_ КЛАССИЧЕСКИЕ ПРОБЛЕМЫ ЛИНЕЙНОЙ АКУСТИКИ _____ И ТЕОРИИ ВОЛН

УДК 534.26

ДИФРАКЦИЯ ПЛОСКОЙ ВОЛНЫ НА СИЛЬНО ВЫТЯНУТОМ ТРЕХОСНОМ ЭЛЛИПСОИДЕ

© 2021 г. И. В. Андронов^{а, *}, Н. И. Андронов^а

^аСанкт-Петербургский государственный университет, НИИФ, Ульяновская 1/1, Петродворец, 198504 Россия *e-mail: iva—@list.ru Поступила в редакцию 12.03.2021 г. После доработки 14.04.2021 г.

Принята к публикации 20.04.2021 г.

Рассмотрена задача высокочастотной дифракции плоской волны на трехосном сильно вытянутом эллипсоиде. Методом параболического уравнения в эллипсоидальных координатах построен старший член асимптотики поля в пограничном слое у поверхности. Поле выражается в квадратурах через решения конфлюэнтного уравнения Гойна. Рассчитаны значения поля на поверхности идеально жесткого эллипсоида и скорости на поверхности идеально мягкого. Обсуждаются эффекты высокочастотной дифракции.

Ключевые слова: дифракция, сильно вытянутый эллипсоид, высокочастотная асимптотика, метод параболического уравнения, функции Гойна

DOI: 10.31857/S032079192104002X

введение

В задаче дифракции на гладком выпуклом теле В.А. Фоком [1] были получены асимптотические разложения для поля в полутени. В этих разложениях зависимость от поперечной координаты представлена лишь через зависимость от нее радиуса кривизны поверхности. При дифракции на цилиндрической поверхности формулы Фока дают весьма точное описание волнового поля уже при $k\rho \approx 3$, где k – волновое число, ρ – радиус цилиндра. Однако, при дифракции на сфере, где также отсутствует зависимость радиуса кривизны от поперечной координаты, асимптотическое приближение начинает работать лишь при $k\rho \approx 15$, а для дифракции на вытянутом сфероиде нижняя граница допустимых частот еще больше увеличивается [2]. Идея учета поправочных членов, вновь использованная в [3] при рассмотрении задачи дифракции на умеренно вытянутом теле вращения, не приводит к улучшению ситуации. Построению более пригодных асимптотических и численных представлений для поля в задачах дифракции на вытянутых телах в последнее время уделяется большое внимание. Перечислим лишь некоторые работы [4-8]. Однако, во всех этих статьях зависимость параметров поверхности от поперечной координаты отсутствует. Здесь мы обобщаем процедуру построения высокочастотной асимптотики в задаче дифракции на сильно вытянутом теле [6] на поверхность, свойства которой зависят от поперечной координаты. Мы рассматриваем задачу дифракции на трехосном сильно вытянутом эллипсоиде.

Как известно, уравнение Гельмгольца допускает разделение переменных в общих эллипсоидальных координатах [9]. Такое решение было построено в [10] в терминах волновых функций Ламэ, которые удовлетворяют дифференциальному уравнению с 5 особыми точками, точнее его конфлюэнтному случаю, когда две особые точки слились и образовали иррегулярную особую точку. Уравнение записывается в виде:

$$\left[\sqrt{f(\zeta)}\frac{d}{d\zeta}\sqrt{f(\zeta)}\frac{d}{d\zeta} + \frac{h - l\zeta + k^2\zeta^2}{4}\right]w = 0,$$

где $f(\zeta) = (\zeta - a_1)(\zeta - a_2)(\zeta - a_3)$, величины a_1, a_2, a_3 задают эллипсоид, а *h* и *l* – параметры разделения переменных. Переход к используемому в работе методу параболического уравнения сводит задачу к решаемой в терминах конфлюэнтных функций Гойна. Другими словами, подобно тому как при рассмотрении задач дифракции на сфероиде осуществлялся переход от сфероидальных функций (функций класса Гойна), в которых задача решается точно, к вырожденным гипергеометрическим функциям Уиттекера, здесь мы имеем переход от конфлюэнтного варианта уравнения с пятью особыми точками к конфлюэнтно-

му уравнению класса Гойна (т.е. класса уравнений с четырьмя особыми точками).

Полученные асимптотические представления позволяют провести верификацию численных программ расчета волновых полей подобно тому, как это было сделано в [11] для случая дифракции на сфероиде.

ПОСТАНОВКА ЗАДАЧИ

Мы рассматриваем задачу высокочастотной дифракции на сильно вытянутом трехосном эллипсоиде. Зададим эллипсоид стандартным уравнением

$$\left(\frac{x}{a_x}\right)^2 + \left(\frac{y}{a_y}\right)^2 + \left(\frac{z}{a_z}\right)^2 = 1.$$
 (1)

Здесь a_x , a_y и a_z – полуоси эллипсоида. Без ограничения общности будем считать, что $a_x < a_y$. Акустическое поле во внешности эллипсоида удовлетворяет уравнению Гельмгольца

$$\Delta u + k^2 u = 0. \tag{2}$$

Здесь $k = \omega/c$ — волновое число, зависимость от частоты ω принята в виде $e^{-i\omega t}$, c — скорость распространения волн, которую мы считаем постоянной.

Пусть поле возбуждается плоской волной, падающей на эллипсоид вдоль оси *Oz*

$$u_{inc} = \exp(ikz). \tag{3}$$

Будем одновременно рассматривать две задачи: в случае идеально мягкой поверхности зададим условия Дирихле, а в случае идеально жесткой условия Неймана. На бесконечности для рассеянного поля $u_{sc} = u - u_{inc}$ ставятся условия излучения.

Частоту считаем высокой, так что волновые размеры сфероида велики, т.е. $ka_x \ge 1$, $ka_y \ge 1$ и $ka_z \ge 1$. Кроме того, эллипсоид будем считать сильно вытянутым [17], что записывается в виде соотношений

$$\sqrt{ka_z}\frac{a_x}{a_z} = O(1), \ \sqrt{ka_z}\frac{a_y}{a_z} = O(1).$$
 (4)

С учетом симметрии задачи, рассмотрения можно проводить лишь в четверти пространства x > 0, y > 0. Это позволяет ввести эллипсоидальные координаты (η , v, μ) при помощи формул [12]

$$x = p \sqrt{\frac{(\mu - a)(\nu - a)(\eta^{2} - a)}{a(a - 1)}},$$

$$y = p \sqrt{\frac{(\mu - 1)(\nu - 1)(\eta^{2} - 1)}{1 - a}}, \quad z = p \sqrt{\frac{\mu\nu}{a}}\eta.$$
(5)

Здесь 0 < η < 1 < ν < a < μ < ∞ , параметр p имеет смысл половины фокусного расстояния, параметр $a = (a_z^2 - a_x^2)/p^2$ характеризует степень вытянутости по отношению к меньшей из полуосей. Поверхность эллипсоида в этой системе координат является координатной. Пусть она задается уравнением

$$\mu = \mu_0$$
.

Полуоси такого эллипсоида вычисляются по формулам

$$a_x = p\sqrt{\mu_0 - a}, \quad a_y = p\sqrt{\mu_0 - 1}, \quad a_z = p\sqrt{\mu_0},$$
 (6)

откуда с учетом (4) следует, что μ_0 , а значит и параметр *а* должны быть близки к единице. Тогда близка к единице и координата v. Введем вместо μ и v растянутые координаты (*t*, *s*) по формулам

$$a = 1 + \frac{\chi}{kp}, \quad \mu = 1 + \frac{\chi}{kp}t, \quad \nu = 1 + \frac{\chi}{kp}s. \tag{7}$$

Координата *s* меняется в пределах 0 < s < 1, а координата t > 1. Пусть

$$\mu_0 = 1 + \frac{\chi}{kp} t_0.$$

Параметры t_0 и χ определяются через полуоси эллипсоида. В старшем по kp порядке имеем

$$\chi = \frac{k(a_y^2 - a_x^2)}{a_z}, \quad t_0 = \frac{a_y^2}{a_y^2 - a_x^2}.$$
 (8)

ПАРАБОЛИЧЕСКОЕ УРАВНЕНИЕ

Как известно [9], уравнение Гельмгольца допускает разделение переменных в эллипсоидальных координатах, а решение выражается через волновые функции Ламэ. Однако, в случае высоких частот такое решение, как и многие другие точные решения задач дифракции, оказывается непригодным. Поэтому будем строить асимптотическое решение, считая $kp \ge 1$. Используя метод параболического уравнения, представим решение в виде

$$u = e^{ikp\eta} \sum_{j=0}^{\infty} U_j(s, t, \eta) (kp)^{-j}.$$
 (9)

Функции U_j , входящие в асимптотический ряд, будем предполагать независящими от kp. Подставляя представление (9) в уравнение Гельмгольца (2), которое следует переписать в координатах (η , *s*, *t*), и приравнивая члены при $(kp)^1$ (члены при

 $(kp)^2$ сокращаются), получим параболическое уравнение

$$4s(1-s)U_{ss} + (2-4s)U_s + 4t(t-1)U_{tt} + + (4t-2)U_t + 2i\chi(t-s)(1-\eta^2)U_{\eta} + + \chi(t-s)(\chi(s+t-1)-2i\eta)U = 0.$$
(10)

Здесь мы опустили индекс 0 у функции U_0 , а нижними индексами *s*, *t* и η обозначили производные по соответствующим переменным. Уравнение (10) допускает разделение переменных в виде

$$U(s,t,\eta) = S(s)T(t)R(\eta).$$

Для функции *R*(η) получается дифференциальное уравнение первого порядка

$$R'(\eta) = \frac{\eta - 2i\lambda}{1 - \eta^2} R(\eta)$$

которое решается в элементарных функциях

$$R = \frac{1}{\sqrt{1-\eta^2}} \left(\frac{1-\eta}{1+\eta}\right)^{\prime\prime}.$$
 (11)

Для функций *S* и *T* получаются обыкновенные дифференциальные уравнения

$$LS(\zeta) = 0, \ LT(\zeta) = 0$$
 (12)

с одним и тем же оператором

$$L = \zeta(1-\zeta)\frac{d^{2}}{d\zeta^{2}} + \left(\frac{1}{2}-\zeta\right)\frac{d}{d\zeta} + \left(\frac{\chi^{2}}{4}\zeta(1-\zeta) + \chi\lambda\left(\frac{1}{2}-\zeta\right) + \alpha\right).$$
(13)

Первое уравнение в (12) будем называть угловым, а второе — радиальным. Параметры λ и α в (11) и (12) являются параметрами разделения переменных.

Решение (11) является ядром интегрального преобразования [13]

$$\hat{F}(\eta) = \frac{1}{\sqrt{1-\eta^2}} \int_{-\infty}^{+\infty} \left(\frac{1-\eta}{1+\eta}\right)^{i\lambda} F(\lambda) d\lambda,$$

$$F(\lambda) = \frac{1}{\pi} \int_{-1}^{1} \left(\frac{1+\eta}{1-\eta}\right)^{i\lambda} \hat{F}(\eta) \frac{d\eta}{\sqrt{1-\eta^2}}.$$
(14)

Поэтому общее решение параболического уравнения (10) будем искать в виде интеграла по λ по вещественной оси.

Дифференциальные уравнения (12) должны быть дополнены краевыми условиями. По переменной *s* рассматривается конечный интервал [0,1], однако концы этого интервала являются особыми точками дифференциального оператора. Согласно аналитической теории линейных дифференциальных уравнений [14] уравнение (12) имеет регулярные особые точки $\zeta = 0$ и $\zeta = 1$ и иррегулярную особую точку на бесконечности. Это уравнение сводится к вырожденному (конфлю-энтному) уравнению Гойна [15]. В окрестности особой точки $\zeta = 0$ решение уравнения (12) имеет вид

$$S(\zeta) = S_{00}(\zeta) + \sqrt{\zeta} S_{01}(\zeta),$$
(15)

где S_{00} и S_{01} — голоморфные в окрестности $\zeta = 0$ функции. Аналогично, в окрестности точки $\zeta = 1$ имеют место представления

$$S(\zeta) = S_{10}(1-\zeta) + \sqrt{1-\zeta}S_{11}(1-\zeta).$$
(16)

Из (5) и (7) следует, что при фиксированных значениях η и *t* координата *s* пропорциональна y^2 при малых y, а 1 – s пропорциональна x^2 при малых x. Поэтому решение S_{00} соответствует четному продолжению поля и на отрицательные значения координаты y, a решение $\sqrt{\zeta S_{01}(\zeta)}$ – нечетному. Аналогично, решение S_{10} соответствует четному продолжению поля на отрицательные значения координаты x, а решение $\sqrt{1-\zeta S_{11}(\zeta)}$ – нечетному. Поскольку падающее поле является четным по x и y, эта четность переносится и на полное поле. Таким образом, нас интересуют такие решения углового уравнения (12), которые одновременно голоморфны и в окрестности $\zeta = 0$, и в окрестности ζ = 1. Такая сингулярная задача Штурма-Лиувилля может рассматриваться как возмущение задачи, получающейся при $\chi = 0$, и имеющей полиномиальные решения

$$S_n^{\circ}(\zeta) = T_n(2\zeta - 1), \quad \alpha_n^{\circ} = n^2, \quad n = 0, 1, 2, ...,$$
(17)

выражающиеся через полиномы Чебышева первого рода T_n . С точки зрения рассматриваемой задачи дифракции переход к $\chi = 0$ соответствует стремлению $a_x \rightarrow a_y$, то есть к задачам, когда эллипсоид является почти телом вращения.

Известно [15], что сингулярная задача Штурма—Лиувилля для углового уравнения (12) имеет простой, дискретный, ограниченный снизу спектр. Пусть α_n , n = 0, 1, 2, ... - собственные числа. Естественно, они зависят от параметров χ и λ (при необходимости подчеркнуть эту зависимость будем писать $\alpha_n(\chi, \lambda)$), причем

$$\alpha_n(\chi,\lambda) = \alpha_n(\chi,-\lambda)$$
 и $\alpha_n(0,\lambda) = n^2$.

Ниже зависимость от параметра χ , который является фиксированным, для краткости указывать не будем. Пусть $F_n(\zeta) = F_n(\lambda, \zeta)$ – собственные функции, отвечающие собственным числам α_n . Поскольку оператор в уравнении (12) является симметричным в L_2 с весом $\rho = 1/\sqrt{\zeta(1-\zeta)}$, функции

F_n образуют полную ортогональную систему. Нормируем их таким образом, что

$$\int_{0}^{1} \frac{F_{n}(\zeta)F_{m}(\zeta)}{\sqrt{\zeta(1-\zeta)}} d\zeta = \delta_{n}^{m}, \qquad (18)$$

где δ_n^m – символ Кронекера.

Обратимся теперь к решениям радиального уравнения (12) относительно $T(\zeta)$. Кроме решения $F_n(\zeta)$, являющегося аналитическим продолжением собственных функций с отрезка [0,1], нам понадобится также решение, фиксированное поведением на бесконечности. Как известно [15], имеются два решения, фиксированные своим поведением на бесконечности

$$G^{+}(\zeta) = \exp\left(\frac{i\chi}{2}\zeta\right)\zeta^{-\frac{1}{2}+i\lambda}\sum_{j=0}^{\infty}\frac{c_{j}^{+}}{\zeta^{j}}$$
(19)

И

$$G^{-}(\zeta) = \exp\left(-\frac{i\chi}{2}\zeta\right)\zeta^{-\frac{1}{2}-i\lambda}\sum_{j=0}^{\infty}\frac{c_{j}^{-}}{\zeta^{j}}.$$
 (20)

Функции (19) и (20) называются решениями Томе. Ряды в (19) и (20) не сходятся, а дают лишь асимптотическое приближение в секторе, содержащем положительную полуось ζ .

Поскольку параметр χ положителен, решение $G^+(\zeta)$ имеет фазу, растущую на бесконечности, и, тем самым, отвечает волне, уходящей на бесконечность, в то время как решение $G^-(\zeta)$ отвечает приходящей из бесконечности волне. Таким образом, в представлении рассеянного поля могут присутствовать решения $G^+(\zeta)$ и не могут присутствовать решения $G^-(\zeta)$.

ПРЕДСТАВЛЕНИЕ ДЛЯ ФУНКЦИИ ОСЛАБЛЕНИЯ

На основании результатов предыдущего параграфа будем искать старший член асимптотики функции ослабления в следующем виде

$$U(s,t,\eta) = \frac{1}{\sqrt{1-\eta^2}} \int_{-\infty}^{+\infty} \left(\frac{1-\eta}{1+\eta}\right)^{i\lambda} \sum_{n=0}^{\infty} F_n(\lambda,s) \times \left\{A_n(\lambda)F_n(\lambda,t) + B_n(\lambda)G_n^+(\lambda,t)\right\} d\lambda.$$
(21)

Здесь $G_n^+(\lambda, \zeta)$ — решение радиального уравнения (12) с параметром $\alpha = \alpha_n$, фиксированное поведением (19) при $t \to +\infty$.

В фигурных скобках записано общее решение радиального уравнения при фиксированных значениях параметров λ и $\alpha = \alpha_n$. Это решение можно было бы записать и через другие частные ре-

шения радиального уравнения. Выбранная в представлении (21) форма удобна тем, что, если в ней положить $B_n \equiv 0$, то полученная функция U будет допускать четное продолжение во все полупространство x < 0. Ранее мы рассматривали лишь внешность эллипсоида и вопрос о четном/нечетном продолжении поля затрагивал зависимость лишь от координаты s. При рассмотрении представления (21) внутри эллипсоида, то есть при $t < t_0$, следует обратить внимание на то, что значению *t* = 1 отвечает предельный эллиптический диск в плоскости x = 0. Продолжение в область x < 0 через этот диск происходит в соответствии с зависимостью поля от координаты t. При фиксированных η и *s* величина *t* – 1 пропорциональна x^2 при малых x. Поэтому функция $F_{\rm w}(t)$, которая является голоморфной в окрестности t = 1, может быть записана как некоторая функция от x^2 , и ввиду этого отвечающее ей поле будет зависеть от х четным образом. Если же в представлении (21) положить $A_n \equiv 0$, то полученное решение будет представлять собой комбинацию волн, уходящих по переменной t на бесконечность. Поэтому это решение будет удовлетворять условиям излучения. На основании этих свойств можно утверждать, что первое слагаемое $A_n F_n(t)$ порождает функцию ослабления U_{inc} для падающего поля, а слагаемое $B_n G_n^+(t)$ порождает функцию ослабления для рассеянного поля.

Удобно положить

$$B_n = A_n R_n.$$

Тогда коэффициенты R_n можно рассматривать как парциальные коэффициенты отражения от поверхности. Требуя выполнения краевых условий при $t = t_0$ тождественно под знаком интеграла, получим в задаче Дирихле

$$R_n = -\frac{F_n(\lambda, t_0)}{G_n^+(\lambda, t_0)}$$
(22)

и в задаче Неймана

$$R_n = -\frac{\frac{d}{dt}F_n(\lambda, t_0)}{\frac{d}{dt}G_n^+(\lambda, t_0)}.$$
(23)

Для завершения построения асимптотического представления в старшем порядке осталось опре-

делить коэффициенты *A_n*(λ). Для этого рассмотрим представление падающего поля

$$U_{inc} = \frac{1}{\sqrt{1 - \eta^2}} \int_{-\infty}^{+\infty} \left(\frac{1 - \eta}{1 + \eta}\right)^{i\lambda} \times \\ \times \sum_{n=0}^{\infty} A_n(\lambda) F_n(\lambda, s) F_n(\lambda, t) d\lambda.$$
(24)

В этом представлении слева стоит старший член асимптотического ряда для функции ослабления падающей волны. Перейдем в (3) к координатам пограничного слоя. Имеем

$$z = p \sqrt{\frac{\left(1 + \frac{\chi t}{kp}\right)\left(1 + \frac{\chi s}{kp}\right)}{1 + \frac{\chi}{kp}}} \eta =$$

$$= p \eta + \frac{\chi}{2k}(t + s - 1) + O(p^{-1}).$$
(25)

Тогда для U_{inc} получим выражение

$$U_{inc}(s,t,\eta) = \exp\left(\frac{i\chi}{2}(t+s-1)\eta\right).$$
 (26)

Прямой подстановкой проверяется, что функция U_{inc} удовлетворяет параболическому уравнению, а значит, может быть представлена в виде правой части (24) точно.

Применим к (24) обратное преобразование (14)

$$\sum_{n=0}^{\infty} A_n(\lambda) F_n(\lambda, s) F_n(\lambda, t) = K(\lambda, s, t),$$
(27)

где

$$K(\lambda, s, t) = \frac{1}{\pi} \int_{-1}^{1} \left(\frac{1+\eta}{1-\eta} \right)^{i\lambda} \frac{\exp\left(\frac{i\chi}{2}(s+t-1)\eta\right)}{\sqrt{1-\eta^2}} d\eta.$$
(28)

Сравнивая интеграл в (28) с интегральным представлением для функции Уиттекера *M* [16], окончательно получим

$$K(\lambda, s, t) = \frac{1}{(\pi\lambda)} \frac{M_{-i\lambda,0}(i\chi(s+t-1))}{\sqrt{i\chi(s+t-1)}}.$$
 (29)

Отметим, что функция $K(\lambda, s, t)$ не имеет особенностей (квадратный корень в знаменателе компенсируется соответствующим ветвлением функции Уиттекера).

Теперь воспользуемся свойством ортогональности собственных функций $F_n(s)$. Домножим тождество (27) на $F_m(s)$ и проинтегрируем с весом

АКУСТИЧЕСКИЙ ЖУРНАЛ том 67 № 4 2021

 $\rho(s)$ по отрезку $s \in [0,1]$. В левой части ввиду (18) останется лишь слагаемое с n = m. Таким образом,

$$A_{n}(\lambda) = \frac{1}{(\pi\lambda)} \frac{1}{F_{n}(\lambda, t)} \times$$

$$\times \int_{0}^{1} \frac{M_{-i\lambda,0}(i\chi(s+t-1))}{\sqrt{i\chi(s+t-1)}} \frac{F_{n}(\lambda, s)}{\sqrt{s(1-s)}} ds.$$
(30)

Отметим, что коэффициенты $A_n(\lambda)$ не зависят от *t*, в то время как параметр *t* присутствует в правой части выражения (30). Формулу (30) следует рассматривать при таких значениях параметра *t*, при которых сходится интеграл в правой части и которые не являются нулями $F_n(t)$. Наличие параметра *t* позволяет дополнительно контролировать точность вычислений функций $F_n(\lambda, \zeta)$.

В теории функций класса Гойна соотношения, подобные (30), известны как интегральные соотношения или интегральные уравнения для функций класса Гойна [15].

ЧИСЛЕННАЯ ПРОЦЕДУРА И РЕЗУЛЬТАТЫ

Для обсуждения дифракционных эффектов в задаче дифракции на жестком эллипсоиде будем вычислять полное поле на его поверхности. Приводя выражение, взятое в фигурных скобках в (21), к общему знаменателю, получим формулу для поля в следующем виде

$$U(s,t_0,\eta) = \frac{1}{\sqrt{1-\eta^2}} \int_{-\infty}^{+\infty} \left(\frac{1-\eta}{1+\eta}\right)^{t_A} \times \sum_{n=0}^{\infty} A_n(\lambda) F_n(\lambda,s) \frac{W[F_n,G_n^+](t_0)}{\dot{G}_n^+(\lambda,t_0)} d\lambda.$$
(31)

Здесь точкой обозначена производная функции G_n^+ по ее аргументу t, $W[F_n, G_n^+] = F_n \dot{G}_n^+ - \dot{F}_n G_n^+ -$ определитель Вронского функций F_n и G_n^+ , который, как известно, зависит от t_0 посредством множителя $1/\sqrt{t_0(t_0-1)}$.

В задаче дифракции на идеально мягкой поверхности будем вычислять нормальную производную поля на поверхности. При этом учтем, что

$$\frac{\partial}{\partial n} = \frac{2}{p} \frac{\sqrt{kp}}{\sqrt{\chi}} \sqrt{\frac{t(t-1)}{(t-s)(1-\eta^2)}} \frac{\partial}{\partial t}.$$
(32)

В результате получаем

$$\frac{\partial u}{\partial n} = -\frac{2\sqrt{kp}e^{ikp\eta}}{p\sqrt{\chi}(1-\eta^2)} \sqrt{\frac{t_0^2 - t_0}{t_0 - s}} \int_{-\infty}^{+\infty} \left(\frac{1-\eta}{1+\eta}\right)^{i\lambda} \times \\ \times \sum_{n=0}^{\infty} A_n(\lambda) F_n(\lambda, s) \frac{W[F_n, G_n^+](t_0)}{G_n^+(\lambda, t_0)} d\lambda.$$
(33)

Для проведения расчетов по формулам (31), (33) необходимо решить задачу Штурма–Лиувилля для углового уравнения (12) и найти значения спектрального параметра $\alpha_n(\lambda)$ и собственные функции $F_n(\lambda, s)$. Отметим, что в [18] использована замена переменных, которая позволяет устранить одновременно обе особые точки. Однако, при этом получаются уравнения с неполиномиальными коэффициентами. С нашей точки зрения удобнее сделать более простые замены независимой переменной

$$F(s) = \frac{\Phi(\tau)}{\sqrt[4]{1-s}} = \frac{\Psi(\sigma)}{\sqrt[4]{s}}, \ \tau = \sqrt{s}, \ \sigma = \sqrt{1-s}.$$
 (34)

Первую замену выполним для $s \in [0, 1/2]$, вторую для $s \in [1/2, 1]$. Для функций Φ и Ψ получим уравнения

$$\Phi''(\zeta) + Q(\lambda, \zeta)\Phi(\zeta) = 0,$$

$$\Psi''(\zeta) + Q(-\lambda, \zeta)\Psi(\zeta) = 0,$$
(35)

где

$$Q(\lambda,\zeta) = \chi^2 \zeta^2 + 4\chi \lambda + \frac{4\alpha - 2\chi \lambda - \frac{1}{4}}{1 - \zeta^2} + \frac{3}{4} \frac{1}{(1 - \zeta^2)^2}.$$
 (36)

Отсутствие первой производной в (36) позволяет применить численную схему Нумерова. Введем равномерную сетку $\{\zeta_j\}_{j=0,1,...,N}$ с шагом *h* на интервале $[0, \sqrt{2}/2]$ и вектор неизвестных $\mathbf{F} = (\Phi(0), \Phi(\zeta_1), ..., \Phi(\zeta_{N-1}), \Phi(\sqrt{2}/2), \Psi(\zeta_{N-1}), ..., \Psi(\zeta_1), \Psi(0))^T$. Уравнения метода Нумерова записываются в виде

 $A\mathbf{F} = 0$

с трехдиагональной матрицей

$$\begin{split} A_{0,0} &= -1 + \frac{1}{3}Q(\lambda,0)h^2, \quad A_{0,1} = 1 + \frac{1}{6}Q(\lambda,h)h^2, \\ A_{j,j-1} &= 1 + \frac{1}{12}Q(\lambda,(j-1)h)h^2, \\ A_{j,j} &= -2 + \frac{5}{6}Q(\lambda,jh)h^2, \\ A_{j,j+1} &= 1 + \frac{1}{12}Q(\lambda,(j+1)h)h^2, \\ &j = 1, 2, \dots, N-1, \\ A_{N,n-1} &= -1 - \frac{1}{6}Q(\lambda,(N-1)h)h^2, \\ A_{N,N} &= 2 + \sqrt{2}h - \frac{1}{3}(Q(\lambda,Nh) + Q(\lambda,Nh)), \\ A_{N,N+1} &= -1 - \frac{1}{6}Q(-\lambda,(N-1)h)h^2, \end{split}$$

$$\begin{split} A_{j,j-1} &= 1 + \frac{1}{12}Q(-\lambda,(2N-j+1)h)h^2, \\ A_{j,j} &= -2 + \frac{5}{6}Q(-\lambda,(2N-j)h)h^2, \\ A_{j,j+1} &= 1 + \frac{1}{12}Q(-\lambda,(2N-j-1)h)h^2, \\ j &= N+1, N+2, \dots, 2N-1, \\ A_{2N,2N-1} &= 1 + \frac{1}{6}Q(-\lambda,h)h^2, \\ A_{2N,2N} &= -1 + \frac{1}{3}Q(-\lambda,0)h^2. \end{split}$$

Нахождение собственных чисел производилось методом стрельбы, т.е. выбирая $\Phi(0) = 1$, что влияет лишь на нормировку, и, последовательно используя 2N - 1 уравнение системы, определялись компоненты вектора **F**. Параметр α , играющий роль пристрелочного параметра, находился из требования, чтобы выполнялось последнее уравнение системы.

Нормировочные интегралы (18) и интегралы в формулах (30) для коэффициентов $A_n(\lambda)$ вычислялись по составным квадратурным формулам трапеций. Проверка условий ортогональности (18) и независимости правых частей (30) от *t* дают возможность дополнительной проверки точности вычислений.

После того как собственные числа α_n найдены, необходимо решить радиальные уравнения (12) и найти функции $G_n^+(\lambda, t)$. Функции $G_n^+(\lambda, t)$ фиксируются своим поведением на бесконечности. Поэтому радиальное уравнение решалось в отрицательном направлении независимой переменной. Для того чтобы задать начальные данные для задачи Коши, можно воспользоваться решениями Томе (19). Несложно установить, что коэффициенты c_j^+ асимптотического ряда удовлетворяют трехчленным рекуррентным уравнениям

$$c_{n+2} = \frac{i}{\chi(n+2)}(n+1-i\lambda)\left(n+\frac{1}{2}-i\lambda\right)c_n - \frac{i}{\chi(n+2)}\left[\left(n+\frac{3}{2}-i\lambda\right)^2 + i\chi\left(n+\frac{5}{4}-i\lambda\right)-\alpha\right]c_{n+1},$$
(37)

в которых надо положить $c_{-1} = 0$.

Ряд в (19), как уже отмечалось выше, расходится и может использоваться лишь как асимптотический. Поэтому будем рассматривать конечный отрезок ряда и использовать его при достаточно большом значении ζ^* , которое и будет начальным значением независимой переменной в задаче Коши для $G_n^+(\zeta)$. Отметим, что ввиду наличия множителей χ^{-1} в формулах (37) значение ζ^* приходится брать тем большим, чем меньше значе-

Рис. 1. Амплитуда поля в сечении x = 0 на жестком сфероиде с полуосями $200k^{-1}$ и $10k^{-1}$ (сплошная линия) и на эллипсоидах с полуосями $200k^{-1}$, $10k^{-1}$ и $20k^{-1}$ (штриховая линия) и $200k^{-1}$, $10k^{-1}$ и $5k^{-1}$ (пунктир).

ние параметра χ . При приближении к сингулярной точке $\zeta = 1$ для повышения точности вычислений и исключения особенности в $\zeta = 0$ можно произвести замену независимой переменной

$$G^{+}(\zeta) = \frac{\Upsilon(\tau)}{\sqrt[4]{t}}, \quad \tau = \sqrt{\zeta - 1}, \tag{38}$$

которая приводит к уравнению

$$\Upsilon''(\tau) + \left[\chi^{2}\tau^{2} + 4\chi\lambda + \frac{\frac{1}{4} - 4\alpha - 2\chi\lambda}{1 + \tau^{2}} - \frac{3}{4}\frac{1}{(1 + \tau^{2})^{2}}\right]\Upsilon(\tau).$$
(39)
(39)

Как показывает численный счет, подынтегральные выражения в (31) и (33) быстро убывают при $\lambda \to \pm \infty$, а заметный вклад в сумму дают лишь слагаемые с n = 0 и n = 1.

С точки зрения физики процесса дифракции вызывает интерес изучение поперечной структуры дифракционного поля. Как уже отмечалось выше, приближение Фока имеет двумерный характер и на границе свет—тень на поверхности жесткого тела дает значение амплитуды полного поля, равное 1.399. Таким образом, согласно это-

АКУСТИЧЕСКИЙ ЖУРНАЛ том 67 № 4 2021

му приближению зависимости от поперечной координаты нет. В реальности, такая зависимость присутствует и полученные здесь асимптотические представления позволяют ее выявить. Рассмотрим сечение x = 0 и будем сравнивать распределение поля в этом сечении с распределением поля на поверхности сфероида, которое может быть рассчитано по асимптотическим формулам, полученным в [6]. На рис. 1 это распределение показано сплошной линией. Для эллипсоида с меньшей поперечной кривизной распределение поля показано штриховой линией, а для эллипсоида с большей кривизной – пунктиром. Расчеты показывают, что поперечная кривизна влияет на распределение поля двояким образом. Во-первых, при увеличении поперечной кривизны эллипсоид становится более плоским, что приводит к уменьшению амплитуды рассеянного поля (на жестком эллиптическом диске, являющемся предельным случаем эллипсоида, рассеянное поле отсутствует). Во-вторых, большая поперечная кривизна снижает скорость затухания поля в тени, что выражается меньшим наклоном у пунктирной кривой и бо́льшим у штриховой.

Сравнивая поля в сечениях x = 0 и y = 0(см. рис. 2) можно сделать вывод о том, что ам-

Puc. 2. Амплитуда поля в сечениях x = 0 (жирные линии) и y = 0 (тонкие линии) на эллипсоидах с полуосями $200k^{-1}$, $20k^{-1}$ и $15k^{-1}$ (сплошная линия), $200k^{-1}$, $20k^{-1}$ и $10k^{-1}$ (штриховая линия), $200k^{-1}$, $20k^{-1}$ и $5k^{-1}$ (пунктир).

плитуда поля в более вытянутом сечении оказывается меньше, чем в менее вытянутом.

При дифракции на идеально мягкой поверхности удобно ввести величину

$$v = \sqrt{\frac{p}{k}}\sqrt{1 - \eta^2}\frac{\partial u}{\partial n},$$

которая в старшем порядке не зависит от асимптотического параметра *kp*. Расчеты по формуле

Таблица 1. Значения |v| на эллипсоидах, длины двух полуосей которых имеют фиксированные значения $200k^{-1}$ и $20k^{-1}$, а длина третьей (*a*.) меняется

Полуось (k^{-1})	$ v(0, t_0, 0) $	$v(1, t_0, 0)$
15	1.2625695	1.6000447
10	1.1161410	2.0459228
5	0.9662729	3.4741242
1	0.8487356	15.1752945
0.2	0.8258801	73.6736424
0.02	0.8207700	731.9964218
0.002	0.8202608	7315.2478423

(33) представлены на рис. 3. Влияние поперечной кривизны на распределение поля оказывается сходным. Однако (см. рис. 4), по сравнению с задачей дифракции на жесткой поверхности амплитуда *v* оказывается больше в более вытянутом сечении, чем в менее вытянутом. Кроме того, влияние поперечной кривизны проявляется сильнее, чем в случае жесткой поверхности. Этот факт в некотором смысле неожиданный, так как при использовании стандартного метода параболического уравнения поправка на поперечную кривизну для дифракции на идеально мягкой поверхности появляется лишь в третьем члене асимптотики [3], в то время как в случае жесткой поверхности уже во втором [19].

Особый интерес вызывает исследование предела при превращении эллипсоида в сильно вытянутый эллиптический диск. В случае жесткого диска рассеянное поле отсутствует, а в случае мягкого наблюдается усиление поля на кромке диска. Рассчитанные значения величины |v| на границе свет—тень в сечениях x = 0 и y = 0 приведены в табл. 1.

При уменьшении толщины эллипсоида величина v в сечении y = 0 стремится к пределу

Рис. 3. Амплитуда |v| в сечении x = 0 на мягком сфероиде с полуосями $200k^{-1}$ и $10k^{-1}$ (сплошная линия) и на эллипсоидах с полуосями $200k^{-1}$, $10k^{-1}$ и $20k^{-1}$ (штриховая линия) и $200k^{-1}$, $10k^{-1}$ и $5k^{-1}$ (пунктир).

Рис. 4. Амплитуда |v| в сечениях x = 0 (жирные линии) и y = 0 (тонкие линии) на эллипсоидах с полуосями $200k^{-1}$, $20k^{-1}$ и $15k^{-1}$ (сплошная линия), $200k^{-1}$, $20k^{-1}$ и $10k^{-1}$ (штриховая линия), $200k^{-1}$, $20k^{-1}$ и $5k^{-1}$ (пунктир).

 $v_0 \approx 0.82$, а в сечении x = 0 неограниченно возрастает примерно пропорционально отношению a_y/a_x .

ЗАКЛЮЧЕНИЕ

В данной статье мы построили и исследовали высокочастотную асимптотику поля дифракции на сильно вытянутом трехосном эллипсоиде для случая падения плоской волны вдоль большой полуоси эллипсоида. При этом учитывалось лишь поле прямой волны, описываемой в приближении модифицированного метода параболического уравнения. Подобно тому, как это было сделано в случае дифракции на сильно вытянутом сфероиде, в дальнейшем предполагается распространить результаты анализа на падение под углом, на другие виды падающих полей, а также включить в рассмотрение "обратную" волну, формирующуюся вследствие огибания рассеянным полем теневого конца эллипсоида. Общая идея указанных обобщений повторяет случай сфероида, однако на пути их реализации ожидаопределенные трудности. Во-первых, ются усложнение интеграла (28) приводит к проблеме сведения его к известным специальным функциям. Во-вторых, нет явных выражений для асимптотик функций класса Гойна, использование которых необходимо при получении амплитуды "обратной" волны.

СПИСОК ЛИТЕРАТУРЫ

- Фок В.А. Новые методы в теории дифракции // Вестник Ленинградского университета. 1947. № 4. С. 5–11.
- Белкина М.Г. Характеристики излучения вытянутого эллипсоида вращения // Дифракция электромагнитных волн на некоторых телах вращения, М.: Советское радио, 1957. С. 126–147.
- Кирпичникова Н.Я., Попов М.М. Метод параболического уравнения Леонтовича—Фока в задаче дифракции на вытянутых телах // Зап. научн. семинаров ПОМИ. 2012. Т. 409. № 42. С. 55–79.
- 4. Корольков А.И., Шанин А.В., Белоус А.А. Дифракция на вытянутом теле вращения с импедансными границами. Метод граничного интегрального параболического уравнения // Акуст. журн. 2019. Т. 65. № 3. С. 440–447.
- 5. *Клеев А.И., Кюркчан А.Г.* Использование метода диаграммных уравнений в сфероидальных координатах для решения задач дифракции на сильно

вытянутых рассеивателях // Акуст. журн. 2015. Т. 61. № 1. С. 21–29.

- Андронов И.В. Дифракция на сильно вытянутом теле вращения // Акуст. журн. 2011. Т. 57. № 2. С. 147–152.
- 7. *Андронов И.В.* Дифракция плоской волны, падающей под малым углом к оси вращения сильно вытянутого сфероида // Акуст. журн. 2012. Т. 58. № 5. С. 571–579.
- Andronov I.V. High-frequency acoustic scattering from prolate spheroids with high aspect ratio // J. Acoust. Soc. Am. 2013. V. 134. № 6. P. 4307–4316.
- 9. *Бейтмен Г., Эрдейи А.* Высшие трансцендентные функции. Т. 3. М.: Наука, 1967. 300 с.
- Федорюк М.В. Дифракция звуковых волн на трехосном эллипсоиде // Акуст. журн. 1988. Т. 34. № 1. С. 160–164.
- Chernokozhin E.V., Andronov I.V., Boag A. Mutual Validation of a Fast Solver Based on the Multilevel Nonuniform Grid Approach and an Asymptotic Approximation for High-frequency Scattering by Strongly Elongated Spheroids // 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science. https://doi.org/10.23919/URSIGASS49373.2020.9231997
- Морс Ф.М., Фешбах Г. Методы теоретической физики. Т. 1. М.: ИЛ, 1958. 931 с.
- Петров В.Э. Обобщенное сингулярное уравнение Трикоми как уравнение свертки // Доклады Акад. наук. 2006. Т. 411(2). С. 1–5.
- Федорюк М.В. Асимптотические методы в теории обыкновенных дифференциальных уравнений. М.: Наука, 1983. 352 с.
- Славянов С.Ю., Лай В. Специальные функции: единая теория, основанная на анализе особенностей. С.-Петербург: Невский Диалект, 2002. 312 с.
- Градитейн И.С., Рыжик И.М. Таблицы интегралов, сумм, рядов и произведений. М.: Физматгиз, 1963. 1100 с.
- Andronov I.V., Bouche D. Asymptotic of creeping waves on a strongly prolate body // Ann. Télbommun. 1994. V. 49. № 3–4. P. 205–210.
- Абрамов А.А., Дышко А.Л., Конюхова Н.Б., Левитина Т.В. О численно-аналитическом исследовании задач дифракции плоской звуковой волны на идеальных вытянутых сфероидах и трехосных эллипсоидах // Журн. вычислит. матем. и матем. физики. 1995. Т. 35. № 9. С. 1374–1400.
- Hong S. Asymptotic theory of electromagnetic and acoustic diffraction by smooth convex surfaces of variable curvature // J. Math. Physics. 1967. V. 8. P. 1223– 1232.