компоненты термооптически возбуждаемого широкополосного импульса продольных ультразвуковых волн выражаются как

$$\tilde{V}_{in}(\omega) = I_0 \tilde{f}(\omega) K(\omega), \qquad (6)$$

где $I_0 \tilde{f}(\omega)$ — спектр временной огибающей интенсивности поглощенного лазерного импульса, $K(\omega)$ — спектральная передаточная функция теромооптического преобразования для материала источника ультразвука [13]. Для C3C-22 при акустически свободной границе эта функция записывается в виде

$$K(\omega) = \frac{\beta}{\rho_{\rm C3C}c_p} \frac{-i\omega\omega_a}{\omega^2 + \omega_a^2},\tag{7}$$

где β , $\rho_{\rm c3c}$ и c_p – соответственно эффективный коэффициент теплового расширения, плотность и удельная теплоемкость при постоянном давлении для C3C-22, $\omega_a = \mu C_{\rm c3c}$, $\mu = 130$ см⁻¹ – коэффициент поглощения света в C3C-22 на рабочей длине волны лазерного излучения 1064 нм, $C_{\rm c3c} = 4800$ м/с – фазовая скорость продольных акустических волн в C3C-22. Временная форма импульса продольных волн в иммерсионной жидкости на выходе из пластины, полученного в результате двойного преобразования в геометрии, показанной на рис. 3, выражается следующим образом:

$$V_{\text{out}}(t,\theta) = \frac{1}{2\pi} \frac{I_0 \beta}{\rho_{\text{C3C}} c_p} \int_{-\infty}^{\infty} \frac{-i\omega\omega_a}{\omega^2 + \omega_a^2} \tilde{f}(\omega) \times$$

$$\times \left[P(\theta) + i \text{sign}(\omega) Q(\theta) \right] \exp(-i\omega t) d\omega,$$
(8)

где опущены множители ~ $\exp(i\mathbf{kr})$ и ~ $\exp(i\mathbf{k_sr})$, описывающие распространение волн в жидкости и в пластине, соответственно. В дальнейшем при расчетах все временные профили акустических импульсов нормируются на величину $I_0\beta/(\rho_{C3}c_n)$.

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Экспериментальная установка для исследования преобразования термооптически возбуждаемых широкополосных импульсов продольных акустических волн в импульсы сдвиговых волн и обратно в плоскопараллельных твердотельных пластинах реализована в геометрии, показанной на рис. 3. Используется Nd: YAG лазер с модуляцией добротности на длине волны 1064 нм. временной профиль огибающей интенсивности близок к гауссовому с характерной длительностью $\tau_{I} \approx 18 - 19$ нс по уровню 1/e. Оптическая система, состоящая из рассеивателя и собирающей линзы, формирует на поверхности ОА источника СЗС-22 лазерный пучок с практически гауссовским поперечным распределением интенсивности с характерным радиусом пучка $a_0 \approx 5$ мм. Коэффициент поглощения света на рабочей длине волны $\mu = 130 \text{ см}^{-1}$, измеренная фазовая скорость $C_{\rm csc} = 4800$ м/с, и соответственно, $\omega_a = \mu C_{\rm csc} =$ $= 6.24 \times 10^7$ с⁻¹. Такие характеристики лазерных импульсов и СЗС-22 обеспечивают спектральный диапазон эффективно возбуждаемых импульсов продольных ультразвуковых волн от 1-2 до 40-50 МГц и выполнение условия $a_0 \mu \ge 1$, что, в свою очередь, обеспечивает близкий к плоскому волновой фронт возбуждаемого ультразвукового пучка [13]. Характерный радиус этого пучка совпадает с радиусом лазерного пучка на поверхности СЗС-22 и равен а₀. Пластина СЗС-22 диаметром 20 мм служит входным окном ОА кюветы с дистиллированной водой и вмонтированным пьезоприемником.

Для вариации угла падения θ исследуемая плоскопараллельная пластина вручную вращается внутри ОА кюветы относительно падающего ультразвукового пучка, точность определения угла падения составляет $\pm 0.1^{\circ}$. Длина всей кюветы (расстояние между выходной поверхностью C3C-22 и входной поверхностью пьезоприемника) составляла 3 см. Поскольку волновой фронт импульса продольных ультразвуковых волн, падающего на поверхность пластины, близок к плоскому, волновой фронт возбуждаемого импульса сдвиговых волн также будет близок к плоскому. Если толщина пластины не слишком велика, то дифракционное искажение временного профиля сдвиговых волн при распространении в пластине будет незначительно.

Регистрация импульсов продольных волн на выходе из пластины осуществляется с помощью широкополосного пьезоприемника с рабочей полосой частот 0.1—30 МГц, изготовленного на основе ПВДФ-пленки толщиной 30 мкм и диаметром 5 мм, ранее использованного в работе [27]. Электрические сигналы с пьезоприемника передаются на цифровой осциллограф с аналоговой полосой частот 200 МГц и затем обрабатываются на персональном компьютере. Запуск осциллографа синхронизован с моментом излучения лазерного импульса. Максимальное соотношение сигнал—шум регистрируемых электрических сигналов составляет порядка 2000.

Для регистрации максимума импульса продольных волн после двойного преобразования в пластине кювета могла перемещаться в поперечном направлении относительно падающего лазерного пучка таким образом, чтобы выходящий из пластины импульс попадал в центр пьезоприемника, как это показано на рис. 3. При нормальном падении импульса ОА источника на пластину ($\theta = 0^{\circ}$) положение кюветы таково, что ось лазерного пучка совпадает с осью пьезоприемника.

Теоретические расчеты и экспериментальные исследования двойного преобразования широкополосных импульсов продольных волн в импульсы сдвиговых волн и обратно проводились для плоскопараллельных полированных пластин из алюминия и плавленого кварца. Толщины обеих пластин составляли $H = (2 \pm 0.002)$ мм. В предыдущем разделе были рассчитаны коэффициенты преобразования продольной монохроматической волны в сдвиговую для пар алюминий-вода и кварц-вода (рис. 2). Данные материалы были взяты из-за малости коэффициента затухания сдвиговых волн в них в рабочем диапазоне частот [23] и, как следствие, отсутствия влияния затухания на временные профили широкополосных импульсов сдвиговых волн в пластинах толщиной 2 мм.

РЕЗУЛЬТАТЫ ТЕОРЕТИЧЕСКИХ РАСЧЕТОВ, ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Теоретически рассчитанная с использованием формул (6) и (7) временная форма импульса продольных акустических волн, возбуждаемого в ОА источнике СЗС-22 при поглощении лазерного импульса с гауссовским временным профилем интенсивности с характерной длительностью 19 нс по уровню 1/е, показана на рис. 4а. На рис. 4б показан экспериментально зарегистрированный временной профиль импульса продольных акустических волн, прошедший ОА кювету в отсутствие твердотельной пластины. Видно, что эти импульсы практически совпадают за исключением большей длительности перехода от положительной фазы к отрицательной в экспериментально зарегистрированном импульсе. Это объясняется поглощением ультразвука при распространении в воде и ограниченностью рабочего диапазона частот пьезоприемника, поскольку этот переход соответствует максимально высоким частотам в спектре импульса [13]. Небольшая ассиметрия положительной и отрицательной фаз и наличие некоторого положительного "хвоста" у экспериментального импульса обусловлена дифракционным искажением начального симметричного двухполярного профиля возбуждаемого ультразвукового импульса при распространении в СЗС-22 и в воде. Здесь и в дальнейшем временная шкала для всех экспериментально зарегистрированных импульсов приведена в соответствие со шкалой для теоретически рассчитанных импульсов путем вычитания соответствующих времен пробега продольных и сдвиговых волн в воде и исследуемых твердотельных пластинах.

На рис. 5а представлены рассчитанные по формуле (8) для различных углов падения θ временные профили импульсов после двойного преобразования импульса продольных волн ОА источника СЗС-22 в импульс сдвиговых волн и обратно в алюминиевой пластине в воде. Как было показано выше, для угла падения $\theta = \theta_0 = 19.7^\circ$ временная форма импульса сдвиговых волн в пластине и, соответственно, форма импульса продольных волн в воде на выходе из пластины повторяет форму падающего импульса продольных волн. Остальные углы падения были выбраны для M = N (см. формулу (3), $\theta = 14.6^{\circ}$ и $\theta = 27.8^{\circ}$, симметричные отрицательные фазы у импульсов) и для практически одинаковых отношений M/N $(\theta = 15.0^{\circ}$ и $\theta = 27.0^{\circ})$. Наибольшее искажение формы импульса по сравнению с импульсом ОА источника наблюдается при M = N, когда углы падения на пластину близки к первому (13.7°) или второму (28.4°) критическим углам. Эксперимен-

Рис. 4. (а) Теоретически рассчитанный временной профиль импульса продольных акустических волн, возбуждаемого при поглощении лазерного импульса с гауссовским временным профилем интенсивности с характерной длительностью 19 нс по уровню 1/*e* в ОА источнике C3C-22; (б) экспериментально зарегистрированный временной профиль импульса, возбуждаемого в ОА источнике C3C-22 и прошедшего через кювету с дистиллированной водой.

Рис. 5. (а) Временные профили ультразвуковых импульсов, рассчитанные по формуле (8) как результат преобразования ультразвукового импульса ОА источника C3C-22 в импульс сдвиговых волн и обратно в плоскопараллельной алюминиевой пластине в дистиллированной воде; (б) экспериментально зарегистрированные временные профили таких импульсов для тех же углов падения θ, что и в теоретических расчетах.

тально зарегистрированные временные профили импульсов для тех же значений углов падения, что и в теоретических расчетах, показаны на рис. 5б. Видно хорошее соответствие этих импульсов теоретическим за исключением большей длительности за счет поглощения ультразвука в воде и ограниченности рабочей полосы частот пьезоприемника и некоторых дифракционных искажений импульсов при их распространении в пластине.

На рис. 6а и 6б представлены аналогичные теоретически рассчитанные и экспериментально зарегистрированные временные профили импульсов после двойного преобразования для кварцевой пластины в воде. В этом случае равенство M = N реализуется только для одного значения угла падения $\theta = 22.7^{\circ}$, близкого ко второму критическому углу (23.4°): практически одинаковые отношения M/N имеют место для $\theta = 14.5^{\circ}$ и $\theta = 21.8^{\circ}$. Также, как и для алюминиевой пластины в воде, наблюдается хорошее соответствие теоретически рассчитанных и экспериментально зарегистрированных временных профилей импульсов, за исключением упомянутой выше увеличенной длительности и дифракционных искажений экспериментальных импульсов.

Таким образом, для твердотельных пластин из двух различных материалов экспериментально подтверждено, что при $\theta = \theta_0$ временная форма

Рис. 6. (а) Временные профили ультразвуковых импульсов, рассчитанные по формуле (8) как результат преобразования ультразвукового импульса ОА источника C3C-22 в импульс сдвиговых волн и обратно в плоскопараллельной пластине из плавленого кварца в дистиллированной воде; (б) экспериментально зарегистрированные временные профили таких импульсов для тех же углов падения θ , что и в теоретических расчетах.

импульса продольных волн, полученного в результате двойного преобразования продольных волн в сдвиговые и обратно, повторяет временную форму падающего на пластину импульса ОА источника. Поэтому изменение формы зарегистрированного импульса продольных волн по сравнению с формой падающего на пластину импульса будет обусловлено только затуханием и дисперсией сдвиговых волн в исследуемой пластине при условии незначительной дифракции ультразвука в ней. Это позволяет реализовать метод широкополосной акустической спектроскопии сдвиговых волн с лазерным источником и иммерсионной методики регистрации импульсов продольных акустических волн без использования контактной техники регистрации слвиговых волн. Используя спектры импульса продольных волн, прошедшего кювету в отсутствие исследуемой пластины, и импульса продольных волн, полученного в результате двойного преобразования импульса ОА источника при падении на пластину под углом $\theta = \theta_0$, можно рассчитать частотную зависимость коэффициента затухания сдвиговых волн в исследуемой пластине в рабочем частотном диапазоне. Одновременно с использованием этой же измерительной ячейки можно определить затухание продольных акустических волн в исследуемой пластине при нормальном падении импульса OA источника ($\theta = 0^{\circ}$).

В качестве примера результатов широкополосной акустической спектроскопии продольных и сдвиговых волн на рис. 7 показаны зависимости коэффициентов затухания $\alpha_{l,s}$ соответствующих волн от частоты *f* падающей волны ОА источника C3C-22 и от волновых чисел $k_l = 2\pi f/C_l$ и $k_s =$ $=2\pi f/C_s$ для плоскопараллельных пластин толщиной 2 мм из нержавеющей стали ($\theta_0 = 20.0^\circ$), литого баббита Б83 ($\theta_0 = 39.4^\circ$) и латуни ($\theta_0 = 29.8^\circ$). Для всех материалов (за исключением латуни при распространении сдвиговых волн) коэффициенты затухания не определялись на частотах f < 3 МГц изза малости их значений и достаточно большой погрешности, возникающей из-за дифракции низкочастотных составляющих импульса в пластинах. Верхняя частота достоверно измеряемого коэффициента затухания определялась из условия, что спектральная амплитуда на этой частоте составляет величину 0.01S_{max}, где S_{max} – максимальная амплитуда спектра зарегистрированного ультразвукового импульса для каждой пластины. На более высоких частотах амплитуда зарегистрированных импульсов была сравнима с уровнем шума из-за значительного высокочастотного затухания ультразвуковых волн в исследуемых материалах.

Из рис. 7 видно, что для всех материалов для одной и той же частоты падающей из воды продольной ультразвуковой волны коэффициент затухания сдвиговых волн α_s оказывается выше, чем коэффициент затухания продольных волн α_l . В то же время, при равных волновых числах $k_l = k_s$ величина α_s может практически совпадать с α_l (для стали), быть либо меньше α_l (для баббита), либо больше α_l (для латуни).

Описанная лазерно-ультразвуковая методика позволяет одновременно измерять коэффициент затухания продольных и сдвиговых волн в изотропных твердотельных пластинах. Эти данные могут быть полезны для оптимального выбора ра-

Рис. 7. Зависимости коэффициента затухания продольных (α_l) и сдвиговых (α_s) ультразвуковых волн от частоты падающей волны ОА источника C3C-22 и от волнового числа продольных и сдвиговых волн для пластин из (a, б) нержавеющей стали, (в, г) литого баббита Б83 и (д, е) латуни. Для всех пластин угол падения при возбуждении импульса сдвиговых волн равен θ_0 (20.0°, 39.4° и 29.8°, соответственно).

бочего частотного диапазона ультразвуковых дефектоскопических систем для обеспечения максимальной чувствительности и разрешающей способности с учетом известных величин затухания ультразвуковых волн, используемых для контроля деталей и изделий конкретной толщины.

ЗАКЛЮЧЕНИЕ

Получено аналитическое выражение для коэффициента преобразования продольной монохроматической акустической волны в сдвиговую волну для амплитуд колебательных скоростей частиц в зависимости от угла падения продольной волны на границу раздела жидкость/твердое тело. Рассмотрен диапазон углов падения больше первого, но меньше второго критического угла. С использованием полученной зависимости впервые теоретически проанализировано преобразование термооптически возбуждаемых широкополосных импульсов продольных акустических волн в импульсы сдвиговых волн и обратно при наклонном падении на плоскопараллельную изотропную твердотельную пластину, помещенную в жидкость. Показано, что существует определенное значение угла падения, при котором временная форма импульса сдвиговых волн в пластине повторяет форму падающего импульса продольных волн. При этом изменение формы импульса на выходе из пластины будет определяться затуханием сдвиговых волн в пластине. Для подтверждения результатов теоретических расчетов впервые проведены эксперименты по двойному преобразованию широкополосных импульсов продольных волн, возбуждаемых при поглощении лазерного импульса наносекундной длительности в оптическом фильтре СЗС-22, в импульсы сдвиговых волн и обратно в пластинах из алюминия и плавленого кварца. Для различных углов падения временная форма экспериментально зарегистрированных импульсов после двойного преобразования в пластинах качественно совпадает с теоретически рассчитанными импульсами за исключением увеличенной длительности экспериментальных импульсов.

Предложена экспериментальная схема по измерению частотных зависимостей коэффициентов затухания продольных и сдвиговых акустических волн в изотропных твердотельных плоскопараллельных пластинах в спектральном диапазоне ОА источника СЗС-22. Для исследованных пластин из нержавеющей стали, оловянного баббита Б83 и латуни показано, что для одной и той же частоты падающей продольной акустической волны значение коэффициента затухания сдвиговых волн выше его значения для продольной волны. Эти данные могут быть полезны для оптимального выбора рабочего диапазона частот в ультразвуковых дефектоскопических системах для обеспечения максимально достоверного контроля. Также предложенная методика широкополосной акустической спектроскопии продольных и сдвиговых волн с лазерным источником ультразвука может применяться для верификации теоретических моделей рассеяния ультразвука в изотропных поликристаллических материалах.

СПИСОК ЛИТЕРАТУРЫ

1. *Papadakis E.P.* Ultrasonic velocity and attenuation: Measurement methods with scientific and industrial

АКУСТИЧЕСКИЙ ЖУРНАЛ том 67 № 5 2021

applications. In: *Mason W.P. and Thurston R.N.* (eds.) Physical acoustics. New York: Academic Press, 1976. V. 12. P. 277–374.

- Fitting D.W., Adler L. Ultrasonic spectral analysis for nondestructive evaluation. New York: Plenum Press, 1981. 354 p.
- 3. Vary A. Material property characterization. In: Nondestructive Testing Handbook. Ultrasonic Testing. *Moore P.O.* (ed.). Columbus: ASTM, 2007. P. 365–431.
- 4. *Stanke F.E., Kino G.S.* A unified theory for elastic wave propagation in polycrystalline materials // J. Acoust. Soc. Am. 1984. V. 75. № 3. P. 665–681.
- Weaver R.L. Diffusivity of ultrasound in polycrystals // J. Mech. Phys. Solids 1990. V. 38. № 1. P. 55–86.
- 6. *Быков В.Г.* Поглощение упругих волн в тонком слое зернистой среды // Акуст. журн. 1997. Т. 43. № 3. С. 323–327.
- Thompson R.B., Margetan F.J., Haldipur P., Yu L., Li A., Panetta P., Wasan H. Scattering of elastic waves in simple and complex polycrystals // Wave Motion 2008. V. 45. P. 655–674.
- Nikitina N.Ye. On the specifics of measuring attenuation and velocity of ultrasound in media with microstructure // Acoust. Phys. 2010. V. 56. № 6. P. 919–923.
- 9. Кольцова И.С., Хомутова А.С., Дейнега М.А. Скорость ультразвуковых волн при структурных перестройках дисперсных сред // Акуст. журн. 2016. Т. 62. № 2. С. 187–193.
- Nicoletti D., Anderson A. Determination of grain size distribution from ultrasonic attenuation. Transformation and inversion // J. Acoust. Soc. Am. 1997. V. 101. № 3. P. 686–689.
- 11. Zang X.-G., Simpson W.A., Vitek J.M., Barnard D.J., Tweed L.J., Foley J. Ultrasonic attenuation due to grain boundary scattering in copper and copper-aluminum // J. Acoust. Soc. Am. 2004. V. 116. № 1. P. 109–116.
- 12. Layman C., Murthy N.S., Yang R.-B., Wu J. The interaction of ultrasound with particulate composites // J. Acoust. Soc. Am. 2006. V. 119. № 3. P. 1449–1456.
- Гусев В.Э., Карабутов А.А. Лазерная оптоакустика. М.: Наука, 1991. 304 с.
- Tittmann B.R., Linebarger R.S., Addison R.C.(Jr.) Laser-based ultrasonics on Gr/epoxy composite // J. Nondestruct. Eval. 1990. V. 9. № 4. P. 229–238.
- 15. *Karabutov A.A., Podymova N.B.* Nondestructive evaluation of fatigue-induced changes in the structure of composites by an ultrasonic method using a laser // Mech. Compos. Mater. 1995. V. 31. № 3. P. 301–304.
- Monchalin J.P. Laser–ultrasonics: from the laboratory to industry. In: Thompson D.O. and Chimenti D.E. (eds.) Quantitative Nondestructive Evaluation. AIP Conf. Proceed. New York: American Institute of Physics, 2004. V. 700. P. 3–31.
- Карабутов А.А., Подымова Н.Б., Беляев И.О. Исследование влияния пористости на затухание ультразвука в углепластиковых композитах методом лазерно-ультразвуковой спектроскопии // Акуст. журн. 2013. Т. 59. № 6. С. 714–721.
- Воробьев Р.И., Сергеичев И.В., Карабутов А.А., Миронова Е.А., Саватеева Е.В., Ахатов И.Ш. Применение оптоакустического метода для оценки влия-

ния пустот на трещиностойкость конструкционных углепластиков // Акуст. журн. 2020. Т. 66. № 2. С. 148–153.

- Подымова Н.Б., Карабутов А.А. Влияние пористости на статистическое распределение амплитуд обратнорассеянных ультразвуковых импульсов в металломатричных композитах, изготовленных методом реакционного литья // Акуст. журн. 2021. Т. 67. № 1. С. 55–64.
- 20. Aussel J.D., Monchalin J.P. Precison laser-ultrasonic velocity measurement and elastic constant determination // Ultrasonics 1989. V. 27. № 3. P. 165–177.
- Zhang S.Y., Paul M., Fassbender S., Schleichert U., Arnold W. Experimental study of laser-generated shear waves using interferometry // Res. Nondestr. Eval. 1990. № 2. P. 143–155.
- 22. *Бреховских Л.М.* Волны в слоистых средах. М.: Наука, 1973. 343 с.

- 23. Физические величины. Справочник. Ред. Григорьев И.С., Мейлихов Е.З. М.: Энергоатомиздат, 1991. 1232 с.
- Rokhlin S.I., Wang W. Double through-transmission bulk wave method for ultrasonic phase velocity measurement and determination of elastic constants of composite materials // J. Acoust. Soc. Am. 1992. V. 91. № 6. P. 3303–3312.
- Karabutov A.A., Kershtein I.M., Pelivanov I.M., Podymova N.B. Laser ultrasonic investigation of the elastic properties of unidirectional graphite-epoxy composites // Mech. Compos. Mater. 1998. V. 34. № 6. P. 575–582.
- Podymova N.B., Kalashnikov I.E., Bolotova L.K., Kobeleva L.I. Laser-ultrasonic nondestructive evaluation of porosity in particulate reinforced metal-matrix composites // Ultrasonics. 2019. V. 99. P. 105959.
- Карабутов А.А., Подымова Н.Б., Соколовская Ю.Г. Локальные соотношения Крамерса-Кронига для коэффициента затухания и фазовой скорости продольных ультразвуковых волн в полимерных композитах // Акуст. журн. 2019. Т. 65. № 2. С. 182–189.