УЛК 546.16:631.416.54

О ВОДОРАСТВОРИМОМ ФТОРЕ ПОЧВ

© 2019 г. А. В. Савенко^{1,*}, В. С. Савенко¹

¹ Московский государственный университет им. М.В. Ломоносова 119991 Москва, Ленинские горы, Россия *E-mail: Alla_Savenko@rambler.ru
Поступила в редакцию 18.04.2018 г.
После доработки 20.08.2018 г.
Принята к публикации 10.12.2018 г.

Определено содержание водорастворимого фтора в образцах верхних горизонтов почв областей с засушливым климатом. Установлено, что количество водорастворимого фтора увеличивается с усилением степени засоления почв и сильно коррелирует с общим содержанием растворимых солей (r=0.97), а также с концентрациями растворимых натрия (r=0.98), сульфатов (r=0.97) и бикарбонатов (r=0.93). Щелочная среда способствовала миграции фтора.

Ключевые слова: водорастворимый фтор, почвы.

DOI: 10.1134/S000218811903013X

ВВЕДЕНИЕ

Известно, что фтор входит в число биологически активных элементов и влияет на физиологические процессы в живых организмах всех трофических уровней, вызывая во многих случаях патологические изменения [1–5]. Несмотря на усилившийся в последние годы интерес к гипергенной миграции фтора, связанный с возрастанием антропогенного загрязнения окружающей среды, закономерности распределения фтора в почвах и его миграции в почвенных процессах изучены слабо. Особенно это касается водорастворимого фтора, который, составляя небольшую часть валового фтора почв, контролирует распределение этого элемента в системе почва-растение, включая корма для животноводства и продукты питания растительного происхождения, потребляемые человеком [6-10]. В связи с этим изучение водорастворимого фтора почв является актуальной задачей агрохимии, имеющей значение и для смежных дисциплин: экологии, почвоведения, геохимии, охраны окружающей среды, рационального природопользования.

Цель работы — определение содержания водорастворимого фтора в почвах территорий с засушливым климатом, где часто обнаруживают его аномально высокие содержания, связанные, как правило, с развитием процессов засоления [8, 9, 11-13].

МЕТОДИКА ИССЛЕДОВАНИЯ

Существенный недостаток предшествующих работ, посвященных изучению водорастворимого фтора почв, состоял в том, что в них не приводили данные о составе водорастворимых солей, из-за чего было невозможно установить корреляционные связи между содержаниями растворимого фтора и компонентами растворимых солей. Учитывая это обстоятельство, одновременно с определением количества водорастворимого фтора определяли содержание и состав водорастворимых солей.

Было исследовано 10 образцов верхнего почвенного горизонта (0—5 см), отобранных в летний период 2004—2006 гг. на территориях с засушливым климатом и любезно предоставленных в наше распоряжение сотрудниками Института почвоведения РАН Е.И. Панковой и Н.Б. Хитровым. Местоположение и описание образцов приведено в табл. 1. В связи с возможностью дифференциации кристаллических выделений растворимых солей по размерам [14] гомогенизированные образцы разделяли на 2 части, одну из которых оставляли неизменной в качестве эталона валового состава, а из другой просеиванием выделяли фракцию <0.1 мм.

Навески почв смешивали с дистиллированной водой в соотношении 1:10 и выдерживали 7 сут до установления равновесного состояния системы, фиксируемого по достижению постоянных величин рН и общего содержания растворимых солей в кинетических опытах. После этого вод-

Таблица 1. Содержание водорастворимого фтора и состав растворимых солей верхнего горизонта почв*

Место отбора,	Фрак-	F, мг/кг	рН	Сумма солей <i>М</i> , мг/кг	Концентрации растворимых макрокомпонентов, мг/кг							
тип засоления почв					Na ⁺	K ⁺	Mg ²⁺	Ca ²⁺	Cl ⁻	SO ₄ ²⁻	HCO ₃	
Черноземы												
Каменная степь,	Эталон	1.2	7.23	475	12.0	11.9	17.4	79.6	21.0	58.2	275	
Воронежская обл.	<0.1 мм	1.1		458	8.0	10.3	17.1	86.1	15.4	54.4	267	
То же	Эталон	1.0	7.36	1040	12.5	8.4	41.8	204	24.4	144	604	
	<0.1 мм	1.0		985	12.0	8.5	38.0	187	25.1	126	588	
Персиановская степь,	Эталон	1.2	7.35	1770	8.0	93.2	48.3	315	45.0	111	1150	
Ростовская обл.	<0.1 мм	1.0	1.33	1770	8.3	101	49.2	311	48.9	109	1140	
Незасоленные почвы других типов												
Хакасия, Ширин-	Эталон	1.9	7 88	2280	64.8	82.1	93.0	324	24.3	114	1580	
ский р-н	<0.1 мм	1.6		2630	83.6	101	109	365	33.1	147	1790	
Тыва, Тандинский р-н	Эталон	1.4	8 17	2320	100	107	53.6	385	96.4	92.9	1490	
	<0.1 мм	1.9		2550	146	120	57.3	368	120	116	1620	
Бурятия, Кяхтин-	Эталон	1.7	8.08	1960	9.4	59.9	46.0	412	45.0	72.4	1320	
ский р-н	<0.1 мм	1.7	0.00	1850	11.0	58.8	41.9	380	46.6	89.6	1220	
Засоленные почвы												
Хакасия, Ширинский	Эталон	4.7	4.7 4.6 7.99	12600	1150	43.3	608	1580	566	7170	1520	
р-н, сульфатный тип	<0.1 мм	4.6		13900	1200	56.5	686	1940	592	7940	1530	
То же, Усть-Абакан-	Эталон	90		56100	17560	12.7	27.9	78.0	503	31250	6670	
ский р-н, содово-суль- фатный тип	<0.1 мм	116	9.77	92600	29640	25.1	34.3	91.7	559	53720	8580	
Бурятия, Кяхтинский	Эталон	3.4	9.49	5540	1440	31.5	29.7	53.5	229	261	3500	
р-н, содовый тип	<0.1 мм	3.5		5040	1290	35.7	33.8	61.3	211	250	3160	
То же, Мухоршибирс-	Эталон	9.4		20100	5080	25.3	687	633	3360	8610	1740	
кий р-н, хлоридно- сульфатный тип	<0.1 мм	9.0	8.42	22000	4800	27.1	810	856	3220	10620	1630	

^{*}Содержание растворимых карбонатов выражено через эквивалентное количество бикарбонат-ионов.

ные вытяжки отфильтровывали через мембранный фильтр 0.22 мкм. В фильтрате определяли содержание фторидов с помощью ионоселективного электрода с мембраной из монокристалла LaF₃ [15], концентрации натрия, калия, магния, кальция, хлоридов и сульфатов методом капиллярного электрофореза [16], а также величину общей щелочности, подавляющую часть которой составляют бикарбонаты, — объемным ацидиметрическим методом [17]. Погрешность измерений с учетом разбавления высокоминерализованных проб в 10 раз для определения растворимых макрокомпонентов методом капиллярного электрофореза не превышала ±5%.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Результаты определений содержания водорастворимого фтора и макрокомпонентов водорастворимого

творимых солей в изученных образцах почв представлены в табл. 1.

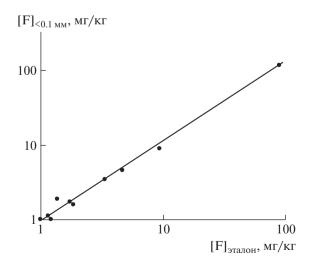
В черноземах содержание водорастворимого фтора находилось на уровне 1.1 ± 0.1 мг/кг, тогда как в других типах незасоленных почв оно было немного больше, составляя 1.4-1.9 мг/кг для недифференцированных эталонных образцов и 1.6-1.9 мг/кг для фракции <0.1 мм. Значительно более высокое содержание растворимого фтора отмечено в засоленных почвах: от 3.4 до 90 мг/кг — в эталонных образцах и от 3.5 до 116 мг/кг — во фракции <0.1 мм.

Между количествами водорастворимого фтора в эталонных образцах почв и фракции <0.1 мм установлена высокая корреляционная зависимость (r=0.999), показанная на рис. 1, которая описывается уравнением:

$$[F]_{<0.1 \text{ MM}} = 1.29 [F]_{\text{эталон}}$$

Таблица 2. Корреляционные связи между содержанием водорастворимого фтора и макрокомпонентами растворимых солей

Компонент	pН	М	Na ⁺	K ⁺	Mg ²⁺	Ca ²⁺	Cl ⁻	SO ₄ ²⁻	HCO ₃
r	0.67	0.97	0.98	-0.30	-0.11	-0.20	0.09	0.97	0.93


Более высокое (примерно на 1/4) содержание водорастворимого фтора во фракции <0.1 мм можно рассматривать как подтверждение фракционирования почвенных компонентов по размерам, предполагавшееся М.А. Орловой [14].

Корреляциионные связи между содержаниями водорастворимого фтора и макрокомпонентами растворимых солей отчетливо прослежены только для натрия, сульфатов и бикарбонатов (сумма всех растворенных карбонатов выражена через эквивалентное количество ионов HCO_3^-), а также для общего содержания солей (M) (табл. 2).

Это позволило сделать вывод, что накопление фтора в водорастворимом комплексе почв идет параллельно накоплению сульфатов и карбонатов—бикарбонатов натрия, т.е. при сульфатнонатриевом и содовом засолении.

Относительно невысокий коэффициент корреляции содержания водорастворимого фтора с величиной рН (r = 0.67) не противоречит мнению Виноградова [18] о более интенсивном вымывании фтора из горных пород в щелочной среде. К тому же щелочные воды обладают более низкой способностью поглощать фтор [19].

Полученные результаты в целом согласуются с данными других авторов. Увеличение содержа-

Рис. 1. Соотношение величин содержаний водорастворимого фтора в эталонных образцах почв $[F]_{\text{эталон}}$ и фракции <0.1 мм $[F]_{<0.1 \text{ мм}}$.

ния водорастворимого фтора в почвах по мере повышения степени их засоления отмечено в работе [13], по данным которой количество водорастворимого фтора в зональных почвах, солонцах и солончаках составило соответственно 0.8-7.5, 1.0-10 и 3.0-16.0 мг/кг. Установлено, что в степной зоне Северного Казахстана почвы лесных ландшафтов содержали заметно меньше водорастворимого фтора (1.7-10.0 мг/кг), чем почвы степных ландшафтов (10.0-68.8 мг/кг) [12]. Высокое содержание водорастворимого фтора в этих почвах связано, по-видимому, с общим аномальным фоном изученной территории, в пределах которой содержание растворенного фтора в воде озер составило 4.2—12.6 мг/л. В работе [11] было установлено, что в почвах юго-восточного Забайкалья количество водорастворимого фтора меняется от 2 до 187 мг/кг, и было отмечено увеличение его содержания с ростом степени засоления почв.

А.П. Виноградов считал, что фтор выносится из почв, в которых его содержание меньше, чем в земной коре [18]. Этот вывод, по-видимому, соответствует действительности, за исключением территорий, характеризующихся развитием процессов засоления, где происходит накопление фтора, вынесенного из почв с промывным водным режимом.

ЗАКЛЮЧЕНИЕ

Содержание водорастворимого фтора в почвах территорий с засушливым климатом возрастает при увеличении степени их засоления и высоко коррелирует с общим содержанием растворимых солей (r=0.97), а также с концентрациями растворимых натрия (r=0.98), сульфатов (r=0.97) и бикарбонатов (r=0.93). Относительно невысокий коэффициент корреляции между содержанием водорастворимого фтора и величиной рН (r=0.67) не противоречит существующим представлениям об увеличении подвижности фтора в щелочной среде.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Габович Р.Д*. Фтор и его гигиеническое значение. М.: Медгиз, 1957. 251 с.
- 2. *Ковальский В.В.* Геохимическая экология. М.: Наука, 1974. 299 с.

- 3. Уильямс Д. Металлы жизни. М.: Мир, 1975. 236 с.
- 4. *Кабата-Пендиас А., Пендиас Х.* Микроэлементы в почвах и растениях. М.: Мир, 1989. 439 с.
- Шалина Т.И., Васильева Л.С. Общие вопросы токсического действия фтора // Сибир. мед. журн. 2009. № 5. С. 5—9.
- 6. *Седова Е.В., Шаймухаметова А.А., Соколова Н.В.* Поступление фтора в почву и растения и методы его определения // Агрохимия. 1984. № 6. С. 113—120.
- Безикова О.А. Влияние уровней водорастворимого фтора в почвах на урожай и качество пшеницы // Химия в сел. хоз-ве. 1997. № 2. С. 32–33.
- 8. *Танделов Ю.П.* Фтор в системе почва—растение. Красноярск: PACXH, 2012. 146 с.
- 9. *Ильин В.Б., Сысо А.И., Конарбаева Г.А., Ермолов Ю.В.* О некоторых вопросах биогеохимии на юге Западной Сибири // Сибир. экол. журн. 2007. № 5. С. 753—761.
- 10. Lakshmi D.V., Rao K.J., Ramprakash T., Reddy A.P.K. Monitoring of fluoride content in surface soils used for crop cultivation in Ramannapet Mandal of Nalgonda district, Telangana, India // Environ. Inter. J. Sci. Tech. 2016. V. 11. № 2–4. P. 59–67.
- 11. *Филиппова Г.Р.*, *Власова Н.А.*, *Иванов А.В.* Воднорастворимые формы галогенов в почвах водосборных площадей минеральных озер юго-восточного

- Забайкалья // Микроэлементы в биосфере и применение их в сельском хозяйстве и медицине Сибири и Дальнего Востока / Под ред. Филиппова В.Р. Улан-Удэ, 1971. С. 102—106.
- 12. Белякова Т.М. Уровни содержания и особенности миграции фтора в почвах степной зоны Северного Казахстана // Микроэлементы в ландшафтах Советского Союза. М.: Изд-во МГУ, 1969. С. 47—66.
- 13. *Конарбаева Г.А.* Галогены в природных объектах юга Западной Сибири: Автореф. дис. ... д-ра биол. наук. Новосибирск, 2008. 33 с.
- 14. *Орлова М.А.* Роль эолового фактора в солевом режиме территорий. Алма-Ата: Наука, 1983. 232 с.
- 15. Савенко В.С. Введение в ионометрию природных вод. Л.: Гидрометеоиздат, 1986. 77 с.
- 16. Комарова Н.В., Каменцев Я.С. Практическое руководство по использованию систем капиллярного электрофореза "КАПЕЛЬ". СПб.: Изд-во "Веда", 2006. 212 с.
- 17. *Лурье Ю.Ю*. Унифицированные методы анализа вод. М.: Химия, 1971. 375 с.
- Виноградов А.П. Геохимия редких и рассеянных элементов в почвах. М.: Изд-во АН СССР, 1957. 238 с.
- 19. Bower C.A., Hatcher J.T. Adsorption of fluoride by soils and minerals // Soil Sci. 1967. V. 103. № 3. P. 151–154.

On the Water-Soluble Fluorine in Soils

A. V. Savenko^{a,#} and V. S. Savenko^a

^a M.V. Lomonosov Moscow State University
 Leninskiye Gory 1, Moscow 119991, Russia
 [#]E-mail: Alla Savenko@rambler.ru

The content of water-soluble fluorine in samples of upper soil horizons from arid regions was determined. It was established that the amount of water-soluble fluorine increased with increasing degree of soil salinization and close correlates with total content of soluble salts (r = 0.97), as well as with concentrations of soluble sodium (r = 0.98), sulfates (r = 0.97) and bicarbonates (r = 0.93). Alkaline medium facilitated fluorine migration.

Key words: water-soluble fluorine, soils.