Почвоведение, 2023, № 12, стр. 1522-1561

Супрагляциальные почвы и почвоподобные тела: разнообразие, генезис, функционирование (обзор)

Н. С. Мергелов a*, С. В. Горячкин a, Э. П. Зазовская ac, Д. В. Карелин a, Д. А. Никитин ab, С. С. Кутузов ad

a Институт географии РАН
119017 Москва, Старомонетный пер., 29, Россия

b Почвенный институт им. В.В. Докучаева
119017 Москва, Пыжевский пер., 7, стр. 2, Россия

c Центр прикладных изотопных исследований, Университет штата Джорджия-Атенс
GA30602 Атенс, Ривербенд роэд, 120, США

d Центр полярных и климатических исследований Берда, Университет штата Огайо
OH43210 Колумбус, Кармак роэд, 1090, США

* E-mail: mergelov@igras.ru

Поступила в редакцию 17.07.2023
После доработки 07.08.2023
Принята к публикации 07.08.2023

Аннотация

В XXI в. ледники стали рассматривать как отдельный биом, который приобрел особое значение в современном мире отступающего льда. В обзоре систематизированы результаты последних исследований органо-минеральных образований на ледниках, их разнообразия, генезиса, функционирования и биосферной роли. Ставится вопрос о возможности вовлечения супрагляциальных (наледниковых) органо-минеральных образований в круг объектов почвоведения, а супрагляциальная зона рассматривается как область формирования почвенных и почвоподобных тел, биогеохимические процессы в которых влияют на ледниковый биом и окружающие его ландшафты. Типизация супрагляциальных органо-минеральных образований с позиции почвоведения выявила в них признаки почвенных процессов: аккумуляции и стабилизации органического вещества (ОВ), его гетеротрофной трансформации, образования темноцветного гумифицированного ОВ и накопления остаточных твердофазных продуктов функционирования in situ, агрегации мелкозема и его биогенного оструктуривания, биохимического выветривания. Среди супрагляциальных образований предложено выделять предпочвы, в том числе эфемерные образования, почвоподобные тела и почвы во льду и снеге, метастабильные почвоподобные тела на криоконите и почвы с микропрофилями под моховыми сообществами на льду, а также относительно стабильные почвы с макропрофилями на мелкоземисто-обломочных отложениях с подстиланием ледников и льда, уже прекратившего движение. Легкодоступное водорастворимое ОВ, накопившееся и трансформировавшееся, в том числе в супрагляциальных почвах и почвоподобных телах, оказывает существенное влияние на перигляциальную зону, приводя к резервуарному и прайминг эффектам. Фундаментальное значение исследований супрагляциальных органо-минеральных систем велико для понимания эволюции экосистем на Земле и для построения моделей поверхностных образований внеземных тел с обширной криосферой. Супрагляциальное почвообразование – это также модельный объект для исследования формирования почв вне ледников в условиях постоянного поступления внешних органических и минеральных компонентов, вклад которых вне ледников не менее значителен, но замаскирован полиминеральным субстратом самих почв и почвообразующих пород.

Ключевые слова: органо-минеральные взаимодействия, предпочвы, криокониты, перигляциальная зона, эмиссия парниковых газов, радиоуглерод

Список литературы

  1. Абакумов Е.В., Темботов Р.Х. Влияние светопоглощающих частиц на дегляциацию ледников полярных и горных территорий // Самарская Лука: проблемы региональной и глобальной экологии. 2020. Т. 29. № 2. С. 5–11.

  2. Абакумов Е.В., Темботов Р.Х. Биохимические свойства криоконитов ледников Центрального Кавказа // Самарская Лука: проблемы региональной и глобальной экологии. 2021. Т. 30. № 3. С. 38–46.

  3. Абакумов Е.В., Жиянски М., Чиграй С.Н., Поляков В.И. Роль птиц в формировании органо-минеральных криоконитов на ледниках Субантарктики // Русский орнитологический журн. 2020. № 29(1957). С. 3540–3544.

  4. Белкина О.А., Мавлюдов Б.Р. Мхи на ледниках Шпицбергена // Ботанический журн. 2011. № 96(5). С. 582–596.

  5. Галанин А.А. Каменные глетчеры-особый тип современного горного оледенения северо-востока Азии // Вестник Дальневосточного отделения Российской академии наук. 2005. № 5. С. 59–70.

  6. Глазовская М.А. Эоловые мелкоземистые накопления на ледниках хребта Терскей Ала-Тау // Тр. Института географии АН СССР. 1952. Вып. 49. С. 55–69.

  7. Глазовская М.А. Эоловые отложения на ледниках Тянь-Шаня // Природа. 1954. № 2. С. 90–92.

  8. Глазовская М.А. Субаэральные покровные пылеватые суглинки и почвы в высокогорьях Внутреннего Тянь-Шаня // Многоликая география. Развитие идей Иннокентия Петровича Герасимова (к 100-летию со дня рождения). 2005. С. 132–163.

  9. Геннадиев А.Н. Изучение почвообразования методом хронорядов (на примере почв Приэльбрусья) // Почвоведение. 1978. № 12. С. 33–43.

  10. Горбунов А., Горбунова И. География каменных глетчеров мира. М.: Товарищество научных изданий КМК, 2010.

  11. Горячкин C.В., Мергелов Н.С., Таргульян В.О. Генезис и география почв экстремальных условий: элементы теории и методические подходы // Почвоведение. 2019. № 1. С. 5–19.

  12. Горячкин С.В. География экстремальных почв и почвоподобных систем // Вестник РАН. 2022. № 92(6). С. 564–571.

  13. Зазовская Э.П., Мергелов Н.С., Шишков В.А., Долгих А.В., Добрянский А.С., Лебедева М.П., Турчинская С.М., Горячкин С.В. Криокониты как факторы развития почв в условиях быстрого отступания ледника Альдегонда, Западный Шпицберген // Почвоведение. 2022. № 3. С. 281–295. https://doi.org/10.31857/S0032180X22030157

  14. Карелин Д.В., Кутузов С.С., Горячкин С.В., Зазовская Э.П., Котляков В.М. Российские горные ледники в “тающем” мире: первые оценки баланса парниковых газов на Кавказе и Алтае // Доклады РАН. Науки о Земле. 2022. Т. 504(1). С. 104–109.

  15. Классификация и диагностика почв России. Смоленск: Ойкумена, 2004. 342 с.

  16. Котляков В.М., Рототаева О.В., Носенко Г.А., Десинов Л.В., Осокин Н.И., Чернов Р.А. Кармадонская катастрофа: что случилось и чего ждать дальше. М.: Издательский дом “Кодекс”, 2014. 184 с.

  17. Мавлюдов Б.Р. Дренажные системы ледников. М.: Изд-во Ин-та географии РАН. 2006.

  18. Миндлин С.З., Петрова М.А. О происхождении и распространении устойчивости к антибиотикам: результаты изучения древних бактерий из многолетнемерзлых отложений // Молекулярная генетика, микробиология и вирусология. 2017. 35(4). С. 123–132.

  19. Москалевский М.Ю. О роли криогенного фактора при формировании донно-моренных отложений (в условиях покровного оледенения Северной Земли) // Проблемы криолитологии. 1978. Вып. VIII. С. 178–183.

  20. Никитин Д.А., Лысак Л.В., Бадмадашиев Д.В., Холод С.С., Мергелов Н.С., Долгих А.В., Горячкин С.В. Биологическая активность почв в условиях покровного оледенения в северной части архипелага Новая Земля // Почвоведение. 2021. №10. С. 1207–1230. https://doi.org/10.31857/S0032180X21100087

  21. Носенко Г.А., Никитин С.А., Хромова, Т.Е. Изменение площади и объема ледников Горного Алтая (Россия) с середины ХХ в. по данным космических съемок // Лед и снег. 2015. № 54(2). С. 5–13.

  22. Таргульян В.О. Теория педогенеза и эволюции почв. М.: Издательство ГЕОС. 2019. 297 с.

  23. Таргульян B.О. Элементарные почвообразовательные процессы // Почвоведение. 2005. № 12. С. 1413–1422.

  24. Таширев А.Б., Таширева А.А., Березкина А.Е. Роль криоценозов в формировании почв на ледниках Западной Антарктики // Доповiдi Національної академії наук України. 2012. № 4. С. 155–161.

  25. Ферсман А.Е. Геохимия и минералогия полярных областей // Доклады АН СССР. 1938. Т. 19. № 8.

  26. Чумаков Н.М. Оледенения Земли История, стратиграфическое значение и роль в биосфере // Тр. Геологического ин-та. 2015. № 611.

  27. Шишков В.А., Зазовская Э.П., Лебедева М.П., Мергелов Н.С., Долгих А.В. Особенности микростроения почв, развитых на криоконитах в экстремальных условиях зоны отступания ледника Альдегонда (Западный Шпицберген) // Морфология почв от макро- до субмикроуровня. 2016. С. 359–363.

  28. Abakumov E., Nizamutdinov T., Polyakov V. Analysis of the polydispersity of soil-like bodies in glacier environments by the laser light scattering (diffraction) method // Biol. Comm. 2021. V. 66(3). P. 198–209. https://doi.org/10.21638/ spbu03.2021.302

  29. Abakumov E., Tembotov R., Kushnov I., Polyakov V. Micromorphology of cryoconite on Garabashi and Skhelda glaciers and soils of Baksan Gorge, Mt. Elbrus, Central Caucasus // Polish Polar Res. 2021. V. 43(1). P. 1–20. https://doi.org/10.24425/ppr.2021.138590

  30. Abakumov E., Kushnov I., Nizamutdinov T., Tembotov R. Cryoconites as biogeochemical markers of anthropogenic impact in high mountain regions: analysis of polyaromatic pollutants in soil-like bodies // One Ecosystem. 2022. V. 7. P. 1–26. https://doi.org/10.3897/oneeco.7.e78028

  31. Abakumov E., Gangapshev A., Gezhaev A., Tembotov R. Radionuclide activity in cryoconite from glaciers of the Central Caucasus, Russia // Solid Earth Sci. 2022. V. 7(4). P. 268–275. https://doi.org/10.1016/j.sesci.2022.08.001

  32. Abbot D.S., Pierrehumbert R.T. Mudball: Surface dust and snowball Earth deglaciation // J. Geophys. Res.: Atmospheres. 2010. V. 115(D3). P. 1–11. https://doi.org/10.1029/2009JD012007

  33. Abouhend A.S., Milferstedt K., Hamelin J., Ansari A.A., Butler C., Carbajal-González B.I., Park C. Growth progression of oxygenic photogranules and its impact on bioactivity for aeration-free wastewater treatment // Environ. Sci. Technol. 2019. V. 54(1). P. 486-496. https://doi.org/10.1021/acs.est.9b04745

  34. Ambrosini R., Azzoni R.S., Pittino F., Diolaiuti G., Franzetti A., Parolini M. First evidence of microplastic contamination in the supraglacial debris of an alpine glacier // Environ. Poll. 2019. V. 253. P. 297–301. https://doi.org/10.1016/j.envpol.2019.07.005

  35. Andrew L.C. Greenland’s subglacial methane released // Nature. 2019. V. 565(7737). P. 31–32. https://doi.org/10.1038%2Fd41586-018-07762-7

  36. Anesio A.M., Hodson A.J., Fritz A., Psenner R., Sattler B. High microbial activity on glaciers: importance to the global carbon cycle // Global Change Biol. 2009. V. 15(4). P. 955–960. https://doi.org/10.1111/j.1365-2486.2008.01758.x

  37. Anesio A.M., Laybourn-Parry J. Glaciers and ice sheets as a biome // Trends Ecology Evolution. 2012. V. 27(4). P. 219–225. https://doi.org/10.1016/j.tree.2011.09.012

  38. Anesio A.M., Mindl B., Laybourn-Parry J., Hodson A.J., Sattler B. Viral dynamics in cryoconite on a high Arctic glacier (Svalbard) // J. Geophy. Res. 2007. V. 112(G4). P. 1–10. https://doi.org/10.1029/2006JG000350

  39. Antony R., Grannas A.M., Willoughby A.S., Sleighter R.L., Thamban M., Hatcher P.G. Origin and sources of dissolved organic matter in snow on the East Antarctic ice sheet // Environ. Sci. Technol. 2014. V. 48(11). P. 6151–6159. https://doi.org/10.1021/es405246a

  40. Antony R., Willoughby A.S., Grannas A.M., Catanzano V., Sleighter R.L., Thamban M., Hatcher P.G., Nair S. Molecular insights on dissolved organic matter transformation by supraglacial microbial communities // Environ. Sci. Technol. 2017. V. 51(8). P. 4328–4337. https://doi.org/10.1021/acs.est.6b05780

  41. Baccolo G., Di Mauro B., Massabò D., Clemenza M., Nastasi M., Delmonte B., Prata M., Prati P., Previtali E., Maggi V. Cryoconite as a temporary sink for anthropogenic species stored in glaciers // Sci. Rep. 2017. V. 7(1). P. 1–11. https://doi.org/10.1038/s41598-017-10220-5

  42. Baccolo G., Łokas E., Gaca P., Massabò D., Ambrosini R., Azzoni R.S., Clason C., Di Mauro B., Franzetti A., Nastasi M., Prata M., Prati P., Previtali E., Delmonte B., Maggi V. Cryoconite: an efficient accumulator of radioactive fallout in glacial environments // The Cryosphere. 2020. V. 14(2). P. 657–672. https://doi.org/10.5194/tc-14-657-2020

  43. Bagshaw E.A., Tranter M., Fountain A.G., Welch K.A., Basagic H., Lyons W.B. Biogeochemical evolution of cryoconite holes on Canada Glacier, Taylor Valley, Antarctica // J. Geophys. Res. 2007. V. 112(G4). P. 1–8. https://doi.org/10.1029/2007JG000442

  44. Bagshaw E.A., Tranter M., Fountain A.G., Welch K., Basagic H.J., Lyons W.B. Do cryoconite holes have the potential to be significant sources of C, N and P to downstream depauperate ecosystems of Taylor Valley, Antarctica? // Arct. Antarct. Alp. Res. 2013. V. 45(4). P. 1–15. https://doi.org/10.1657/1938-4246-45.4.440

  45. Bagshaw E.A., Tranter M., Wadham J.L., Fountain A.G., Dubnick A., Fitzsimons S. Processes controlling carbon cycling in Antarctic glacier surface ecosystems // Geochem. Perspect. Lett. 2016. V. 2(1). P. 44–54. https://doi.org/10.7185/geochemlet.1605

  46. Balks M.R., López-Martínez J., Goryachkin S., Mergelov N.S., Schaefer C.E.G.R., Simas F.N.B., Almond P.C., Claridge G.G.C., McLeod M., Scarrow J. Windows on Antarctic Soil-Landscape relations across selected regions of Antarctica // Geological Society London Special Publications. 2013. V. 381 (1). P. 397–410. https://doi.org/10.1144/SP381.9

  47. Bardgett R.D., Richter A., Bol R., Garnett M.H., Bäumler R., Xu X., Lopez-Capel E., Manning D., Hobbs P., Hartley I., Wanek W. Heterotrophic microbial communities use ancient carbon following glacial retreat // Biology letters. 2007. V. 3(5). P. 487–490. https://doi.org/10.1098%2Frsbl.2007.0242

  48. Belkina O.A., Vilnet A.A. Some aspects of the moss population development on the Svalbard glaciers // Czech Polar Rep. 2015. V. 5(2). P. 160–175. https://doi.org/10.5817/CPR2015-2-14

  49. Bellas C.M., Anesio A.M., Telling J. et al. (2013) Viral impacts on bacterial communities in Arctic cryoconite // Environ. Res. Lett. V. 8. P. 045021.

  50. Benn D.I., Le Hir G., Bao H., Donnadieu Y., Dumas C., Fleming E.J., et al Orbitally forced ice sheet fluctuations during the Marinoan Snowball Earth glaciation // Nat. Geosci. 2015. V. 8(9). P. 704–707.

  51. Beraldi-Campesi H. Early life on land and the first terrestrial ecosystems // Ecol. Process. 2013. V. 2(1). P. 1–17. https://doi.org/10.1186/2192-1709-2-1

  52. Blank C.E., Sanchez-Baracaldo P. Timing of morphological and ecological innovations in the cyanobacteria–a key to understanding the rise in atmospheric oxygen // Geobiology. 2010. V. 8(1). P. 1–23. https://doi.org/10.1111/j.1472-4669.2009.00220.x

  53. Bond T., Doherty S., Fahey D., Forster P., Berntsen T., DeAngelo B.J., Flanner M., Ghan S., Kaercher B., Koch D. et al. Bounding the role of black carbon in the climate system: A scientific assessment // J. Geophys. Res. Atmos. 2013. V. 118. P. 5380–5552. https://doi.org/10.1002/jgrd.50171

  54. Bourgeois J.C., Gajewski K., Koerner R.M. Spatial patterns of pollen deposition in arctic snow // J. Geophys. Res. Atmos. 2001. V. 106(D6). P. 5255–5265. https://doi.org/10.1029/2000JD900708

  55. Buda J., Łokas E., Pietryka M., Richter D., Magowski W., Iakovenko N.S., Porazinska D.L., Budzik T., Grabiec M., Grzesiak J., Klimaszyk P., Gaca P., Zawierucha K. Biotope and biocenosis of cryoconite hole ecosystems on Ecology Glacier in the maritime Antarctic // Sci. Total Environ. 2020. V. 724. P. 138112. https://doi.org/10.1016/j.scitotenv.2020.138112

  56. Burns R., Wynn P.M., Barker P., McNamara N., Oakley S., Ostle N., Stott A.W., Tuffen H., Zhou Z., Tweed F.S., Chesler A. Stuart M. Direct isotopic evidence of biogenic methane production and efflux from beneath a temperate glacier // Sci. Rep. 2018. V. 8(17118). P. 1–8. https://doi.org/10.1038/s41598-018-35253-2

  57. Butterfield N.J. Early evolution of the Eukaryota // Palaeontology. 2015. V. 58(1). P. 5–17. https://doi.org/10.1111/pala.12139

  58. Cameron K.A., Hodson A.J., Osborn A.M. Structure and diversity of bacterial, eukaryotic and archaeal communities in glacial cryoconite holes from the Arctic and the Antarctic // FEMS Microbiol. Ecol. 2012. V. 82(2). P. 254–267. https://doi.org/10.1111/j.1574-6941.2011.01277.x

  59. Casey K.A., Kääb A., Benn D.I. Geochemical characterization of supraglacial debris via in situ and optical remote sensing methods: a case study in Khumbu Himalaya, Nepal // Cryosphere. 2012. V. 6(1). P. 85–100. https://doi.org/10.5194/tc-6-85-2012

  60. Chakrabarty R.K., Moosmüller H., Chen L.W., Lewis K., Arnott W.P., Mazzoleni C., Dubey M.K., Wold C.E., Hao W.M., Kreidenweis S.M. Brown carbon in tar balls from smoldering biomass combustion // Atmos. Chem. Phys. 2010. V. 10(13). P. 6363–6370. https://doi.org/10.5194/acp-10-6363-2010

  61. Christner B.C., Kvitko B.H., Reeve J.N. Molecular identification of bacteria and eukarya inhabiting an Antarctic cryoconite hole // Extremophiles. 2003. V. 7(3). P. 177–183. https://doi.org/10.1007/s00792-002-0309-0

  62. Cohen P.A., Macdonald F.A. The Proterozoic record of eukaryotes // Paleobiology. 2015. V. 41(4). P. 610–632. https://doi.org/10.1017/pab.2015.25

  63. Collier E., Nicholson L.I., Brock B.W., Maussion F., Essery R., Bush A.B.G. Representing moisture fluxes and phase changes in glacier debris cover using a reservoir approach // The Cryosphere. 2014. V. 8(4). P. 1429–1444. https://doi.org/10.5194/tc-8-1429-2014

  64. Cook J., Edwards A., Takeuchi N., Irvine-Fynn T. Cryoconite: the dark biological secret of the cryosphere // Prog. Phys. Geogr. 2016. V. 40(1). P. 66–111. https://doi.org/10.1177/0309133315616574

  65. Cook J.M., Hodson A.J., Irvine-Fynn T.D. Supraglacial weathering crust dynamics inferred from cryoconite hole hydrology / Hydrological Processes. Epubahead of print. 2016. https://doi.org/10.1002/hyp.10602

  66. Coulson S.J., Midgley N.G. The role of glacier mice in the invertebrate colonisation of glacial surfaces: the moss balls of the Falljökull, Iceland // Polar Biol. 2012. V. 35(11). P. 1651–1658. https://doi.org/10.1007/s00300-012-1205-4

  67. D'Andrilli J., Foreman C.M., Sigl M., Priscu J.C., McConnell J.R. 2017. A 21 000-year record of fluorescent organic matter markers in the WAIS Divide ice core // Clim. Past V. 13(5). P. 533–544. https://doi.org/10.5194/cp-13-533-2017

  68. Darcy J.L., Gendron E., Sommers P., Porazinska D.L., Schmidt S.K. Island biogeography of cryoconite hole bacteria in Antarctica’s Taylor Valley and around the world // Front. Ecol. Evol. 2018. V. 6(180). https://doi.org/10.3389/fevo.2018.00180

  69. Dawson J.B., Hinton R.W., Steele I.M. The composition of anorthoclase and nepheline in Mount Kenya phonolite and Kilimanjaro trachyte, and crystal–glass partitioning of elements // Can. Mineral. 2008. V. 46(6). P. 1455–1464. https://doi.org/10.3749/canmin.46.6.1455

  70. de Menezes G.C.A., Porto B.A., Simões J.C., Rosa C.A., Rosa L.H. Fungi in snow and glacial ice of Antarctica / Fungi of Antarctica: diversity, ecology and biotechnological applications. 2019. P. 127–146. https://doi.org/10.1007/978-3-030-18367-7_6

  71. de Menezes G.C.A., Amorim S.S., Gonçalves V.N., Godinho V.M., Simões J.C., Rosa C.A. Rosa L.H. Diversity, Distribution, and Ecology of Fungi in the Seasonal Snow of 918 Antarctica // Microorganisms. 2019. V. 7. P. 445–445. https://doi.org/10.3390/microorganisms7100445

  72. Deuerling K.M., Lyons W.B., Welch S.A., Welch K.A. The characterization and role of aeolian deposition on water quality, McMurdo Dry Valleys, Antarctica // Aeolian Res. 2014. V. 13. P. 7–17. https://doi.org/10.1016/j.aeolia.2014.01.002

  73. Di Mauro B., Baccolo G., Garzonio R., Giardino C., Massabò D., Piazzalunga A., Rossini M., Colombo R. Impact of impurities and cryoconite on the optical properties of the Morteratsch Glacier (Swiss Alps) // Cryosphere. 2017. V. 11. P. 2393–2409. https://doi.org/10.5194/tc-11-2393-2017

  74. Di Mauro B., Fava F., Ferrero L., Garzonio R., Baccolo G., Delmonte B., Colombo R. Mineral dust impact on snow radiative properties in the European Alps combining ground, UAV, and satellite observations // J. Geophys. Res. 2015. V. 120. P. 6080–6097. https://doi.org/10.1002/2015JD023287

  75. Di Mauro B., Garzonio R., Rossini M., Filippa G., Pogliotti P., Galvagno M., Morra di Cella U., Migliavacca M., Baccolo G., Clemenza M., Delmonte B., Maggi, Dumont V.M., Tuzet F., Lafaysse M., Morin S., Cremonese E., Colombo R. Saharan dust events in the European Alps: Role in snowmelt and geochemical characterization // Cryosphere. 2019. V. 13. P. 1147–1165. https://doi.org/10.5194/tc-13-1147-2019

  76. Edwards A., Anesio A.M., Rassner S.M., Sattler B., Hubbard B., Perkins W.T., Young M. Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard // ISME J. 2011. V. 51(1). P. 150–160. https://doi.org/10.1038/ismej.2010.100

  77. Edwards A., Pachebat J.A., Swain M. et al. A metagenomic snapshot of taxonomic and functional diversity in an alpine glacier cryoconite ecosystem // Environ. Res. Lett. 2013. V. 8. P. 035003. https://doi.org/10.1088/1748-9326/8/3/035003

  78. Edwards M.B. Late Precambrian glacial loessites from north Norway and Svalbard // J. Sediment. Res. 1979. V. 49(1). P. 85–91. https://doi.org/10.1306/212F76C6-2B24-11D7-8648000102C1865D

  79. Evans D.A. Stratigraphic, geochronological, and paleomagnetic constraints upon the Neoproterozoic climatic paradox // Am. J. Sci. 2000. V. 300(5). P. 347–433. https://doi.org/10.2475/ajs.300.5.347

  80. Fellman J.B., Hood E., Raymond P.A., Hudson J., Bozeman M., Arimitsu M. Evidence for the assimilation of ancient glacier organic carbon in a proglacial stream food web // Limnol. Oceanogr. 2015. V. 60(4). P. 1118–1128. https://doi.org/10.1002/lno.10088

  81. Ferrario C., Pittino F., Tagliaferri I., Gandolfi I., Bestetti G., Azzoni R.S., Diolaiuti G., Franzetti A., Ambrosini R., Villa S. Bacteria contribute to pesticide degradation in cryoconite holes in an Alpine glacier // Environ. Pollut. 2017. V. 230. P. 919–926. https://doi.org/10.1016/j.envpol.2017.07.039

  82. Fickert T., Friend D., Grüninger F., Molnia B., Richter M. Did Debris-Covered Glaciers Serve as Pleistocene Refugia for Plants? A New Hypothesis Derived from Observations of Recent Plant Growth on Glacier Surfaces // Arct. Antarct. Alp. Res. 2007. V. 39(2). P. 245–257. https://doi.org/10.1657/1523-0430(2007)39[245:DDGSAP]2.0.CO;2

  83. Fickert T., Friend D., Molnia B., Grüninger F., Richter M. Vegetation ecology of debris-covered glaciers (DCGs)–site conditions, vegetation patterns and implications for DCGs serving as quaternary cold-and warm-stage plant refugia // Diversity. 2022. V. 14(2). P. 114. https://doi.org/10.3390/d14020114

  84. Fountain A.G., Tranter M., Nylen T.H., Lewis K.J., Mueller D.R. Evolution of cryoconite holes and their contribution to meltwater runoff from glaciers in the McMurdo Dry Valleys, Antarctica // J. Glaciol. 2004. V. 50(168). P. 323–335.

  85. Fountain A.G., Nylen T.H., Tranter M., Bagshaw E., Temporal variations in physical and chemical features of cryoconite holes on Canada Glacier, McMurdo Dry Valleys, Antarctica // J. Geophys. Res. Biogeosci. 2008. V. 113(G1). https://doi.org/10.1029/2007JG000430

  86. Goodwin K., Loso M.G., Braun M. Glacial transport of human waste and survival of fecal bacteria on Mt. McKinley’s Kahiltna Glacier, Denali National Park, Alaska // Arct. Antarct. Alp. Res. 2012. V. 44(4). P. 432–445. https://doi.org/10.1657/1938-4246-44.4.432

  87. Graber E.R., Rudich Y. Atmospheric HULIS: How humic-like are they? A comprehensive and critical review // Atmos. Chem. Phys. 2006. V. 6(3). P. 729–753. https://doi.org/10.5194/acp-6-729-2006

  88. Graham L.E., Cook M.E., Wilcox L.W., Graham J., Taylor W., Wellman C.H., Lewis L. Resistance of filamentous chlorophycean, ulvophycean, and xanthophycean algae to acetolysis: testing Proterozoic and Paleozoic microfossil attributions // Int. J. Plant Sci. 2013. V. 174(6). P. 947–957. https://doi.org/10.1086/670591

  89. Grannas A.M., Hockaday W.C., Hatcher P.G., Thompson L.G., Mosley-Thompson E. New revelations on the nature of organic matter in ice cores // J. Geophys. Res. Atmos. 2006. V. 111(D4). https://doi.org/10.1029/2005JD006251

  90. Gray A., Krolikowski M., Fretwell P., Convey P., Peck L.S., Mendelova M., Smith A.G., Davey M.P. Remote sensing reveals Antarctic green snow algae as important terrestrial carbon sink // Nat. Commun. 2020. V. 11(1). P. 2527. https://doi.org/10.1038/s41467-020-16018-w

  91. Guo B., Liu Y., Liu K., Shi Q., He C., Cai R., Jiao N. Different dissolved organic matter composition between central and southern glaciers on the Tibetan Plateau // Ecol. Indic. 2022. V. 139. P. 108888. https://doi.org/10.1016/j.ecolind.2022.108888

  92. Hadley O.L., Kirchstetter T.W. Black-carbon reduction of snow albedo // Nat. Clim. Change 2012. V. 2(6). P. 437–440. https://doi.org/10.1038/nclimate1433

  93. Hågvar S., Ohlson M. Ancient carbon from a melting glacier gives high 14C age in living pioneer invertebrates // Sci. Rep. 2013. V. 3(1). P. 1–4. https://doi.org/10.1038/srep02820

  94. Hågvar S., Ohlson M., Brittain J.E. A melting glacier feeds aquatic and terrestrial invertebrates with ancient carbon and supports early succession // Arct. Antarct. Alp. Res. 2016. V. 48(3). P. 551–562. https://doi.org/10.1657/AAAR0016-027

  95. Hansen R.R., Hansen O.L.P., Bowden J.J., Normand S., Bay C., Sørensen J.G., Høye T.T. High spatial variation in terrestrial arthropod species diversity and composition near the Greenland ice cap // Polar Biol. 2016. V. 39. P. 2263–2272. https://doi.org/10.1007/s00300-016-1893-2

  96. Heusser C.J. Polsters of the moss Drepanocladus berggrenii on Gilkey Glacier, Alaska // Bulletin of the Torrey Botanical Club. 1972. P. 34–36. https://doi.org/10.2307/2484240

  97. Hodson A. Understanding the dynamics of black carbon and associated contaminants in glacial systems // Wiley Interdiscip. Rev. Water. 2014. V. 1(2). P. 141–149. https://doi.org/10.1002/wat2.1016

  98. Hodson A., Anesio A.M., Tranter M., Tranter M., Fountain A., Osborn M., Priscu J., Laybourn-Parry J., Sattler B. Glacial ecosystems // Ecol. Monogr. 2008. V. 78(1). P. 41–67. https://doi.org/10.1890/07-0187.1

  99. Hodson A., Cameron K., Bøggild C., Irvine-Fynn T., Langford H., Pearce D., Banwar S. The structure, biological activity and biogeochemistry of cryoconite aggregates upon an Arctic valley glacier: Longyearbreen, Svalbard // J. Glaciol. 2010. V. 56(196). P. 349–362. https://doi.org/10.3189/002214310791968403

  100. Hodson A.J., Anesio A.M., Ng F., Watson R., Quirk J., Irvine-Fynn T., Dye A., Clark C., McCloy P., Kohler J. A glacier respires: quantifying the distribution and respiration CO2 flux of cryoconite across Arctic supraglacial ecosystem // J. Geophys. Res. 2007. V. 112(G4). P. G04S36. https://doi.org/10.1029/2007JG000452

  101. Hoffman P.F. Cryoconite pans on Snowball Earth: supraglacial oases for Cryogenian eukaryotes? // Geobiology. 2016. V. 14(6). P. 531–542. https://doi.org/10.1111/gbi.12191

  102. Hoffman P.F., Li Z.X. A palaeogeographic context for Neoproterozoic glaciation // Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009. V. 277(3–4). P. 158–172. https://doi.org/10.1016/j.palaeo.2009.03.013

  103. Homann M., Sansjofre P., Van Zuilen M., Heubeck C., Gong J., Killingsworth B., Foster I.S., Airo A., Van Kranendonk M.J., Lalonde S.V. Microbial life and biogeochemical cycling on land 3,220 million years ago // Nat. Geosci. 2018. V. 11(9). P. 665. https://doi.org/10.1038/s41561-018-0190-9

  104. Hood E., Battin T.J., Fellman J., O’neel S., Spencer R.G. Storage and release of organic carbon from glaciers and ice sheets // Nat. Geosci. 2015. V. 8(2). P. 91–96. https://doi.org/10.1038/ngeo2331

  105. Hood E., Fellman J., Spencer R.G., Hernes P.J., Edwards R., D’Amore D., Scott D. Glaciers as a source of ancient and labile organic matter to the marine environment // Nature. 2009. V. 462(7276). P. 1044–1047. https://doi.org/10.1038/nature08580

  106. Horneck G. The microbial world and the case for Mars // Planet. and Space Sci. 2000. V. 48(11). P. 1053–1063. https://doi.org/10.1016/S0032-0633(00)00079-9

  107. Hotaling S., Bartholomaus T.C., Gilbert S.L. Rolling stones gather moss: movement and longevity of moss balls on an Alaskan glacier // Polar Biol. 2020. V. 43. P. 735–744. https://doi.org/10.1007/s00300-020-02675-6

  108. Hotaling S., Lutz S., Dial R.J., Anesio A.M., Benning L.G., Fountain A.G., Kelley J.L., McCutcheon J., McKenzie S.S., Hamilton T.L. Biological albedo reduction on ice sheets, glaciers, and snowfields // EarthSci. Rev. 2021. V. 220. P. 103728. https://doi.org/10.1016/j.earscirev.2021.103728

  109. Hotaling S., Shain D.H., Lang S.A., Bagley R.K., Tronstad L.M., Weisrock D.W., Kelley J.L. Long-distance dispersal, ice sheet dynamics and mountaintop isolation underlie the genetic structure of glacier ice worms // Proc. R. Soc. 2019. V. 286(1905). P. 20190983.

  110. Hotaling S., Wimberger P.H., Kelley J.L., Watts H. Macroinvertebrates on glaciers: a key resource for terrestrial food webs? // Ecology. 2020. V. 101(4). P. 1–3. https://doi.org/10.1002/ecy.2947

  111. Huang J., Kang S., Ma M., Guo J., Cong Z., Dong Z., Yin R., Xu J., Tripathee L., Ram K., Wang F. Accumulation of atmospheric mercury in glacier cryoconite over Western China // Environ. Sci. Technol. 2019. V. 53(12). P. 6632–6639. https://doi.org/10.1021/acs.est.8b06575

  112. Humlum O., Elberling B., Hormes A., Fjordheim K., Hansen O.H., Heinemeier J. Late-Holocene glacier growth in Svalbard, documented by subglacial relict vegetation and living soil microbes // The Holocene. 2005. V. 15(3). P. 396–407. https://doi.org/10.1191/0959683605hl817rp

  113. Hyde W.T., Crowley T.J., Baum S.K., Peltier W.R. Neoproterozoic ‘snowball Earth’ simulations with a coupled climate/ice-sheet model // Nature. 2000. V. 405(6785). P. 425–429. https://doi.org/10.1038/35013005

  114. Irvine-Fynn T.D.L., Edwards A., Newton S., Langford H., Rassner S.M., Telling J., Anesio A.M., Hodson A.J. Microbial cell budgets of an Arctic glacier surface quantified using flow cytometry // Environ. Microbiol. 2012. V. 14(11). P. 2998–3012. https://doi.org/10.1111/j.1462-2920.2012.02876.x

  115. Irvine-Fynn T.D., Edwards A. A frozen asset: the potential of flow cytometry in constraining the glacial biome // Cytometry part A. 2014. V. 85(1). P. 3–7.

  116. Irvine-Fynn T.D., Bridge J.W., Hodson A.J. In situ quantification of supraglacial cryoconite morphodynamics using time-lapse imaging: an example from Svalbard // J. Glaciol. 2011. V. 57(204). P. 651–657. https://doi.org/10.3189/002214311797409695

  117. IUSS Working Group WRB. World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps / World Soil Resources Reports. 2015. V. 106. FAO, Rome.

  118. Kabala C., Zarat J. Recent, relic and buried soils in the forefield of Werenskiold Glacier, SW Spitsbergen // Pol. Polar Res. 2009. V. 30(2). P. 161–178.

  119. Kaczmarek Ł., Jakubowska N., Celewicz-Gołdyn S., Zawierucha K. The microorganisms of cryoconite holes (algae, Archaea, bacteria, cyanobacteria, fungi, and Protista): a review // Polar Rec. 2016. V. 52(2). P. 176–203. https://doi.org/10.1017/S0032247415000637

  120. Kastovska K., Elster J., Stibal M., Santruckova H. Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (High Arctic) // Microb. Ecol. 2005. V. 50. P. 396–407. https://doi.org/10.1007/s00248-005-0246-4

  121. Kellerman A.M., Vonk J., McColaugh S., Podgorski D.C., van Winden E., Hawkings J.R., Johnston S.E., Humayun M., Spencer R.G. Molecular signatures of glacial dissolved organic matter from Svalbard and Greenland // Global Biogeoch. Cycles. 2021. V. 35(3). P. e2020GB006709. https://doi.org/10.1029/2020GB006709

  122. Khan A.L., Dierssen H.M., Scambos T.A., Höfer J., Cordero R.R. Spectral characterization, radiative forcing and pigment content of coastal Antarctic snow algae: Approaches to spectrally discriminate red and green communities and their impact on snowmelt // Cryosphere. 2021. V. 15. P. 133–148. https://doi.org/10.5194/tc-15-133-2021

  123. Khromova T., Nosenko G., Nikitin S., Muraviev A., Popova V., Chernova L., Kidyaeva V. Changes in the mountain glaciers of continental Russia during the twentieth to twenty-first centuries // Reg. Environ. Change 2019. V. 19. P. 1229–1247. https://doi.org/10.1007/s10113-018-1446-z

  124. Kirschvink J.L. Late Proterozoic low-latitude global glaciation / The snowball Earth. 1992. P. 51–52.

  125. Knoll A.H. The early evolution of eukaryotes: a geological perspective // Science. 1992. V. 256(5057). P. 622–627. https://doi.org/10.1126/science.1585174

  126. Knoll A.H. Paleobiological perspectives on early eukaryotic evolution // Cold Spring Harb. Perspect. Biol. 2014. V. 6(1). P. a016121. https://doi.org/10.1101/cshperspect.a016121

  127. Kushnov I., Abakumov E., Tembotov R., Nizamutdinov T. Migration of organic carbon and trace elements in the system glacier-soil in the Central Caucasus alpine environment // J. Mt. Sci. 2022. V. 19(12). P. 3458–3474. https://doi.org/10.1007/s11629-022-7589-x

  128. Kushnov I., Abakumov E., Tembotov R., Polyakov V. Geochemistry of cryoconite and soils in the Central Caucasus region and its environmental implications // J. Mt. Sci. 2021. V. 18(12). P. 3109–3124. https://doi.org/10.1007/s11629-021-6945-6

  129. Kutuzov S., Lavrentiev I., Smirnov A., Nosenko G., Petrakov D. Volume changes of Elbrus glaciers from 1997 to 2017 // Front. Earth Sci. 2019. P. 153. https://doi.org/10.3389/feart.2019.00153

  130. Kutuzov S., Legrand M., Preunkert S., Ginot P., Mikhalenko V., Shukurov K., Poliukhov A., Toropov P. History of desert dust deposition recorded in the Elbrus ice core // Atmos. Chem. Phys. 2019. P. 1–26. https://doi.org/10.5194/acp-2019-411

  131. Kutuzov S., Shahgedanova M., Krupskaya V., Goryachkin S. Optical, Geochemical and Mineralogical Characteristics of Light-Absorbing Impurities Deposited on Djankuat Glacier in the Caucasus Mountains // Water. 2021. V. 13. P. 2993. https://doi.org/10.3390/w13212993

  132. Kutuzov S., Shahgedanova M., Mikhalenko V., Ginot P., Lavrentiev I., Kemp S. High-resolution provenance of desert dust deposited on Mt. Elbrus, Caucasus in 2009–2012 using snow pit and firn core records // Cryosphere. 2013. V. 7. P. 1481–1498. https://doi.org/10.5194/tc-7-1481-2013

  133. Kuzyakov Y. Priming effects: interactions between living and dead organic matter // Soil Biol. Biochem. 2010. V. 42(9). P. 1363–1371. https://doi.org/10.1016/j.soilbio.2010.04.003

  134. Lamarche-Gagnon G., Wadham J.L., Lollar B.S., Arndt S., Fietzek P., Beaton A.D., Tedstone A.J., Telling J., Bagshaw E.A., Hawkings J.R., Kohler T.J., Zarsky J.D., Mowlem M.C., Anesio A.M., Stibal G.M., Lamarche-Gagnon J.L., Wadham B.S., Lollar et al. Greenland melt drives continuous export of methane from the ice-sheet bed // Nature. 2019. V. 565. P. 73–77. https://doi.org/10.1038/s41586-018-0800-0

  135. Langford H., Hodson A., Banwart S. Using FTIR spectroscopy to characterise the soil mineralogy and geochemistry of cryoconite from Aldegondabreen glacier, Svalbard // Appl. Geochem. 2011. V. 26. P. S206–S209. https://doi.org/10.1016/j.apgeochem.2011.03.105

  136. Langford H., Hodson A., Banwart S., Bøggild C. The microstructure and biogeochemistry of Arctic cryoconite granules // Ann. Glaciol. 2010. V. 51(56). P. 87–94. https://doi.org/10.3189/172756411795932083

  137. Langford H.J., Irvine-Fynn T.D.L., Edwards A., Banwart S.A., Hodson A.J. A spatial investigation of the environmental controls over cryoconite aggregation on Longyearbreen glacier, Svalbard // Biogeosciences. 2014. V. 11(19). P. 5365–5380. https://doi.org/10.5194/bg-11-5365-2014

  138. Legrand M., McConnell J., Fischer H., Wolff E.W., Preunkert S., Arienzo M., Chellman N., Leuenberger D., Maselli O., Place P., Sigl M., Schüpbach S., Flannigan M. Boreal fire records in Northern Hemisphere ice cores: a review // Clim. Past. 2016. V. 12(10). P. 2033–2059. https://doi.org/10.5194/cp-12-2033-2016

  139. Li Z.X., Evans D.A.D., Halverson G.P. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland // Sediment. Geol. 2013. V. 294. P. 219–232. https://doi.org/10.1016/j.sedgeo.2013.05.016

  140. Li Q., Kang S., Wang N., Li Y., Li X., Dong Z., Chen P. Composition and sources of polycyclic aromatic hydrocarbons in cryoconites of the Tibetan Plateau glaciers // Sci. Total Environ. 2017. V. 574. P. 991–999. https://doi.org/10.1016/j.scitotenv.2016.09.159

  141. Li X., Ding Y., Xu J., He X., Han T., Kang S., Wu Q., Mika S., Yu Z., Li Q. Importance of mountain glaciers as a source of dissolved organic carbon // J. Geophys. Res. Earth Surf. 2018. V. 123(9). P. 2123–2134. https://doi.org/10.1029/2017JF004333

  142. Li Y., Kang S., Chen J., Hu Z., Wang K., Paudyal R., Liu J., Wang X., Qin X., Sillanpää M. Black carbon in a glacier and snow cover on the northeastern Tibetan Plateau: Concentrations, radiative forcing and potential source from local topsoil // Sci. Total Environ. 2019. V. 686. P. 1030–1038. https://doi.org/10.1016/j.scitotenv.2019.05.469

  143. Łokas E., Zaborska A., Kolicka M., Różycki M., Zawierucha K. Accumulation of atmospheric radionuclides and heavy metals in cryoconite holes on an Arctic glacier // Chemosphere. 2016. V. 160. P. 162–172. https://doi.org/10.1016/j.chemosphere.2016.06.051

  144. Łokas E., Zawierucha K., Cwanek A., Szufa K., Gaca P., Mietelski J.W., Tomankiewicz E. The sources of high airborne radioactivity in cryoconite holes from the Caucasus (Georgia) // Sci. Rep. 2018. V. 8(1). P. 10802. https://doi.org/10.1038/s41598-018-29076-4

  145. Lutz S., Ziolkowski L.A., Benning L.G. The Biodiversity and Geochemistry of Cryoconite Holes in Queen Maud Land, East Antarctica // Microorganisms. 2019. V. 7(6). P. 1–16. https://doi.org/10.3390/microorganisms7060160

  146. Lutz S., Anesio A.M., Edwards A., Benning L.G. Linking microbial diversity and functionality of arctic glacial surface habitats // Environ. Microbiol. 2017. V. 19(2). P. 551–565. https://doi.org/10.1111/1462-2920.13494

  147. Makowska N., Zawierucha K., Nadobna P., Piątek-Bajan K., Krajewska A., Szwedyk J., Iwasieczko P., Mokracka J., Koczura R. Occurrence of integrons and antibiotic resistance genes in cryoconite and ice of Svalbard, Greenland, and the Caucasus glaciers // Sci. Total Environ. 2020. V. 716. P. 137022.

  148. Makowska-Zawierucha N., Mokracka J., Małecka M., Balazy P., Chełchowski M., Ignatiuk D., Zawierucha K. Quantification of class 1 integrons and characterization of the associated gene cassettes in the high Arctic–Interplay of humans and glaciers in shaping the aquatic resistome // Ecol. Indic. 2022. V. 145. P. 109633.

  149. Margesin R., Fell J.W. Mrakiella cryoconite gen. nov., sp. Nov., a psychrophilic, anamorphoc, basidiomycetous yeast from alpine and arctic habitats // Int. J. Syst. Evol. Microbiol. 2008. V. 58. P. 2977–2982. https://doi.org/10.1099/ijs.0.2008/000836-0

  150. McCrimmon D.O., Bizimis M., Holland A., Ziolkowski L.A. Supraglacial microbes use young carbon and not aged cryoconite carbon // Org. Geochem. 2018. V. 118. P. 63–72. https://doi.org/10.1016/j.orggeochem.2017.12.002

  151. Mergelov N.S., Zazovskaya E.P., Goryachkin S.V. Exploring principles of aggregation between organic and mineral phases on ice: insights from cryoconite granules of two mountain glaciers / Biogenic – abiogenic interactions in natural and anthropogenic systems. VII International Symposium. Saint Petersburg: Skifia-print. 2022. P. 17–18.

  152. Mieczan T., Tarkowska-Kukuryk M., Górniak D., Świątecki A., Zdanowski M., Adamczuk M. Vertical microzonation of ciliates in cryoconite holes in Ecology Glacier, King George Island // Pol. Polar Res. 2013. V. 2. P. 201–212.

  153. Miroshnikov A., Flint M., Asadulin E., Aliev R., Shiryaev A., Kudikov A., Khvostikov V. Radioecological and geochemical peculiarities of cryoconite on Novaya Zemlya glaciers // Sci. Rep. 2021. V. 11(1). P. 1–15. https://doi.org/10.1038/s41598-021-02601-8

  154. Miteva V. Bacteria in snow and glacier ice / Psychrophiles: from biodiversity to biotechnology. 2008. P. 31–50. Springer, Berlin, Heidelberg.

  155. Müller F., Keeler C.M. Errors in short-term ablation measurements on melting ice surfaces // J. Glaciol. 1969. V. 8(52). P. 91–105.

  156. Murakami T., Segawa T., Bodington D., Dial R., Takeuchi N., Kohshima S., Hongoh Y. Census of bacterial microbiota associated with the glacier ice worm Mesenchytraeus solifugus // FEMS Microbiol. Ecol. 2015. V. 91(3). P. fiv003. https://doi.org/10.1093/femsec/fiv003

  157. Musilova M., Tranter M., Wadham J., Telling J., Tedstone A., Anesio A.M. 2017. Microbially driven export of labile organic carbon from the Greenland ice sheet // Nat. Geosci. V. 10(5). P. 360–365.

  158. Naegeli K., Damm A., Huss M., Wulf H., Schaepman M., Hoelzle M. Cross-Comparison of Albedo Products for Glacier Surfaces Derived from Airborne and Satellite (Sentinel-2 and Landsat 8) Optical Data // Remote Sens. 2017. V. 9. P. 110. https://doi.org/10.3390/rs9020110

  159. Naegeli K., Huss M., Hoelzle M. Change detection of bare-ice albedo in the Swiss Alps // Cryosphere 2019. V. 13. P. 397–412. https://doi.org/10.5194/tc-13-397-2019

  160. Nagatsuka N., Takeuchi N., Nakano T., Kokado E., Li Z. Sr, Nd and Pb stable isotopes of surface dust on Ürümqi glacier No. 1 in western China // Ann. Glaciol. 2010. V. 51(56). P. 95–105. https://doi.org/10.3189/172756411795931895

  161. Nansen F. The Norwegian North Polar Expedition 1893–1896: Scientific Results. Longmans, Green and Co, London. 1906.

  162. Nizamutdinov T., Mavlyudov B., Polyakov V., Abakumov E. Sediments from cryoconite holes and dirt cones on the surface of Svalbard glaciers: main chemical and physicochemical properties // Acta Geochimica. 2023. V. 42(2). P. 346–359. https://doi.org/10.1007/s11631-022-00586-3

  163. Nordenskiöld A.E. Account of an expedition to Greenland in the year 1870 // Geol. Mag. 1870. V. 9(98). P. 355–368.

  164. Nordenskiöld A.E. Cryoconite found 1870, july 19th–25th, on the inland ice, east of Auleitsivik Fjord, Disco Bay Greenland // Geol. Mag., Decade. 1875. V. 2(2). P. 157–162.

  165. Pain A.J., Jonathan B. Martin, Ellen E. Martin, Rennermalm Å.K., Shaily Rahman. Heterogeneous CO2 and CH4 content of glacial meltwater from the Greenland Ice Sheet and implications for subglacial carbon processes // The Cryosphere. 2021. V. 15. P. 1627–1644. https://doi.org/10.5194/tc-15-1627-2021

  166. Painter T.H., Barrett A.P., Landry C.C., Neff J., Cassidy M.P., Lawrence C., McBride K.E., Farmer G.L. Impact of dis-turbed desert soils on duration of mountain snow cover // Geophys. Res. Lett. 2007. V. 34. P. L12502. https://doi.org/10.1029/2007GL030284

  167. Park C., Takeuchi N. Unmasking photogranulation in decreasing glacial albedo and net autotrophic wastewater treatment // Environ. Microbiol. 2021. V. 23(11). P. 6391–6404. https://doi.org/10.1111/1462-2920.15780

  168. Pautler B.G., Dubnick A., Sharp M.J., Simpson A.J., Simpson M.J. Comparison of cryoconite organic matter composition from Arctic and Antarctic glaciers at the molecular-level // Geochim. Cosmochim. Acta. 2013. V. 104. P. 1–18. https://doi.org/10.1016/j.gca.2012.11.029

  169. Perini L., Gostinčar C., Anesio A.M., Williamson C., Tranter M., Gunde-Cimerman N. Darkening of the Greenland ice sheet: Fungal abundance and diversity are associated 1246 with algal bloom // Front. Microbiol. 2019. V. 10. P. 557. https://doi.org/10.3389/fmicb.2019.00557

  170. Pey J., Revuelto J., Moreno N., Alonso-González E., Bartolomé M., Reyes J., Gascoin S., López-Moreno J.I. Snow impurities in the central Pyrenees: from their geochemical and mineralogical composition towards their impacts on snow Albedo // Atmosphere. 2020. V. 11. P. 937. https://doi.org/10.3390/atmos11090937

  171. Pi K., Bieroza M., Brouchkov A., Chen W., Dufour L.J., Gongalsky K.B., … Van Cappellen P. The cold region critical zone in transition: Responses to climate warming and land use change // Annu. Rev. Environ. Resour. 2021. V. 46. P. 111–134. https://doi.org/10.1146/annurev-environ-012220-125703

  172. Pittino F., Maglio M., Gandolfi I., Azzoni R.S., Diolaiuti G., Ambrosini R., Franzetti A. Bacterial communities of cryoconite holes of a temperate alpine glacier show both seasonal trends and year-to-year variability // Ann. Glaciol. 2018. V. 59(77). P. 1–9. https://doi.org/10.1017/aog.2018.16

  173. Polyakov V., Abakumov E., Mavlyudov B. Black Carbon as a Source of Trace Elements and Nutrients in Ice Sheet of King George Island, Antarctica // Geosciences. 2020. V. 10(11). P. 465. https://doi.org/10.3390/geosciences10110465

  174. Polyakov V.I., Abakumov E.V., Tembotov R.Kh. Black carbon as a factor in deglaciation in polar and mountain ecosystems: A Review // Bulletin of Tomsk State University. Biology. 2020. V. 52. P. 6–33. (in Russian)

  175. Polyakov V., Zazovskaya E., Abakumov E. Molecular composition of humic substances isolated from selected soils and cryconite of the Grønfjorden area, Spitsbergen // Pol. Polar Res. 2019. V. 40(2). P. 105–120. https://doi.org/10.24425/ppr.2019.128369

  176. Poniecka E.A., Bagshaw E.A., Tranter M., Sass H., Williamson C.J., Anesio A.M., Team B.A.B. Rapid development of anoxic niches in supraglacial ecosystems // Arct. Antarct. Alp. Res. 2018. V. 50(1). P. S100015. https://doi.org/10.1080/15230430.2017.1420859

  177. Porter P.R., Evans A.J., Hodson A.J., Lowe A.T., Crabtree M.D. Sediment–moss interactions on a temperate glacier: Falljökull, Iceland // Ann. Glaciol. 2008. V. 48. P. 25–31. https://doi.org/10.3189/172756408784700734

  178. Price P.B. Microbial life in glacial ice and implications for a cold origin of life // FEMS Microbiol. Ecol. 2007. V. 59(2). P. 217–231. https://doi.org/10.1111/j.1574-6941.2006.00234.x

  179. Procházková L., Leya T., Křížková H., Nedbalová L. Sanguina nivaloides and Sanguina aurantia gen. et spp. nov. (Chlorophyta): the taxonomy, phylogeny, biogeography and ecology of two newly recognised algae causing red and orange snow // FEMS Microbiol. Ecol. 2019. V. 95(6). P. fiz064. https://doi.org/10.1093/femsec/fiz064

  180. Rabassa J., Rubulis S., Suarez J. Moraine in-transit as parent material for soil development and the growth of Valdivian rain forest on moving ice: Casa Pangue glacier, mount Tronador (lat. 41010'5), Chile // Ann. Glaciol. 1981. V. 2. P. 97–102. https://doi.org/10.3189/172756481794352342

  181. Raymond P.A. The composition and transport of organic carbon in rainfall: Insights from the natural (13C and 14C) isotopes of carbon // Geophys. Res. Lett. 2005. V. 32. P. L14402. https://doi.org/10.1029/2005GL022879

  182. Remias D., Lütz-Meindl U., Lütz C. Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis // Eur. J. Phycol. 2005. V. 40(3). P. 259–268. https://doi.org/10.1080/09670260500202148

  183. Remias D., Schwaiger S., Aigner S., Leya T., Stuppner H., Lütz C. Characterization of an UV-and VIS-absorbing, purpurogallin-derived secondary pigment new to algae and highly abundant in M esotaenium berggrenii (Z ygnematophyceae, Chlorophyta), an extremophyte living on glaciers // FEMS Microbiol. Ecol. 2012. V. 79(3). P. 638–648. https://doi.org/10.1111/j.1574-6941.2011.01245.x

  184. Remias D., Wastian H., Lütz C., Leya T. Insights into the biology and phylogeny of Chloromonas polyptera (Chlorophyta), an alga causing orange snow in Maritime Antarctica // Antarct. Sci. 2013. V. 25. P. 648–656. https://doi.org/10.1017/S0954102013000060

  185. Ren Z., Martyniuk N., Oleksy I.A., Swain A., Hotaling S. Ecological stoichiometry of the mountain cryosphere // Front. Ecol. Evol. 2019. V. 7. P. 360. https://doi.org/10.3389/fevo.2019.00360

  186. Rooney A.D., Strauss J.V., Brandon A.D., Macdonald F.A. A Cryogenian chronology: Two long-lasting synchronous Neoproterozoic glaciations // Geology. 2015. V. 43(5). P. 459–462. https://doi.org/10.1130/G36511.1

  187. Rozwalak P., Podkowa P., Buda J., Niedzielski P., Kawecki S., Ambrosini R., … Zawierucha K. Cryoconite–From minerals and organic matter to bioengineered sediments on glacier’s surfaces // Sci. Total Environ. 2022. V. 807. P. 150874. https://doi.org/10.1016/j.scitotenv.2021.150874

  188. Rubino M., D’Onofrio A., Seki O., Bendle J.A. Ice-core records of biomass burning // Anthr. Rev. 2016. V. 3(2). P. 140–162. https://doi.org/10.1177/2053019615605117

  189. Ryu J.S., Jacobson A.D. CO2 evasion from the Greenland Ice Sheet: a new carbon–climate feedback // Chemical Geol. 2012. V. 320–321. P. 80–95. https://doi.org/10.1016/j.chemgeo.2012.05.024

  190. Sajjad W., Din G., Rafiq M., Iqbal A., Khan S., Zada S., Ali B., Kang S. Pigment production by cold-adapted bacteria and fungi: colorful tale of cryosphere with wide range applications // Extremophiles. 2020. V. 24. P. 447–473. https://doi.org/10.1007/s00792-020-01180-2

  191. Samui G., Antony R., Thamban M. Chemical characteristics of hydrologically distinct cryoconite holes in coastal Antarctica // Ann. Glaciol. 2018. V. 59(77). P. 69–76. https://doi.org/10.1017/aog.2018.30

  192. Samui G., Antony R., Thamban M. Fate of dissolved organic carbon in Antarctic Surface Environments during Summer // J. Geophys. Res. Biogeosci 2020. V. 125(12). P. e2020JG005958.

  193. Sanborn P. Soil formation on supraglacial tephra deposits, Klutlan Glacier, Yukon Territory // Can. J. Soil Sci. 2010. V. 90. P. 611–618. https://cdnsciencepub.com/doi/10.4141/cjss10042

  194. Scarrow J.W., Balks M.R., Almond P.C. Three soil chronosequences in recessional glacial deposits near the polar plateau, in the Central Transantarctic Mountains, Antarctica // Antarct. Sci. 2014. V. 26(5). P. 573–583. https://doi.org/10.1017/S0954102014000078

  195. Scherler D., Wulf H., Gorelick N. Global assessment of supraglacial debris-cover extents. Geophys. Res. Lett. 2018. V. 45(21). P. 11–798. https://doi.org/10.1029/2018GL080158

  196. Schulze-Makuch D., Grinspoon D.H. Biologically enhanced energy and carbon cycling on Titan? // Astrobiology. 2005. V. 5(4). P. 560–567. https://doi.org/10.1089/ast.2005.5.560

  197. Segawa T., Takeuchi N., Mori H., Rathnayake R.M., Li Z., Akiyoshi A., Satoh H., Ishii S. Redox stratification within cryoconite granules influences the nitrogen cycle on glaciers // FEMS Microbiol. Ecol. 2020. V. 96(11). P. fiaa199. https://doi.org/10.1093/femsec/fiaa199

  198. Shain D.H., Halldórsdóttir K., Pálsson F., Aðalgeirsdóttir G., Gunnarsson A., Jónsson Þ., et al. Colonization of maritime glacier ice by bdelloid Rotifera //Mol. Phylogenet. Evol. 2016. V. 98. P. 280–287. https://doi.org/10.1016/j.ympev.2016.02.020

  199. Singer G.A., Fasching C., Wilhelm L., Niggemann J., Steier P., Dittmar T., Battin T.J. Biogeochemically diverse organic matter in Alpine glaciers and its downstream fate // Nat. Geosci. 2012. V. 5(10). P. 710–714. https://doi.org/10.1038/ngeo1581

  200. Singh P., Singh S.M. Characterisation of yeasts and filamentous fungi isolated from cryoconite holes of Svalbard, Arctic // Polar Biol. 2012. V. 35. P. 575–583. https://doi.org/10.1007/s00300-011-1103-1

  201. Smirnova M., Miamin U., Kohler A., Valentovich L., Akhremchuk A., Sidarenka A., Dolgikh A., Shapaval V. Isolation and characterization of fast-growing green snow bacteria from coastal East Antarctica // Microbiology Open. 2021. V. 10(1). P. e1152. https://doi.org/10.1002/mbo3.1152

  202. Smith C.A.S., Fox C.A., Hargrave A.E. Development of soil structure in some turbic cryosols in the Canadian low Arctic // Can. J. Soil Sci.1991. V. 71(1). P. 11–29. https://doi.org/10.4141/cjss91-002

  203. Smith H.J., Schmit A., Foster R., Littman S., Kuypers M.M., Foreman C.M. Biofilms on glacial surfaces: hotspots for biological activity // Biofilms and Microbiomes. 2016. V. 2(1). P. 1–4. https://doi.org/10.1038/npjbiofilms.2016.8

  204. Sodemann H., Palmer A.S., Schwierz C., Schwikowski M., Wernli H. The transport history of two Saharan dust events archived in an Alpine ice core // Atmos. Chem. Phys. Discuss. 2006. V. 6. P. 667–688. https://doi.org/10.5194/acp-6-667-2006

  205. Sommers P., Darcy J.L., Porazinska D.L., Gendron E., Fountain A.G., Zamora F., et al. Comparison of microbial communities in the sediments and water columns of frozen cryoconite holes in the McMurdo Dry Valleys, Antarctica // Front. Microbiol. 2019. V. 10. P. 65. https://doi.org/10.3389/fmicb.2019.00065

  206. Sommers P., Fontenele R.S., Kringen T., Kraberger S., Porazinska D.L., Darcy J.L., Vincent K., Cawley K.M., Solon A.J., Vimercati L., Varsani J.R. A. Single-stranded DNA viruses in antarctic cryoconite holes // Viruses. 2019. V. 11(11). P. 1022. https://doi.org/10.3390/v11111022

  207. Stal L.J. Cyanobacterial mats and stromatolites / Ecology of Cyanobacteria II: Their Diversity in Space and Time, B.A. Whitton. 2012. P. 65–125. Netherlands: Springer.

  208. Stefánsson H., Peternell M., Konrad-Schmolke M., Hannesdóttir H., Ásbjörnsson E.J., Sturkell E. Microplastics in glaciers: first results from the Vatnajökull ice cap // Sustainability. 2021. V. 13(8). P. 4183. https://doi.org/10.3390/su13084183

  209. Stephens F.R. A forest ecosystem on a glacier in Alaska / Arctic. 1969. V. 22. P. 441–444.

  210. Stibal M., Lawson E.C., Lis G.P. et al. Organic matter content and quality in supraglacial debris across the ablation zone of the Greenland ice sheet // Ann. Glaciol. 2010. V. 51(56). P. 1–8. https://doi.org/10.3189/172756411795931958

  211. Stibal M., Sabacka M., Kastova K. Microbial communities on glacier surfaces in Svalbard: impact of physical and chemical properties on abundance and structure of cyanobacteria and algae // Microb. Ecol. 2006. V. 52(4). P. 644–654. https://doi.org/10.1007/s00248-006-9083-3

  212. Stibal M., Jon T., Cook J., Mak K.M., Hodson A., Anesio A.M. Environmental Controls on Microbial Abundance and Activity on the Greenland Ice Sheet: A Multivariate Analysis Approach // Microb. Ecol. 2012. V. 63. P. 74–84. https://doi.org/10.1007/s00248-011-9935-3

  213. Stibal M., Šabacká M., Žárský J. Biological processes on glacier and ice sheet surfaces // Nat Geosci. 2012. V. 5(11). P. 771–774. https://doi.org/10.1038/ngeo1611

  214. Stibal M., Box J.E., Cameron K.A., Langen P.L., Yallop M.L., Mottram R.H., Khan A.L., Molotch N.P., Chrismas N.A.M., Quaglia F.C., Remias D., Smeets C.J.P.P., van den Broeke M.R., Ryan J.C., Hubbard A., Tranter M., van As D., Ahlstrøm A.P. Algae Drive Enhanced Darkening of Bare Ice on the Greenland Ice Sheet // Geophys. Res. Lett. 2017. V. 44(11). P. 463–471. https://doi.org/10.1002/2017GL075958

  215. Stubbins A., Hood E., Raymond P.A., Aiken G.R., Sleighter R.L., Hernes P.J., Butman D., Hatcher P.G., Striegl R.G., Schuster P., Abdulla H.A.N., Vermilyea A.W., Scott D.T., Spencer R.G. Anthropogenic aerosols as a source of ancient dissolved organic matter in glaciers // Nat. Geosci. 2012. V. 5(3). P. 198–201. https://doi.org/10.1038/ngeo1403Spencer

  216. Takeuchi N., Kohshima S., Seko K. Structure, formation, darkening process of albedo reducing material (cryoconite) on a Himalayan glacier: a granular algal mat growing on the glacier // Arct. Antarct. Alp. 2001. V. 33. P. 115–122. https://doi.org/10.1080/15230430.2001.12003413

  217. Takeuchi N., Kohshima S., Goto-Azuma K., Koerner R.M. Biological characteristics of dark colored material (cryoconite) on Canadian Arctic glaciers (Devon and Penny ice caps) // Memoirs of National Institute of Polar Research. Special issue. 2001. V. 54. P. 495–505.

  218. Takeuchi N. Optical characteristics of cryoconite (surface dust) on glaciers: the relationship between light absorbency and the property of organic matter contained in the cryoconite // Ann. Glaciol. 2002. V. 34. P. 409–414.

  219. Takeuchi N. Surface albedo and characteristics of cryoconiteonan Alaska glacier (Gulkana Glacier in the Alaska Range) // Bulletin of Glaciological Research. 2002. V. 19. P. 63–70.

  220. Takeuchi N., Nagatsuka N., Uetake J., Spatial variations in impurities (cryoconite) on glaciers in northwest Greenland // Bulletin of Glaciological Research. 2014. V. 32. P. 85–94. https://doi.org/10.5331/bgr.32.85

  221. Takeuchi N., Nishiyama H., Li Z. Structure and formation process of cryoconite granules on Urumqi glacier No.1, Tien Shan, China // Ann. Glaciol. 2010. V. 51(56). P. 9–14. https://doi.org/10.3189/172756411795932010

  222. Takeuchi N., Li Z. Characteristics of surface dust on Urumqi Glacier No.1 in the Tien Shan Mountains, China // Arct. Antarct. Alp. 2008. V. 40(4). P. 744–750. https://doi.org/10.1657/1523-0430(07-094)

  223. Takeuchi N. Temporal and spatial variations in spectral reflectance and characteristics of surface dust on Gulkana Glacier, Alaska Range // J. Glaciol. 2009. V. 55. P. 701–709, https://doi.org/10.3189/002214309789470914

  224. Takeuchi N., Fujisawa Y., Kadota T., Tanaka S., Miyairi M., Shirakawa T., Kusaka R., Fedorov A.N., Konstantinov P., Ohata T. The effect of impurities on the surface melt of a glacier in the Suntar-Khayata mountain range, Russian Siberia // Front. Earth Sci. 2015. V. 3. P. 82. https://doi.org/10.3389/feart.2015.00082

  225. Takeuchi N., Uetake J., Fujita K., Aizen V.B., Nikitin S.D. A snow algal community on Akkem glacier in the Russian Altai mountains // Ann. Glaciol. 2006. V. 43. P. 378–384. https://doi.org/10.3189/172756406781812113

  226. Tanaka S., Takeuchi N., Miyairi M., Fujisawa Y., Kadota T., Shirakawa T., Kusaka R., Takahashi S., Enomoto H., Ohata T., Yabuki H., Konya K., Konstantinov A.F. Snow algal communities on glaciers in the Suntar-Khayata Mountain Range in eastern Siberia, Russia // Polar Sci. 2016. V. 10(3). P. 227–238. https://doi.org/10.1016/j.polar.2016.03.004

  227. Tedesco M., Foreman C.M., Anton J. et al. Comparative analysis of morphological, mineralogical and spectral properties of cryoconite in Jakobshavn Isbrae, Greenland, and Canada Glacier, Antarctica // Ann. Glaciol. 2013. V. 54(63). P. 147–157. https://doi.org/10.3189/2013AoG63A417

  228. Thevenon F., Chiaradia M., Adatte T., Hueglin C., Poté J. Characterization of Modern and Fossil Mineral Dust Transported to High Altitude in the Western Alps: Saharan Sources and Transport Patterns // Adv. Meteorol. 2012. P. 674385. https://doi.org/10.1155/2012/67438

  229. Thomazini A., Mendonça E.S., Teixeira D.B., Almeida I.C.C., La Scala N., Jr., Canellas L.P., Spokas K.A., Milori D.M.B.P., Turbay C.V.G., Fernandes R.B.A., Schaefer C.E.G.R. CO2 and N2O emissions in a soil chronosequence at a glacier retreat zone in Maritime Antarctica // Sci. Total Environ. V. 521–522. 2015. P. 336–345.

  230. Tielidze L.G., Wheate R.D. The greater Caucasus glacier inventory (Russia, Georgia and Azerbaijan) // The Cryosphere. 2018. V. 12(1). P. 81–94. https://doi.org/10.5194/tc-12-81-2018

  231. Tranter M., Bagshaw E.A., Fountain A.G., Foreman C.M. The biogeochemistry and hydrology of McMurdo Dry Valley glaciers: Is there life on Martian ice now? // Life in Antarctic Deserts and Other Cold, Dry Environments / Astrobiological Analogues / Ed. Doran P.T. Cambridge: Cambridge University Press. 2010. P. 195–220.

  232. Tranter M., Fountain A.G., Fritsen C.H., Lyons B.W., Priscu J.C., Statham P.J., Welch K.A. Extreme hydrochemical conditions in natural microcosms entombed within Antarctic ice // Hydrol. Process. 2004. V. 18(2). P. 379–387. https://doi.org/10.1002/hyp.5217

  233. Trindade R.I., Macouin M. Palaeolatitude of glacial deposits and palaeogeography of Neoproterozoic ice ages // Comptes Rendus Geoscience. 2007. V. 339(3–4). P. 200–211. https://doi.org/10.1016/j.crte.2007.02.006

  234. Uetake J., Tanaka S., Hara K., Tanabe Y., Samyn D., Motoyama H., Imura S., Kohshima S. Novel biogenic aggregation of moss gemmae on a disappearing African glacier // PLoS One. 2014. V. 9(11). P. e112510. https://doi.org/10.1371/journal.pone.0112510

  235. Uetake J., Tanaka S., Segawa T., Takeuchi N., Nagatsuka N., Motoyama H., Aoki T. Microbial community variation in cryoconite granules on Qaanaaq Glacier, NW Greenland // FEMS Microbiol. Ecol. 2016. V. 92(9). P. fiw127. https://doi.org/10.1093/femsec/fiw127

  236. Van Vliet-Lanoë B. Frost and soils: implications for paleosols, paleoclimates and stratigraphy // Catena. 1998. V. 34(1–2). P. 157–183. https://doi.org/10.1016/S0341-8162(98)00087-3

  237. Van Vliet-Lanoë B. Frost effects in soils // Soils and Quaternary Landscape Evolution / Ed. Boardman J. Wiley, Chichester. 1985. P. 117–158.

  238. Wadham J.L., Hawkings J.R., Tarasov L. Gregoire L.J., Spencer R.G.M., Gutjahr M., Ridgwell A., Kohfeld K.E. Ice sheets matter for the global carbon cycle // Nat. Commun. 2019. V. 10. P. 3567. https://doi.org/10.1038/s41467-019-11394-4

  239. Wang J., Haidong H., Shiqiang Z. Carbon dioxide flux in the ablation area of Koxkar glacier, western Tien Shan, China // Ann. Glaciol. 2014. V. 55(66). https://doi.org/10.3189/2014AoG66A060

  240. Wang P., D’Imperioc L., Biersmad E.M., Rannikuc R., Xuc W., Tiana Q., Ambusc P., Elberlingc B. Combined effects of glacial retreat and penguin activity on soil greenhouse gas fluxes on South Georgia, sub-Antarctica // Sci. Total Environ. 2019. V. 718. P. 135255. https://doi.org/10.1016/j.scitotenv.2019.135255

  241. Watanabe Y., Martini J.E., Ohmoto H. Geochemical evidence for terrestrial ecosystems 2.6 billion years ago // Nature. 2000. V. 408(6812). P. 574. https://doi.org/10.1038/35046052

  242. Wei D., Wang X. Recent climatic changes and wetland expansion turned Tibet into a net CH4 source // Clim. Change. 2017. V. 144. P. 657–670. https://doi.org/10.1007/s10584-017-2069-y

  243. Weisleitner K., Perras A.K., Unterberger S.H., Moissl-Eichinger C., Andersen D.T., Sattler B. Cryoconite hole location in East-Antarctic Untersee Oasis shapes physical and biological diversity // Front. Microbiol. 2020. V. 11. P. 1165. https://doi.org/10.3389/fmicb.2020.01165

  244. Wiscombe J.W., Warren S.G. A Model for the Spectral Albedo of Snow. II: Snow Containing Atmospheric Aerosols // J. Atmos. Sci. 1980. V. 37. P. 2734–2745. https://doi.org/10.1175/1520-0469(1980)037<2734:AMFTSA>2.0.CO;2

  245. Wouters B., Gardner A.S., Moholdt G. Global glacier mass loss during the GRACE satellite mission (2002–2016) //Front. Earth Sci. 2019. V. 7. P. 96. https://doi.org/10.3389/feart.2019.00096

  246. Wu G.M., Cong Z.Y., Kang S.C., Kawamura K., Fu P.Q., Zhang Y.L., Wan X., Gao S.-P., Liu B. Brown carbon in the cryosphere: Current knowledge and perspective // Adv. Clim. Change Res. 2016. V. 7(1–2). P. 82–89. https://doi.org/10.1016/j.accre.2016.06.002

  247. Xu Y., Simpson A.J., Eyles N., Simpson M.J. Sources and molecular composition of cryoconite organic matter from the Athabasca Glacier, Canadian Rocky Mountains // Org. Geochem. 2010. V. 41. P. 177–186. https://doi.org/10.1016/j.orggeochem.2009.10.010

  248. Yan J., Wang X., Gong P., Wang C., Cong Z. Review of brown carbon aerosols: Recent progress and perspectives // Sci. Total Environ. 2018. V. 634. P. 1475–1485. https://doi.org/10.1016/j.scitotenv.2018.04.083

  249. Young G.M., Brunn V.V., Gold D.J., Minter W.E.L. Earth’s oldest reported glaciation: physical and chemical evidence from the Archean Mozaan Group (∼2.9 Ga) of South Africa // J. Geol. 1998. V. 106(5). P. 523–538. https://doi.org/10.1086/516039

  250. Yue X., Li Z., Zhao J., Fan J., Takeuchi N., Wang L. Variation in Albedo and Its Relationship with Surface Dust at Urumqi Glacier No. 1 in Tien Shan, China // Front. Earth Sci. 2020. V. 8. P. 110. https://doi.org/10.3389/feart.2020.00110

  251. Zamolodchikov D.G., Karelin D.V. An empirical model of carbon fluxes in Russian tundra // Glob. Chang. Biol. 2001. V. 7(2). P. 147–161. https://doi.org/10.1046/j.1365-2486.2001.00380.x

  252. Zarsky J.D., Stibal M., Hodson A., Sattler B., Schostag M., Hansen L.H., Jacobsen C.S., Psenner R. Large cryoconite aggregates on a Svalbard glacier support a diverse microbial community including ammonia-oxidising archaea // Environ. Res. Lett. 2013. V. 8. P. 035044. https://doi.org/10.1088/1748-9326/8/3/035044

  253. Žárský J., Žárský V., Hanáček M., Žárský V. Cryogenian glacial habitats as a plant terrestrialisation cradle–the origin of the anydrophytes and Zygnematophyceae split // Front. Plant Sci. 2022. V. 12. P. 735020. https://doi.org/10.3389/fpls.2021.735020

  254. Zawierucha K., Coulson S., Michalcyzk M., Current knowledge of the Tardigrada of Svalbard with the first records of water bears from Nordaustlandet (High Arctic) // Polar Res. 2013. V. 32. P. 20886. https://doi.org/10.3402/polar.v32i0.20

  255. Zawierucha K., Baccolo G., Di Mauro B., Nawrot A., Szczuciński W., Kalińska E. Micromorphological features of mineral matter from cryoconite holes on Arctic (Svalbard) and alpine (the Alps, the Caucasus) glaciers // Polar Sci. 2019. V. 22. P. 100482. https://doi.org/10.1016/j.polar.2019.100482

  256. Zawierucha K., Buda J., Nawro A. Extreme weather event results in the removal of invertebrates from cryoconite holes on an Arctic valley glacier (Longyearbreen, Svalbard) // Ecol. Res. 2019. V. 34(3). P. 370–379. https://doi.org/10.1111/1440-1703.1276

  257. Zawierucha K., Stec D., Lachowska-Cierlik D., Takeuchi N., Li Z., Michalczyk Ł. High mitochondrial diversity in a new water bear species (Tardigrada: Eutardigrada) from mountain glaciers in central Asia, with the erection of a new genus Cryoconicus // Annales Zoologici. 2018. V. 68(1). P. 179–201. https://doi.org/10.3161/00034541ANZ2018.68.1.007

  258. Zennaro P., Kehrwald N., McConnell J.R., Schüpbach S., Maselli O.J., Marlon J., Vallelonga P., Leuenberger D., Zangrando R., Spolaor A., Borrotti M., Barbaro E., Gambaro A., Barbante C. Fire in ice: two millennia of boreal forest fire history from the Greenland NEEM ice core // Clim. Past. 2014. V. 10(5). P. 1905–1924. https://doi.org/10.5194/cp-10-1905-2014

  259. Zhang Y., Kang S., Wei D., Luo X., Wang Z., Gao T. Sink or source? Methane and carbon dioxide emissions from cryoconite holes, subglacial sediments, and proglacial river runoff during intensive glacier melting on the Tibetan Plateau // Fundam. Res. 2021. V. 1(3). P. 232–239. https://doi.org/10.1016/j.fmre.2021.04.005

  260. Zhang Y., Gao T., Kang S., Allen S., Luo X., Allen D. Microplastics in glaciers of the Tibetan Plateau: Evidence for the long-range transport of microplastics // Sci. Total Environ. 2021. V. 758. P. 143634. https://doi.org/10.1016/j.scitotenv.2020.143634

  261. Zhang Y., Gao T., Kang S., Shi H., Mai L., Allen D., Allen S. Current status and future perspectives of microplastic pollution in typical cryospheric regions // Earth Sci. Rev. 2022. V. 226. P. 1–16. https://doi.org/10.1016/j.earscirev.2022.103924

  262. Zhou Y., Zhou L., He X., Jang K.S., Yao X., Hu Y., Zhang Y., Li X., Spencer R.G.M., Brookes J.D., Jeppesen E. Variability in dissolved organic matter composition and biolability across gradients of glacial coverage and distance from glacial terminus on the Tibetan Plateau // Environ. Sci. Technol. 2019. V. 53(21). P. 12207–12217. https://doi.org/10.1021/acs.est.9b03348

Дополнительные материалы отсутствуют.