УДК 632.952:632.4:633.491

ФУНГИЦИДНАЯ АКТИВНОСТЬ ХИМИЧЕСКИХ И БИОЛОГИЧЕСКИХ ПРЕПАРАТОВ В ОТНОШЕНИИ ВОЗБУДИТЕЛЕЙ АЛЬТЕРНАРИОЗА КАРТОФЕЛЯ

© 2022 г. А. С. Орина^{1,*}, А. В. Хютти¹, А. М. Шпанев¹

¹Всероссийский научно-исследовательский институт защиты растений 196608 Санкт-Петербург—Пушкин, шоссе Подбельского, 3, Россия *E-mail: orina-alex@yandex.ru

Поступила в редакцию 25.04.2022 г. После доработки 03.06.2022 г. Принята к публикации 12.07.2022 г.

Альтернариоз — одно из самых распространенных заболеваний картофеля во всем мире, в том числе и в России, которое может вызывать снижение урожая клубней на 10-50%. На территории РФ область высокой вредоносности альтернариоза совпадает с ареалом наиболее патогенного вида Alternaria solani, тогда как другой возбудитель A. tenuissima встречается во всей зоне возделывания картофеля. Наиболее действенной мерой борьбы с данным заболеванием является химический метод защиты. Однако современные подходы к защите растений также предполагают применение биологических средств. При лабораторной оценке действия 10 химических и 9 биологических препаратов в отношении возбудителей альтернариоза картофеля установлено, что все проанализированные препараты подавляли рост грибов Alternaria: ингибирующее действие химических и биологических фунгицидов варьировало в диапазоне 33-80% и 20-66% соответственно. Показано, что препараты Дискор и Ревус Топ, содержащие дифеноконазол и мандипропамид, а также препарат Луна Транквилити на основе пириметанила и флуопирама наиболее эффективно подавляли рост этих грибов (ингибирующее действие 68-80%). Среди биологических препаратов наиболее эффективно рост грибов Alternaria подавляли БФТИМ КС-2 и Витаплан на основе Bacillus amyloliquefaciens и В. subtilis, их ингибирующее действие составило 60-66%. Полученные результаты предваряют проведение полевых испытаний препаратов в регионах возделывания культуры с разными природно-климатическими условиями, для создания адекватной стратегии защиты картофеля от альтернариоза.

Ключевые слова: альтернариоз, картофель, Alternaria solani, Alternaria tenuissima, фунгицидное действие, химические средства защиты растений, биологические препараты.

DOI: 10.31857/S0002188122100076

введение

Альтернариоз является одним из самых распространенных заболеваний картофеля во всем мире. Вредоносность болезни проявляется прежде всего в снижении урожая из-за уменьшения фотосинтетической поверхности листьев, а также в возможности загрязнении сельскохозяйственной продукции метаболитами грибов-возбудителей, среди которых могут присутствовать фитотоксины, микотоксины, аллергены и ферменты [1]. Поражение посадок картофеля альтернариозом снижает урожай клубней на 10—50% [2—6].

На территории России зона высокой вредоносности альтернариоза совпадает с ареалом наиболее патогенного вида *Alternaria solani* Sorauer и находится в центре и на юге европейской части России, а также на юге Западной Сибири, в Прибайкалье и в Приморье на Дальнем Востоке [710]. Повышенные температуры воздуха в сочетании с кратковременным выпадением осадков и обильными утренними росами благоприятны для развития *A. solani*. Тогда как вид *A. tenuissima* (Kunze) Wiltshire и другие мелкоспоровые виды *Alternaria* в меньшей степени зависят от климатических условий и распространены на всей территории возделывания картофеля в России [10]. В последние годы из-за потепления климата участились случаи сильного поражения растений картофеля альтернариозом в Центральном и Северо-Западном регионах [11, 12].

В ограничении развития альтернариоза картофеля большое значение имеет возделывание устойчивых сортов, использование качественного посадочного материала, поддержание оптимального для растений питательного режима за счет внесения полного минерального удобрения с

Таблица 1. Химические и биологические препараты, включенные в исследование

Препарат	Действующее вещество (д.в.)/биологический агент (б.а.)	Норма расхода, кг, л*	Концентрация д.в. (г/л)/б.а. (КОЕ/л) в рабочем растворе**				
Химические препараты							
Акробат МЦ, ВДГ	Манкоцеб 600 г/кг + диметоморф 90 г/кг	2.00	4.00 + 0.60				
Дискор, КЭ	Дифеноконазол 250 г/л	0.40	0.33				
Зорвек Энкантия, СЭ	Фамоксадон 300 г/л + оксатиапипролин 30 г/л	0.65	0.65 + 0.06				
Луна Транквилити, КС	Пириметанил 375 г/л + флуопирам 125 г/л	0.80	1.00 + 0.33				
Пеннкоцеб, СП	Манкоцеб 800 г/кг	1.60	4.27				
Ревус Топ, СК	Дифеноконазол 250 г/л + мандипропамид 250 г/л	0.60	0.50 + 0.50				
Ридомил Голд МЦ, ВДГ	Манкоцеб 640 г/кг + мефеноксам 40 г/кг	2.50	5.33 + 0.33				
Сектин Феномен, ВфДГ	Манкоцеб 500 г/кг + фенамидон 100 г/кг	1.25	2.08 + 0.42				
Сигнум, ВДГ	Боскалид 267 г/кг + пираклостробин 67 г/кг	0.30	0.27 + 0.07				
Танос, ВДГ	Фамоксадон 250 г/кг + цимоксанил 250 г/кг	0.60	0.50 + 0.50				
Биологические препараты							
Бактофит, СК	Bacillus subtilis ИПМ 215 (БА-10000 ЕА/мл, 2×10^9 КОЕ/мл	2.00	1.30×10^{10}				
Бисолбисан, Ж	В. subtilis Ч-13, 10 ⁸ КОЕ/мл	3.00	10 ⁹				
БФТИМ КС-2, Ж	<i>B. amyloliquefaciens</i> ВКПМ В-11141, 10 ⁹ КОЕ/мл	4.00	1.30×10^{10}				
Витаплан, СП	B. subtilis BKM-B-2604D 10 ¹⁰ KOE/Γ + + B. subtilis BKM-B-2605D 10 ¹⁰ KOE/Γ	0.08	$2.70 \times 10^9 + 2.70 \times 10^9$				
Трихоцин, СП	<i>Trichoderma harzianum</i> Г-30 ВИЗР, 10 ¹⁰ КОЕ/г	0.08	2.70×10^9				
Фитоспорин-М, Ж	<i>B. subtilis</i> 26 Д 10 ⁹ КОЕ/мл	4.00	1.30×10^{10}				
Экспериментальный-1, Ж	<i>B. mojavensis</i> PS 17, 5×10^9 KOE/мл	3.00	5.00×10^{10}				
Экспериментальный-2, С	<i>B. subtilis</i> 5 <i>И</i> -12/23, 10 ¹⁰ КОЕ/мл	5.00	8.30×10^{11}				
Экспериментальный-3, Ж	<i>B. subtilis</i> RCAM01729, 10 ⁹ KOE/мл	3.00	10^{10}				

^{*}По инструкции производителя.

повышенными нормами калия [13]. При этом наиболее действенной мерой борьбы с данным заболеванием картофеля является химический метод защиты. Положительные результаты по снижению развития альтернариоза получены при применении в схемах защиты картофеля препаратов на основе азоксистробина, боскалида, дифеноконозола, мандипропамида, пираклостробина, пириметанила, флуапирама и их комбинаций [12, 14—16]. В то же время отмечена недостаточно высокая эффективность препаратов, содержащих манкоцеб, фамоксадон, флуазинам, хлороталонил и цимоксанил, предназначенных для защиты посадок картофеля от фитофтороза и альтернариоза [13, 17, 18].

Современные тенденции в защите культурных растений от патогенов выражаются в повышении объемов применения биологических средств. Например, показана высокая эффективность предпосадочной обработки клубней и двукратного опрыскивания растений в период вегетации грибами *Trichoderma* sp. и бактерией *Bacillus thuringiensis* для защиты картофеля от альтернариоза [19]. По результатам обработки посадочного материала и 3-кратного опрыскивания вегетирующих растений препаратами на основе штаммов В-10 ВИЗР и М-22 ВИЗР *В. subtilis* отмечено снижение развития альтернариоза в фазе роста клубней на 52.4 и 44.7%, тогда как при использовании химического стандарта Ридомил Голд, содержа-

^{**}Из расчета 300 л рабочего раствора/га обрабатываемой площади.

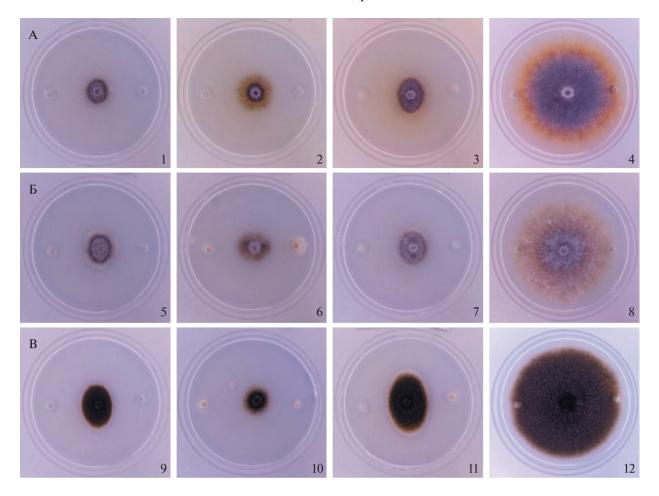
	Действующее вещество (д.в.)	Диаметр колонии, мм			Подавление роста, % от контроля		
Препарат		A. solani		A. tenuissima	A. solani		A. tenuissima
		MF P628031	MF P747151	MF P713021	MF P628031	MF P747151	MF P713021
Акробат МЦ	Манкоцеб +	21.3 ± 1.3	23.0 ± 1.1	40.7 ± 1.7	67	69	46
	+ диметоморф						
Дискор	Дифеноконазол	13.0 ± 1.1	16.3 ± 2.4	16.3 ± 0.7	80	73	78
Зорвек	Фамоксадон +	30.3 ± 0.7	28.7 ± 8.8	47.7 ± 6.6	53	53	36
Энкантия	+ оксатиапипролин						
Луна	Пириметанил +	16.7 ± 0.7	15.7 ± 1.7	16.3 ± 1.3	74	74	78
Транквилити	+ флуопирам						
Пеннкоцеб	Манкоцеб	26.3 ± 1.3	22.3 ± 0.7	46.0 ± 1.1	59	63	38
Ревус Топ	Дифеноконазол +	15.3 ± 2.4	17.7 ± 0.7	24.0 ± 2.3	76	71	68
	+ мандипропамид						
Ридомил	Манкоцеб +	26.7 ± 3.5	24.7 ± 2.8	41.7 ± 0.7	59	66	44
Голд МЦ	+ мефеноксам						
Сектин	Манкоцеб +	25.7 ± 3.3	31.7 ± 0.7	42.3 ± 1.3	60	54	43
Феномен	+ фенамидон						
Сигнум	Боскалид +	23.3 ± 1.7	28.7 ± 0.7	30.0 ± 0.1	64	59	60
	+ пираклостробин						
Танос	Фамоксадон +	34.7 ± 1.7	36.7 ± 1.3	50.3 ± 1.7	46	40	33
	+ цимоксанил						

Таблица 2. Действие химических препаратов на рост грибов Alternaria spp.

щего манкоцеб, снижение развития заболевания составило 60.3% [20].

Полевые испытания эффективности фунгицидов в защите культурных растений от фитопатогенов должна предварять лабораторная оценка их активности в отношении чистых культур грибов-возбудителей заболевания, которая позволяет быстро оценить действие препаратов и сравнить их между собой, тогда как полевые испытания требуют больше времени и подвержены влиянию множества факторов.

Цель работы — лабораторная оценка действия современных и перспективных фунгицидов (химических и биологических) в отношении возбудителей альтернариоза картофеля *A. solani* и *A. tenuissima*.


МЕТОДИКА ИССЛЕДОВАНИЯ

В качестве объектов исследования из коллекции чистых культур микрооранизмов лаборатории микологии и фитопатологии ВИЗР были выбраны 2 штамма гриба *А. solani* МF P628031 и МF P747151, выделенные из листьев картофеля из Адыгеи и Камчатского края соответственно. Также в исследование был включен штамм *А. tenuissima* МF P713021, выделенный из листьев картофеля из республики Дагестан.

Лабораторную оценку действия 10 химических и 9 биологических препаратов в отношении возбудителей альтернариоза картофеля проводили во Всероссийском НИИ защиты растений в 2022 г. Химические фунгициды были представлены одно- и двухкомпонентными препаратами, зарегистрированными на территории РФ для борьбы с альтернариозом (табл. 1). Среди выбранных биологических препаратов восемь имели в составе разные штаммы бактерий Bacillus spp., один препарат — микромицет *Trichoderma harzianum* Rifai. Из 9-ти изученных биологических препаратов пять зарегистрированы на территории РФ для борьбы с альтернариозом картофеля. Препарат БФТИМ КС-2, Ж не имеет регистрации на картофеле, 3 препарата являются экспериментальными.

Препараты разводили в стерильной воде таким образом, чтобы получить концентрацию рабочего раствора для обработки 1 га (300 л воды), содержащего максимальную норму расхода, рекомендованную для использования производителем.

В чашках Петри с агаризованной средой Чапека стерильным пробочным сверлом диаметром 4 мм делали две лунки на расстоянии 1 см от края чашки. В каждую лунку вносили по 20 мкл раствора препарата. В контрольном варианте в лунки вносили по 20 мкл стерильной воды. Предварительно культуры штаммов *Alternaria* spp. выращивали на среде Чапека в темноте при 24°С в тече-

Рис. 1. Действие химических препаратов на рост штаммов *Alternaria solani* MF P747151 (a), MF P628031 (б) и *A. tenuissima* MF P628031 (в). 1, 5, 9 — Дискор, КЭ, 2, 6, 10 — Луна Транквилити, КС, 3, 7, 11 — Ревус Топ, СК, 4, 8, 12 — контроль.

ние 7 сут. Из выросших колоний вырезали диски диаметром 4 мм, которые мицелием вниз помещали на среду в центр каждой чашки Петри с препаратом. Через 7 сут инкубации (24°С, темнота) определяли диаметр колонии гриба, измеряя его по оси между лунками. Из полученной величины вычитали величину инокуляционного диска 4 мм. Эксперимент проводили в 3-х повторностях. Ингибирующее действие препарата на радиальный рост гриба определяли как отношение разницы диаметра колонии в контроле и в варианте к диаметру колонии в контроле, выраженное в %.

Для статистической обработки полученных данных использовали программы Microsoft Excel 2010 и Statistica 10.0, достоверность различий принимали при p < 0.05.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На 7-е сутки после инокуляции размер колоний штаммов MF P628031 и MF P747151 A. solani оказался сходным и составил 65 ± 4 и 61 ± 2 мм со-

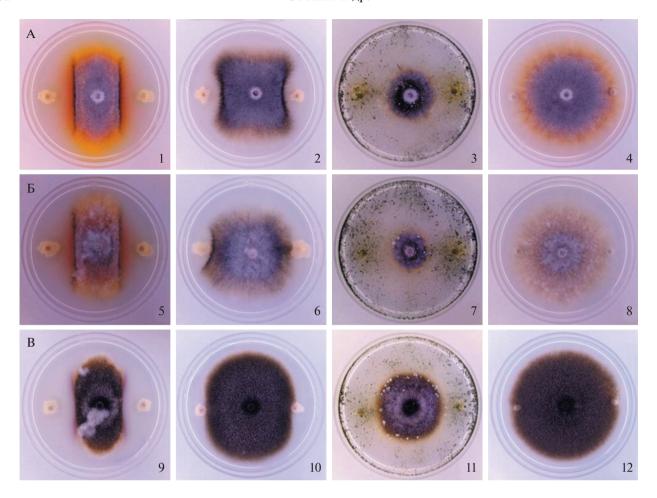
ответственно, тогда как штамм гриба A. tenuissima продемонстрировал более высокую скорость роста (диаметр колонии 75 ± 1 мм).

Все химические препараты, включенные в исследование, подавляли рост грибов Alternaria spp. (табл. 2). Влияние фунгицидов на рост грибов A. solani не имело достоверных различий между штаммами: ингибирующее действие на A. solani MF P628031 и MF P747151 варьировало в диапазоне 46-80% и 40-74% соответственно и в среднем составило 63 ± 7%. Ингибирующее действие химических препаратов на рост штамма MF P713021 А. tenuissima в среднем составило $52 \pm 11\%$ (диапазон варьирования 33-78%). Штамм МF Р713021 А. tenuissima оказался на 10-26% менее чувствительным к 6-ти препаратам, чем проанализированные штаммы A. solani, тогда как 4 препарата (Сигнум, Ревус Топ, Дискор, Луна Транквилити) подавляли рост всех штаммов Alternaria spp. в сходной степени. В среднем чувствительность штамма A. tenuissima ко всем химическим фунгицидам была достоверно меньше на 11% (p = 0.044).

	Биологический агент (б.а.)	Диаметр колонии, мм			Подавление роста, % от контроля		
Препарат		A. solani		A. tenuissima	A. so	olani	A. tenuissima
		MF P628031	MF P747151	MF P713021	MF P628031	MF P747151	MF P713021
Бактофит	B. subtilis ИПМ 215	28.0 ± 3.0	27.0 ± 3.0	33.7 ± 0.7	57	56	55
БФТИМ КС-2	B. amyloliquefaciens ВКПМ В-11141	25.3 ± 0.7	23.3 ± 1.7	25.7 ± 0.7	61	62	66
Фитоспорин-М	B. subtilis 26 Д	28.7 ± 3.5	28.7 ± 2.4	34.3 ± 0.7	56	53	54
Витаплан	B. subtilis BKM-B-2604D + + B. subtilis BKM-B-2605D	27.0 ± 1.1	24.3 ± 2.6	28.7 ± 1.3	58	60	62
Трихоцин	<i>T. harzianum</i> Г-30 ВИЗР	28.7 ± 1.3	21.3 ± 2.4	40.7 ± 2.8	56	65	46
Бисолбисан	B. subtilis штамм Ч-13	40.3 ± 3.3	48.7 ± 1.7	55.0 ± 6.3	38	20	26
Эксперимен- тальный-1	В. mojavensis штамм PS 17	29.3 ± 3.5	24.7 ± 1.3	35.0 ± 2.3	55	59	53
Эксперимен- тальный-2	B. subtilis штамм 5И-12/23	35.0 ± 3.0	22.0 ± 8.5	39.3 ± 2.4	46	64	47
Эксперимен- тальный-3	В. subtilis штамм RCAM01729	34.3 ± 0.7	32.3 ± 8.2	39.3 ± 0.7	47	47	47

Таблица 3. Действие биологических препаратов на рост грибов Alternaria spp.

Ранее была показана более низкая чувствительность штаммов мелкоспоровых видов *Alternaria*, включающих *A. tenuissima*, *A. alternata* (Fr.) Keissl. и другие, к манкоцебу, азоксистробину, флудиоксонилу, хлороталонилу, дифеноконазолу и флуазинаму по сравнению с штаммами *A. solani* [21]. Штаммы *A. alternata*, выделенные из картофеля в США, также в среднем оказались менее чувствительны к азоксистробину, чем штаммы *A. solani* [22, 23].


Среди проанализированных химических фунгицидов наиболее эффективно рост грибов *Alternaria* подавляли препараты Дискор и Ревус Топ, содержащие дифеноконазол и мандипропамид, а также препарат Луна Транквилити на основе пириметанила и флуопирама — их ингибирующее действие на штаммы *Alternaria* spp. составило 68—78% (рис. 1). Менее эффективными в отношении грибов *Alternaria* оказались препараты, содержащие манкоцеб (Акробат, Ридомил Голд, Пеннкоцеб, Сектин Феномен), ингибирующее действие которых на рост проанализированных штаммов в среднем оказалось равно 56 ± 6%.

Ранее при исследовании влияния фунгицидов на рост 301 изолята *Alternaria* spp., выделенных из картофеля и томата в 5-ти регионах России, была выявлена более высокая эффективность дифеноконазола в сравнении с манкоцебом: в 172 и 1605 раз для *A. solani* и мелкоспоровых штаммов *Alter*-

naria соответственно [21]. В полевых испытаниях с искусственной инокуляцией растений картофеля грибами *Alternaria* в Австралии дифеноконазол более эффективно ограничивал развитие заболевания в сравнении с азоксистробином и боскалидом [24].

Анализ влияния 12 действующих веществ (д.в.) и их комбинаций на рост 26 штаммов *A. solani* по-казал более высокую эффективность пириметанила, а также его комбинации с флуопирамом, по сравнению с д.в. из классов имидазолины (фенамидон), карбоксамиды (боскалид, пентиопирад), оксизолиндиндионы (фамоксодон), пиридинилэтилбензамиды (флуопирам), стробилурины (азоксистробин, пикоксистробин, пираклостробин, трифлоксистробин) и хлороталонилом [25]. Установлено, что резистентность штаммов *A. solani* к флуопираму встречается реже, чем к д.в. из других классов [25].

В нашем исследовании препарат Сигнум на основе пираклостробина продемонстрировал среднюю эффективность (60%) в ограничении роста штаммов *Alternaria* spp. Известно, что штаммы *Alternaria* spp. могут приобретать резистентность к д.в. класса стробилурины [22, 23, 26]. Наличие мутации гена *cyt b*, ответственной за резистентность к стробилуринам у грибов *Alternaria*, можно диагностировать с помощью ПЦР [23]. Анализ чувствительности штаммов *Alternaria*, вы-

Рис. 2. Действие биологических препаратов на рост штаммов *Alternaria solani* MF P747151 (a), MF P628031 (б) и *A. tenuissima* MF P628031 (в). 1, 5, 9 — БФТИМ КС-2, Ж, 2, 6, 10 — Бисолбисан, Ж, 3, 7, 11 — Трихоцин, СП, 4, 8, 12 — контроль.

деленных из картофеля и томата в России, не выявил резистентные штаммы в популяции возбудителей альтернариоза в 7-ми регионах европейской части страны и на Дальнем Востоке [21].

Все биологические препараты, включенные в исследование, также подавляли рост грибов Alternaria spp. (табл. 3). Ингибирующее действие препаратов на рост штаммов A. solani варьировало в диапазоне 20-65% (в среднем $53 \pm 5\%$), тогда как ограничение роста штамма MF P713021 A. tenuissiта составило от 26 до 66% и в среднем оказалось равно 52 ± 11%. Достоверные различия в действии проанализированных биологических препаратов на рост разных штаммов Alternaria spp. не выявлены. Исключение составил препарат Трихоцин на основе *T. harzianum*, ингибирующее действие которого на рост как 2-х штаммов МБ P628031 и MF P747151 A. solani, так и штамма MF P713021 A. tenuissima, существенно варьировало от 46 до 65% (рис. 2).

Среди проанализированных биологических препаратов наиболее эффективно рост грибов Alternaria подавляли препараты БФТИМ КС-2 и Витаплан на основе B. amyloliquefaciens и B. subtilis, их ингибирующее действие в среднем составило 63 ± 3 и $60\pm2\%$ соответственно. Наименее эффективным в отношении грибов Alternaria spp. оказался препарат Бисолбисан, также содержащий в составе споры B. subtilis (ингибирующее действие равно $28\pm10\%$). Стоит отметить, что среди всех проанализированных биологических препаратов Витаплан характеризовался наименьшей концентрацией биологического агента в рабочем растворе -1×10^9 КОЕ/л.

Ранее среди 8-ми изученных биологических агентов — штаммов бактерий родов Bacillus, Flavobacterium, Pseudomonas и грибов Trichoderma, — штаммы B. thuringiensis и Trichoderma sp. наиболее эффективно ингибировали прорастание спор A. solani [27]. В нашем исследовании штаммы B. amyloliquefaciens и B. subtilis в составе 2-х био-

препаратов продемонстрировали эффективность ингибирования роста грибов *Alternaria*, сопоставимую с показателями химических препаратов. Известно, что бактерии *Bacillus* могут образовывать вторичные метаболиты с антифунгальной активностью в отношении широкого спектра грибов [28], в т.ч. циклические липопептиды, белки [29] и летучие органические соединения (ЛОС) [30]. Показано, что ЛОС, продуцируемые бактериями *В. amyloliquefaciens*, ограничивают рост мицелия и ингибируют прорастание спор *А. solani* [30], и могут быть использованы как биорациональные пестициды для защиты растений.

ЗАКЛЮЧЕНИЕ

В результате лабораторной оценки действия 19 фунгицидов показано, что все проанализированные препараты подавляли рост грибов *Alternaria*: ингибирующее действие химических и биологических фунгицидов варьировало в диапазоне 33—80 и 20—66% соответственно.

Среди 10 химических фунгицидов препараты Дискор и Ревус Топ, содержащие дифеноконазол и мандипропамид, а также препарат Луна Транквилити на основе пириметанила и флуопирама наиболее эффективно подавляли рост грибов А. solani и А. tenuissima. При этом широко используемые в схемах защиты картофеля от болезней препараты на основе манкоцеба не были столь эффективными, особенно в отношении вида А. tenuissima.

Среди 9-ти биологических препаратов наиболее активными в отношении грибов *Alternaria* оказались препараты БФТИМ КС-2 и Витаплан на основе *B. amyloliquefaciens* и *B. subtilis*, их эффективность была сопоставима с многими анализированными химическими препаратами. Препарат БФТИМ КС-2 на данный момент не имеет регистрации к применению на посадках картофеля в защите от альтернариоза.

Полученные результаты дали оценку действия химических и биологических препаратов на рост чистых культур грибов *Alternaria* — возбудителей альтернариоза. Необходимо проведение полевых испытаний препаратов в регионах возделывания культуры с разными природно-климатическими условиями, для создания адекватной стратегии защиты картофеля от альтернариоза.

СПИСОК ЛИТЕРАТУРЫ

1. *Ганнибал Ф.Б.* Мониторинг альтернариозов сельскохозяйственных культур и идентификация грибов рода *Alternaria*. СПб.: ВИЗР, 2011. 70 с.

- Воловик А.С., Литун Б.П. Вредоносность заболеваний картофеля // Защита растений. 1975. № 7. С. 4—6.
- 3. *Kuczynska J.* Wplyw niektorich czynnikow na wystepowanie i szkodliwost alternariozi ziemniaka // Biul. Inst. Ziemn. 1992. V. 41. P. 73–87.
- 4. Иванюк В.Г., Банадысев С.А., Журомский Г.К. Защита картофеля от болезней, вредителей и сорняков. Минск: Белорусский НИИ картофелеводства, 2003. 550 с.
- 5. Olanya O.M., Honeycutt C.W., Larkin R.P., Griffin T.S., He Z., Halloran J.M. The effect of cropping systems and irrigation management on development of potato early-blight // J. Gener. Plant Pathol. 2009. V. 75. P. 267–275.
- 6. Yellareddygari S.K.R., Taylor R.J., Pasche J.S., Zhang A., Gudmestad N.C. Predicting potato tuber yield loss due to early blight severity in the Midwestern United States // Europ. J. Plant Pathol. 2018. V. 152 (1). P. 71–79.
- 7. *Квасникова М.С.* Устойчивость сортов и гибридов картофеля к макроспориозу в полевых условиях лесостепной зоны Приморского края // Картофель на Дальнем Востоке. Владивосток, 1976. С. 152—154.
- Коняева Н.М., Золотарева Е.В., Куликова Г.А., Локтина Г.И. Возбудители грибных болезней картофеля // Возбудители болезней сельскохозяйственных растений Дальнего Востока. М.: Наука, 1980. С. 265–268.
- 9. *Ганнибал* Ф.Б. Видовой состав, таксономия и номенклатура возбудителей альтернариоза листьев картофеля // Вестн. защиты раст. 2007. № 5. С. 142—148.
- 10. *Орина А.С., Ганнибал Ф.Б., Левитин М.М.* Видовое разнообразие, биологические особенности и география грибов рода *Alternaria*, ассоциированных с растениями семейства *Solanaceae* // Микол. и фитопатол. 2010. Т. 44. № 2. С. 150—159.
- 11. *Смук В.В., Шпанев А.М.* Изучение влияния минерального питания на развитие и вредоносность альтернариоза картофеля на Северо-Западе России // Агрохим. вестн. 2020. № 6. С. 43—47.
- 12. Денискина Н.Ф., Ивашова О.Н., Дыйканова М.Е., Гаспарян И.Н., Левшин А.Г. Устойчивость сортов картофеля раннего к альтернариозу в Центральном регионе // Защита и карантин раст. 2021. № 5. С 40—41
- 13. *Мельникова Е.С., Мелькумова Е.А., Кузнецова М.А.* Пути снижения вредоносности альтернариоза картофеля // Вестн. Воронеж. ГАУ. 2011. № 4 (31). С. 30—32.
- 14. Деренко Т.А., Кузнецова М.А., Сметанина Т.И., Козловский Б.Е., Филиппов А.В. Влияние припосадочного внесения Квадриса на снижение вредоносности фитофтороза и альтернариоза картофеля в период вегетации растений // Защита картофеля. 2014. № 1. С. 39—40.
- 15. *Приходько Е.С., Хохлов В.П., Бибик Т.С., Россинская Т.М., Селицкая О.В., Смирнов А.Н.* Влияние метеоусловий на развитие патокомплекса *Alternaria—Fusarium* в посадках картофеля // Достиж. науки и техн. АПК. 2019. Т. 33. № 1. С. 14—22.

- 16. Кузнецова М.А., Денисенков И.А., Рогожин А.Н., Сметанина Т.И., Демидова В.Н., Стацюк Н.В. Определение оптимальной стратегии защиты картофеля от альтернариоза в условиях эпифитотии // Сб. ст. по мат-лам II Международ. научн.-практ. конф. "Современные подходы и методы в защите растений". Екатеринбург, 2020. С. 40—41.
- 17. Сергиенко В.Г., Богданович С.В. Оценка токсикологического действия фунгицидов на возбудителя альтернариоза картофеля // Картофелеводство. Сб. научн. тр. Минск, 2008. Т. 14. С. 440—446.
- Смук В.В., Шпанев А.М. Проблемы химической защиты посадок картофеля от альтернариоза // Сб. ст. по мат-лам II Международ. научн.-практ. конф. "Современные подходы и методы в защите растений". Екатеринбург, 2020. С. 50–51.
- 19. *Алдиба А.Ш., Еськов И.Д.* Влияние обработки различными микроорганизмами на развитие альтернариоза (*Alternaria solani*) и урожайность картофеля // Аграрн, научн, журн, 2021. № 3. С. 4—8.
- 20. *Байрамбеков Ш.Б., Корнева О.Г.* Биопрепараты против альтернариоза картофеля // Защита и карантин раст. 2009. № 8. С. 30—31.
- Побединская М.А., Плуталов П.Н., Романова С.С., Кокаева Л.Ю., Николаев А.В., Александрова А.В., Еланский С.Н. Устойчивость возбудителей альтернариоза картофеля и томата к фунгицидам // Микол. и фитопатол. 2012. Т. 46. № 6. С. 401–408.
- Tymon L., Johnson D. Fungicide resistance of two species of Alternaria from potato in the Columbia Basin of Washington // Plant Disease. 2014. V. 98. P. 1648–1653.

- Ding S., Halterman D., Meinholz K., Gevens A. Distribution and stability of qoi fungicide resistance in populations of potato pathogenic *Alternaria* spp. in Wisconsin // Plant Disease. 2019. P. 103.
- Horsfield A., Wicks T., Davies K. Effect of fungicide use strategies on the control of early blight (*Alternaria sola-ni*) and potato yield // Austral. Plant Pathol. 2010. V. 39. P. 368–375.
- 25. Fairchild K., Miles T., Wharton P. Assessing fungicide resistance in populations of Alternaria in Idaho potato fields // Crop Protect. 2013. V. 49. P. 31–39.
- 26. Pasche J.S., Piche L.M., Gudmestad N.C. Effect of the F129L mutation in Alternaria solani on fungicides affecting mitochondrial respiration // Plant Disease. 2005, V. 89, P. 269–278.
- Aldiba A., Escov I. Biological control of early blight on potato caused by Alternaria solani by some bioagents // Proceed. 1st Inter. Symp. Innovat. Life Sci. (ISILS 2019). 2019. P. 103–107.
- 28. Chaurasia B., Pandey A., Palni L.M.S., Trivedi P., Kumar B., Colvin N. Diffusible and volatile compounds produced by an antagonistic *Bacillus subtilis* strain cause structural deformations in pathogenic fungi in vitro // Microbiol. Res. 2005. V. 160. P. 75–81.
- Kim P., Bai H., Bai D., Chae H., Chung S., Kim Y. et al. Purification and characterization of a lipopeptide produced by *Bacillus thuringiensis* CMB26 // J. Appl. Microbiol. 2004. V. 97. P. 942–949.
- 30. Zhang D., Yu S., Yang Y., Zhang J., Zhao D., Pan Y., Fan S., Yang Z., Zhu J. Antifungal effects of volatiles produced by *Bacillus subtilis* Against *Alternaria solani* in potato // Front. Microbiol. 2020. V. 11. P. 1196.

Activity of Chemical and Biological Fungicides against *Alternaria* Pathoges Caused Early Blight of Potato

A. S. Orina^{a,#}, A. V. Khiutti^a, and A. M. Shpanev^a

^aAll-Russian Institute of Plant Protection shosse Podbel'skogo, 3, Saint-Petersburg 196608, Russia

#E-mail: orina-alex@yandex.ru

Early blight is one of the most common potato diseases in the world which can cause yield losses of 10–50%. In Russia the area of early blight high severity coincides with the range of the most pathogenic species *Alternaria solani*, while another pathogen *A. tenuissima* is found throughout the potato growing area. The most effective method of early blight control is a chemical protection. However, modern approaches to plant protection also involve the use of biological agents. In this study the effect of 10 chemical and 9 biological fungicides on *Alternaria* pathogens caused potato early blight was evaluated in laboratory condition. The inhibitory effect of chemical and biological fungicides on the growth of *Alternaria* fungi varied in the range of 33–80% and 20–66%, respectively. Diskor and Revus Top fungicides containing difenoconazole and mandipropamide, as well as Luna Tranquility based on pyrimethanil and fluopyram, most effectively suppressed the growth of *Alternaria* fungi (inhibitory effect 68–80%). Among biological fungicides BFTIM KS-2 and Vitaplan containing *Bacillus amyloliquefaciens* and *B. subtilis* were the most effective in *Alternaria* spp. growth inhibition (60–66%). The obtained results precede the field trials of fungicides in the regions of potato cultivation with different climatic conditions for creation of adequate strategy for early blight control.

Key words: early blight, potato, Alternaria solani, Alternaria tenuissima, fungicide effect, chemical plant protection, biological agents.